Gorkov-Green's functions in mid-mass nuclei with chiral interactions

cea

Vittorio Somà (CEA Saclay)

with

Carlo Barbieri (Uni. Surrey)
Andrea Cipollone (Uni. Surrey)
Thomas Duguet (CEA Saclay)
Petr Navrátil (TRIUMF)

Nuclear structure \& reactions: experimental and ab initio theoretical perspectives
TRIUMF, 21 February 2014

Going open-shell: Gorkov-Green's functions

Self-consistent Green's functions
\rightarrow Many-body truncation in the self-energy expansion (cf. CC, IM-SRG, ...)
\rightarrow Access to $A \pm 1$ systems via spectral function
\rightarrow Natural connection to scattering (e.g. optical potentials)

Going open-shell: Gorkov-Green's functions

© Self-consistent Green's functions
\rightarrow Many-body truncation in the self-energy expansion (cf. CC, IM-SRG, ...)
\rightarrow Access to $A \pm 1$ systems via spectral function
\rightarrow Natural connection to scattering (e.g. optical potentials)
© Gorkov scheme
\rightarrow Goes beyond standard expansion schemes limited to doubly closed-shell

- Formulate the expansion scheme around a Bogoliubov vacuum
- Single-reference method (cf. MR in quantum chemistry or IM-SRG)
- Exploit breaking (and restoration) of $U(1)$ symmetry
\rightarrow From few tens to hundreds of medium-mass open-shell nuclei

Going open-shell: Gorkov-Green's functions

© Self-consistent Green's functions
\rightarrow Many-body truncation in the self-energy expansion (cf. CC, IM-SRG, ...)
\rightarrow Access to $A \pm 1$ systems via spectral function
\rightarrow Natural connection to scattering (e.g. optical potentials)
© Gorkov scheme
\rightarrow Goes beyond standard expansion schemes limited to doubly closed-shell

- Formulate the expansion scheme around a Bogoliubov vacuum
- Single-reference method (cf. MR in quantum chemistry or IM-SRG)
- Exploit breaking (and restoration) of $U(1)$ symmetry
\rightarrow From few tens to hundreds of medium-mass open-shell nuclei
- Formalism VS, Duguet \& Barbieri, PRC 84064317 (2011)
- Proof of principle VS, Barbieri \& Duguet, PRC 87011303 (2013)
- Technical aspects VS, Barbieri \& Duguet, arXiv:1311.1989 (2013)
- NN+3N VS, Cipollone, Barbieri, Navrátil \& Duguet, arXiv:1312.2068 (2013)

Gorkov framework

© Auxiliary many-body state
$\xrightarrow{\prime \prime} \rightarrow$ Mixes various particle numbers $\left|\Psi_{0}\right\rangle \equiv \sum_{A}^{\text {even }} c_{A}\left|\psi_{0}^{A}\right\rangle$
$\quad \rightarrow$ Introduce a "grand-canonical" potential $\quad \Omega=H-\mu A$
$\rightarrow\left|\Psi_{0}\right\rangle$ minimizes $\Omega_{0}=\left\langle\Psi_{0}\right| \Omega\left|\Psi_{0}\right\rangle$ under the constraint $A=\left\langle\Psi_{0}\right| A\left|\Psi_{0}\right\rangle$
\rightarrow Observables of the A-body system

$$
\Omega_{0}=\sum_{A^{\prime}}\left|c_{A^{\prime}}\right|^{2} \Omega_{0}^{A^{\prime}} \approx E_{0}^{A}-\mu A
$$

Set of 4 propagators

$$
\begin{array}{ll}
i G_{a b}^{11}\left(t, t^{\prime}\right) \equiv\left\langle\Psi_{0}\right| T\left\{a_{a}(t) a_{b}^{\dagger}\left(t^{\prime}\right)\right\}\left|\Psi_{0}\right\rangle \equiv \overbrace{b}^{a} \\
\left.i G_{a b}^{12}\left(t, t^{\prime}\right) \equiv\left\langle\Psi_{0}\right| T\left\{a_{a}(t) \bar{a}_{b}\left(t^{\prime}\right)\right\}\left|\Psi_{0}\right\rangle \equiv \Psi_{0}\left|T\left\{\bar{a}_{a}^{\dagger}(t) a_{b}^{\dagger}\left(t^{\prime}\right)\right\}\right| \Psi_{0}\right\rangle \equiv
\end{array}
$$

