Gorkov-Green's functions in mid-mass nuclei with chiral interactions

Vittorio Somà (CEA Saclay)

with

Carlo Barbieri (Uni. Surrey) Andrea Cipollone (Uni. Surrey) Thomas Duguet (CEA Saclay) Petr Navrátil (TRIUMF)

Nuclear structure & reactions: experimental and ab initio theoretical perspectives TRIUMF, 21 February 2014

Going open-shell: Gorkov-Green's functions

Self-consistent Green's functions

- → Many-body truncation in the self-energy expansion (cf. CC, IM-SRG, ...)
- \rightarrow Access to $A\pm 1$ systems via spectral function
- Natural connection to scattering (e.g. optical potentials)

Going open-shell: Gorkov-Green's functions

Self-consistent Green's functions

- → Many-body truncation in the self-energy expansion (cf. CC, IM-SRG, ...)
- \rightarrow Access to $A\pm 1$ systems via spectral function
- Natural connection to scattering (e.g. optical potentials)
- Gorkov scheme
 - Goes beyond standard expansion schemes limited to doubly closed-shell
 - Formulate the expansion scheme around a Bogoliubov vacuum
 - Single-reference method (cf. MR in quantum chemistry or IM-SRG)
 - \circ Exploit breaking (and restoration) of U(1) symmetry
 - From few tens to hundreds of medium-mass open-shell nuclei

Going open-shell: Gorkov-Green's functions

Self-consistent Green's functions

- → Many-body truncation in the self-energy expansion (cf. CC, IM-SRG, ...)
- \rightarrow Access to $A\pm1$ systems via spectral function
- Natural connection to scattering (e.g. optical potentials)
- Gorkov scheme
 - Goes beyond standard expansion schemes limited to doubly closed-shell
 - Formulate the expansion scheme around a Bogoliubov vacuum
 - Single-reference method (cf. MR in quantum chemistry or IM-SRG)
 - Exploit breaking (and restoration) of U(1) symmetry

Formalism VS, Duguet & Barbieri, PRC 84 064317 (2011)
Proof of principle VS, Barbieri & Duguet, PRC 87 011303 (2013)
Technical aspects VS, Barbieri & Duguet, arXiv:1311.1989 (2013)
NN+3N VS, Cipollone, Barbieri, Navrátil & Duguet, arXiv:1312.2068 (2013)

Gorkov framework

Auxiliary many-body state

 \rightarrow Mixes various particle numbers $|\Psi_0\rangle \equiv \sum_A c_A |\psi_0^A\rangle$

Introduce a "grand-canonical" potential $\Omega = H - \mu A$

 $\Rightarrow |\Psi_0\rangle$ minimizes $\Omega_0 = \langle \Psi_0 | \Omega | \Psi_0 \rangle$ under the constraint $A = \langle \Psi_0 | A | \Psi_0 \rangle$

even

 \blacksquare Observables of the A-body system $\Omega_0 = \sum_{A'} |c_{A'}|^2 \Omega_0^{A'} \approx E_0^A - \mu A$

Set of 4 propagators

[Gorkov 1958]

$$i G_{ab}^{11}(t,t') \equiv \langle \Psi_0 | T \left\{ a_a(t) a_b^{\dagger}(t') \right\} | \Psi_0 \rangle \equiv \int_{b}^{a} i G_{ab}^{21}(t,t') \equiv \langle \Psi_0 | T \left\{ \bar{a}_a^{\dagger}(t) a_b^{\dagger}(t') \right\} | \Psi_0 \rangle \equiv \int_{b}^{\bar{a}} i G_{ab}^{12}(t,t') \equiv \langle \Psi_0 | T \left\{ \bar{a}_a^{\dagger}(t) \bar{a}_b(t') \right\} | \Psi_0 \rangle \equiv \int_{\bar{b}}^{\bar{a}} i G_{ab}^{22}(t,t') \equiv \langle \Psi_0 | T \left\{ \bar{a}_a^{\dagger}(t) \bar{a}_b(t') \right\} | \Psi_0 \rangle \equiv \int_{\bar{b}}^{\bar{a}} i G_{ab}^{22}(t,t') \equiv \langle \Psi_0 | T \left\{ \bar{a}_a^{\dagger}(t) \bar{a}_b(t') \right\} | \Psi_0 \rangle \equiv \int_{\bar{b}}^{\bar{a}} i G_{ab}^{22}(t,t') \equiv \langle \Psi_0 | T \left\{ \bar{a}_a^{\dagger}(t) \bar{a}_b(t') \right\} | \Psi_0 \rangle$$