Inside the Green's function

Separation energy spectrum

$$
G_{a b}^{11}(\omega)=\sum_{k}\left\{\frac{\mathcal{U}_{a}^{k} \mathcal{U}_{b}^{k *}}{\omega-\omega_{k}+i \eta}+\frac{\overline{\mathcal{V}}_{a}^{k *} \overline{\mathcal{V}}_{b}^{k}}{\omega+\omega_{k}-i \eta}\right\}
$$

Lehmann representation

$$
\begin{array}{ll}
\text { where } & \left\{\begin{array}{l}
\mathcal{U}_{a}^{k *} \equiv\left\langle\Psi_{k}\right| a_{a}^{\dagger}\left|\Psi_{0}\right\rangle \\
\mathcal{V}_{a}^{k *} \equiv\left\langle\Psi_{k}\right| \bar{a}_{a}\left|\Psi_{0}\right\rangle
\end{array}\right. \\
\text { and } & \left\{\begin{array}{l}
E_{k}^{+(A)} \equiv E_{k}^{A+1}-E_{0}^{A} \equiv \mu+\omega_{k} \\
E_{k}^{-(A)} \equiv E_{0}^{A}-E_{k}^{A-1} \equiv \mu-\omega_{k}
\end{array}\right.
\end{array}
$$

- Spectroscopic factors

$$
\begin{aligned}
& \left.S F_{k}^{+} \equiv \sum_{a \in \mathcal{H}_{1}}\left|\left\langle\psi_{k}\right| a_{a}^{\dagger}\right| \psi_{0}\right\rangle\left.\right|^{2}=\sum_{a \in \mathcal{H}_{1}}\left|\mathcal{U}_{a}^{k}\right|^{2} \\
& \left.S F_{k}^{-} \equiv \sum_{a \in \mathcal{H}_{1}}\left|\left\langle\psi_{k}\right| a_{a}\right| \psi_{0}\right\rangle\left.\right|^{2}=\sum_{a \in \mathcal{H}_{1}}\left|\mathcal{V}_{a}^{k}\right|^{2}
\end{aligned}
$$

[figure from J. Sadoudi]

Gorkov equation

Gorkov equation \longrightarrow energy dependent eigenvalue problem

$$
\left.\sum_{b}\left(\begin{array}{cc}
t_{a b}-\mu_{a b}+\Sigma_{a b}^{11}(\omega) & \Sigma_{a b}^{12}(\omega) \\
\Sigma_{a b}^{21}(\omega) & -t_{a b}+\mu_{a b}+\Sigma_{a b}^{22}(\omega)
\end{array}\right)\right|_{\omega_{k}}\binom{\mathcal{U}_{b}^{k}}{\mathcal{V}_{b}^{k}}=\omega_{k}\binom{\mathcal{U}_{a}^{k}}{\mathcal{V}_{a}^{k}}
$$

($1^{\text {st }}$ order " \rightarrow energy-independent self-energy

($2^{\text {nd }}$ order ${ }^{\prime \rightarrow}$ energy-dependent self-energy
$\Sigma_{a b}^{11(2)}(\omega)=\omega_{d}^{a}$

Gorkov equation

Gorkov equation \longrightarrow energy dependent eigenvalue problem

$$
\left.\sum_{b}\left(\begin{array}{cc}
t_{a b}-\mu_{a b}+\Sigma_{a b}^{11}(\omega) & \Sigma_{a b}^{12}(\omega) \\
\Sigma_{a b}^{21}(\omega) & -t_{a b}+\mu_{a b}+\Sigma_{a b}^{22}(\omega)
\end{array}\right)\right|_{\omega_{k}}\binom{\mathcal{U}_{b}^{k}}{\mathcal{V}_{b}^{k}}=\omega_{k}\binom{\mathcal{U}_{a}^{k}}{\mathcal{V}_{a}^{k}}
$$

[Schirmer \& Angonoa 1989]
energy independent eigenvalue problem

Gorkov equation

Gorkov equation \longrightarrow energy dependent eigenvalue problem

$$
\left.\sum_{b}\left(\begin{array}{cc}
t_{a b}-\mu_{a b}+\Sigma_{a b}^{11}(\omega) & \Sigma_{a b}^{12}(\omega) \\
\Sigma_{a b}^{21}(\omega) & -t_{a b}+\mu_{a b}+\Sigma_{a b}^{22}(\omega)
\end{array}\right)\right|_{\omega_{k}}\binom{\mathcal{U}_{b}^{k}}{\mathcal{V}_{b}^{k}}=\omega_{k}\binom{\mathcal{U}_{a}^{k}}{\mathcal{V}_{a}^{k}}
$$

[Schirmer \& Angonoa 1989]
energy independent eigenvalue problem
typically $\sim \mathbf{N}^{3} 0^{6}-10^{7}\left(\begin{array}{cccc}T-\mu+\Lambda & \tilde{h} & \mathcal{C} & -\mathcal{D}^{\dagger} \\ \tilde{h}^{\dagger} & -T+\mu-\Lambda & -\mathcal{D}^{\dagger} & \mathcal{C} \\ \mathcal{C}^{\dagger} & -\mathcal{D} & E & 0 \\ -\mathcal{D} & \mathcal{C}^{\dagger} & 0 & -E\end{array}\right)\left(\begin{array}{c}\mathcal{U}^{k} \\ \mathcal{V}^{k} \\ \mathcal{W}_{k} \\ \mathcal{Z}_{k}\end{array}\right)=\omega_{k}\left(\begin{array}{c}\mathcal{U}^{k} \\ \mathcal{V}^{k} \\ \mathcal{W}_{k} \\ \mathcal{Z}_{k}\end{array}\right)$

Krylov space eigenvalue problem

Testing Krylov projection

Energy \& spectral distribution independent of the projection
© Same behavior for all model spaces
[VS, Barbieri \& Duguet 2013]

Density of states

Odd-even systems

(Current implementation targets $\mathrm{J}^{\Pi}=0^{+}$states
$\rightarrow \rightarrow$ Equations simplify: j-coupled scheme, block-diagonal structure, ...

Odd-even systems

- Current implementation targets $\mathrm{J}^{\boldsymbol{\pi}}=0^{+}$states
\rightarrow Equations simplify: j-coupled scheme, block-diagonal structure, ...

Different possibilities to compute odd-even g.s. energies:
(1) From separation energies
\rightarrow Either from A-1 or A+1

Odd-even systems

(Current implementation targets $\mathrm{J}^{\Pi}=0^{+}$states
\rightarrow Equations simplify: j-coupled scheme, block-diagonal structure, ...
Different possibilities to compute odd-even g.s. energies:
(1) From separation energies
\rightarrow Either from A-1 or A+1

$>$
[Cipollone, Barbieri \& Navrátil 2013]

Odd-even systems

(Current implementation targets $\mathrm{J}^{\Pi}=0^{+}$states
\rightarrow Equations simplify: j-coupled scheme, block-diagonal structure, ...

Different possibilities to compute odd-even g.s. energies:
(1) From separation energies
\rightarrow Either from A-1 or A+1

(2) From fully-paired even number-parity state
" \rightarrow "Fake" odd-A plus correction

[Duguet et al. 2001]

Odd-even systems

(Current implementation targets $\mathrm{J}^{\Pi}=0^{+}$states
\rightarrow Equations simplify: j-coupled scheme, block-diagonal structure, ...
Different possibilities to compute odd-even g.s. energies:
(1) From separation energies
\rightarrow Either from A-1 or A+1

(2) From fully-paired even number-parity state
" \rightarrow "Fake" odd-A plus correction

[Duguet et al. 2001]

Three-body forces

O One- and two-body forces derived from the 3N part of the Hamiltonian
\rightarrow Contractions with fully correlated density matrix
\rightarrow Generalization of normal ordering
(Galitskii-Koltun sum rule modified to account for 3N piece

[Cipollone et al. 2013]
\rightarrow Use of dressed propagators provides significant extra correlations

The GGF input: NN \& 3N interactions

(NN potential: chiral N3${ }^{3} \mathrm{LO}(500 \mathrm{MeV})$ SRG-evolved to $2.0 \mathrm{fm}^{-1}$
[Entem and Machleidt 2003]

- 3 N potential: chiral $\mathrm{N}^{2} \mathrm{LO}(400 \mathrm{MeV})$ SRG-evolved to $2.0 \mathrm{fm}^{-1}$ [Navrátil 2007]
$\xrightarrow{\prime \prime} \rightarrow$ Fit to three- and four-body systems only
$\xrightarrow{\prime \prime} \rightarrow$ Modified cutoff to reduce induced 4 N contributions [Roth et al. 2012]
($)$ In the future:
$\xrightarrow{\prime} \rightarrow$ Chiral 3NF at N3${ }^{3} \mathrm{LO}$
$\xrightarrow{\prime \prime} \rightarrow \Delta$-full chiral interactions
m NN \& 3N consistently SRG-evolved in momentum space
" \rightarrow...
\rightarrow Chiral interactions with improved / correct power counting
$\quad \rightarrow$ Inputs from lattice QCD: couplings \& YN interactions

Binding energies around Ca

Binding energies around Ca

Estimate of the many-body truncation error

Binding energies around Ca

Binding energies around Ca

Binding energies around Ca

\rightarrow Results confirmed within different many-body approaches
$\rightarrow \mathrm{NN}+$ full 3 N correct the trend of binding energies
\rightarrow Systematic overbinding through all chains around $\mathrm{Z}=20$

Two-neutron separation energies around Ca

$\rightarrow \mathrm{S}_{2 \mathrm{n}}$ well reproduced with chiral $\mathrm{NN}+3 \mathrm{~N}$ interactions
$\rightarrow \rightarrow$ Microscopic calculations extended to the whole Ca chain

Two-neutron separation energies around Ca

Challenging new data

[Gallant et al. 2012]
[Wienholtz et al. 2013]
$\rightarrow \mathrm{S}_{2 \mathrm{n}}$ well reproduced with chiral $\mathrm{NN}+3 \mathrm{~N}$ interactions
$\xrightarrow{\prime} \rightarrow$ Microscopic calculations extended to the whole Ca chain

Two-neutron separation energies around Ca

$\rightarrow \mathrm{S}_{2 \mathrm{n}}$ well reproduced with chiral $\mathrm{NN}+3 \mathrm{~N}$ interactions
$\rightarrow \rightarrow$ Microscopic calculations extended to the whole Ca chain
\rightarrow Neighbouring $\mathrm{Z}=18$ - 22 chains computed within the same GGF framework

Two-neutron separation energies around Ca

$\rightarrow \mathrm{S}_{2 \mathrm{n}}$ well reproduced with chiral $\mathrm{NN}+3 \mathrm{~N}$ interactions
\rightarrow Microscopic calculations extended to the whole Ca chain
\rightarrow Neighbouring $\mathrm{Z}=18$ - 22 chains computed within the same GGF framework
$\xrightarrow{\rightarrow} \rightarrow$ Overestimation of $\mathrm{N}=20$ gap traced back to spectrum too spread out

Two-neutron separation energies around Ca

$\rightarrow \mathrm{S}_{2 \mathrm{n}}$ well reproduced with chiral $\mathrm{NN}+3 \mathrm{~N}$ interactions
\rightarrow Microscopic calculations extended to the whole Ca chain
\rightarrow Neighbouring $\mathrm{Z}=18$-22 chains computed within the same GGF framework
\rightarrow Overestimation of $\mathrm{N}=20$ gap traced back to spectrum too spread out

Two-neutron separation energies around Ca

$\rightarrow \mathrm{S}_{2 \mathrm{n}}$ well reproduced with chiral $\mathrm{NN}+3 \mathrm{~N}$ interactions
\rightarrow Microscopic calculations extended to the whole Ca chain
\rightarrow Neighbouring $\mathrm{Z}=18$-22 chains computed within the same GGF framework
\rightarrow Overestimation of $\mathrm{N}=20$ gap traced back to spectrum too spread out

Extrapolation of the neutron-rich end

(2) Convergence worsens after $\mathrm{N}=32$

Extrapolation to infinite model space [Coon et al., Furnstahl et al.]

Potassium ground states (re)inversion

Laser spectroscopy (@ ISOLDE)
[Papuga et al. 2013]

Theory (GGF)
[VS et al. unpublished]

$\begin{aligned} &-=- 1 / 2^{+} \\ & 3 / 2^{+} \end{aligned}$				1401
	474 161	$\underline{360} \underline{312} \underline{\underline{301}}$		
$\begin{gathered} \text { Exp } N R \quad \mathrm{UU} \\ 43 \mathrm{~K} \end{gathered}$	$\begin{gathered} \text { Exp } N R \quad U \quad M U \\ 45 K \end{gathered}$	$\begin{gathered} \operatorname{Exp} N R \quad U \quad M U \\ 47 K \end{gathered}$	$\begin{gathered} \operatorname{Exp} N R \quad U \quad M U \\ 49 \mathrm{~K} \end{gathered}$	$\begin{gathered} \overline{\operatorname{Exp}} \overline{N R} \quad \mathrm{U} \quad \overline{M U} \\ 51 \mathrm{~K} \end{gathered}$

Knockout \& transfer experiments

(Neutron removal from proton- and neutron-rich Ar isotopes @ NSCL

		(theo.)				(expt.)		(expt.)	
Isotopes	$l j^{\pi}$	$\mathrm{Sn}(\mathrm{MeV})$	$\Delta S(\mathrm{MeV})$	$\mathrm{SF}(\mathrm{LB}-\mathrm{SM})$	$\mathrm{SF}(\mathrm{JLM}+\mathrm{HF})$	$R s(\mathrm{JLM}+\mathrm{HF})$	$\mathrm{SF}(\mathrm{CH} 89)$	$R s(\mathrm{CH} 89)$	
${ }^{34} \mathrm{Ar}$	$s 1 / 2^{+}$	17.07	12.41	1.31	0.85 ± 0.09	0.65 ± 0.07	1.10 ± 0.11	0.84 ± 0.08	
${ }^{36} \mathrm{Ar}$	$d 3 / 2^{+}$	15.25	6.75	2.10	1.60 ± 0.16	0.76 ± 0.08	2.29 ± 0.23	1.09 ± 0.11	
${ }^{46} \mathrm{Ar}$	$f 7 / 2^{-}$	8.07	-10.03	5.16	3.93 ± 0.39	0.76 ± 0.08	5.29 ± 0.53	1.02 ± 0.10	

[Lee et al. 2010]

	$\mathrm{Sn}(\mathrm{MeV})$	$\Delta \mathrm{S}(\mathrm{MeV})$	SF
	33.0	18.6	1.46
${ }^{34} \mathrm{Ar}$	27.7	7.5	1.46
${ }^{36} \mathrm{Ar}$	16.0	-22.3	5.88
${ }^{46} \mathrm{Ar}$			
			$\Delta \mathrm{S}=\mathrm{Sn}-\mathrm{Sp}$
${ }^{34} \mathrm{Ar}$	22.4	15.5	1.56
${ }^{36} \mathrm{Ar}$	15.3	7.2	1.54
	Gorkov GF NN		

Knockout \& transfer experiments

Neutron removal from proton- and neutron-rich Ar isotopes @ NSCL

Summary \& outlook

(2) Agreement between different many-body methods
\rightarrow Model independent calculations challenge chiral interactions
© Gorkov-Green's functions
\rightarrow Novel path to extend first-principle calculations to open-shells
\rightarrow GGF(2) provides good reproduction of S2n around Ca
\rightarrow Separation spectra at a qualitative level
\rightarrow Work in progress: GGF(3)

Appendix

Scaling, convergence \& theoretical errors

Scaling and convergence thoroughly assessed

(2) Estimation of theoretical errors in ab initio methods

1) Hamiltonian
2) Many-body expansion
\Leftarrow GGF
3) Model space truncation
4) Numerical algorithms

Not only oxygen...

(2) Consistent description of $Z=7,8,9$ isotopic chains with GF method

[Cipollone, Barbieri \& Navrátil 2013]
\rightarrow 3NF crucial for reproducing driplines
$\rightarrow d_{3 / 2}$ raised by genuine 3NF

Single-nucleon transfer in the oxygen chain

© Analysis of ${ }^{14} \mathrm{O}(d, t){ }^{13} \mathrm{O}$ and ${ }^{14} \mathrm{O}\left(d,{ }^{3} \mathrm{He}\right){ }^{13} \mathrm{~N}$ transfer reactions @ SPIRAL

\rightarrow Overlaps functions and cross sections from GF
$\rightarrow R_{s}$ independent of asymmetry
[Flavigny et al. 2013]