Inside the Green's function

Separation energy spectrum

$$G_{ab}^{11}(\omega) = \sum_{k} \left\{ \frac{\mathcal{U}_{a}^{k} \mathcal{U}_{b}^{k*}}{\omega - \omega_{k} + i\eta} + \frac{\bar{\mathcal{V}}_{a}^{k*} \bar{\mathcal{V}}_{b}^{k}}{\omega + \omega_{k} - i\eta} \right\}$$

Lehmann representation

where

$$\begin{bmatrix} \mathcal{U}_a^{k*} \equiv \langle \Psi_k | a_a^{\dagger} | \Psi_0 \rangle \\ \mathcal{V}_a^{k*} \equiv \langle \Psi_k | \bar{a}_a | \Psi_0 \rangle \end{bmatrix}$$

and

$$\begin{bmatrix} E_k^{+\,(A)} \equiv E_k^{A+1} - E_0^A \equiv \mu + \omega_k \\ E_k^{-\,(A)} \equiv E_0^A - E_k^{A-1} \equiv \mu - \omega_k \end{bmatrix}$$

Spectroscopic factors

$$SF_{k}^{+} \equiv \sum_{a \in \mathcal{H}_{1}} \left| \langle \psi_{k} | a_{a}^{\dagger} | \psi_{0} \rangle \right|^{2} = \sum_{a \in \mathcal{H}_{1}} \left| \mathcal{U}_{a}^{k} \right|^{2}$$
$$SF_{k}^{-} \equiv \sum_{a \in \mathcal{H}_{1}} \left| \langle \psi_{k} | a_{a} | \psi_{0} \rangle \right|^{2} = \sum_{a \in \mathcal{H}_{1}} \left| \mathcal{V}_{a}^{k} \right|^{2}$$

[figure from J. Sadoudi]

 $\begin{aligned} & \textcircled{O} \text{Gorkov equation} \longrightarrow \text{energy } \underline{dependent} \text{ eigenvalue problem} \\ & \left[\sum_{b} \left(\begin{array}{c} t_{ab} - \mu_{ab} + \Sigma_{ab}^{11}(\omega) & \Sigma_{ab}^{12}(\omega) \\ \Sigma_{ab}^{21}(\omega) & -t_{ab} + \mu_{ab} + \Sigma_{ab}^{22}(\omega) \end{array} \right) \right|_{\omega_{k}} \left(\begin{array}{c} \mathcal{U}_{b}^{k} \\ \mathcal{V}_{b}^{k} \end{array} \right) = \omega_{k} \left(\begin{array}{c} \mathcal{U}_{a}^{k} \\ \mathcal{V}_{a}^{k} \end{array} \right) \end{aligned} \right) \end{aligned}$

Optimized 1st order → energy-independent self-energy

$$\Sigma_{ab}^{11\,(1)} = \qquad \stackrel{a}{\bullet} - - - \stackrel{c}{-} \stackrel{\bullet}{\bigoplus} \downarrow \omega' \qquad \qquad \Sigma_{ab}^{12\,(1)} = \qquad \stackrel{a}{\bullet} \stackrel{c}{\frown} \stackrel{\bullet}{\longrightarrow} \stackrel{\bullet}{\longrightarrow} \omega'$$

Operation Of the self-energy of the self-energy

Gorkov equation

Gorkov equation energy *dependent* eigenvalue problem $\sum_{k} \begin{pmatrix} t_{ab} - \mu_{ab} + \Sigma_{ab}^{11}(\omega) & \Sigma_{ab}^{12}(\omega) \\ \Sigma_{ab}^{21}(\omega) & -t_{ab} + \mu_{ab} + \Sigma_{ab}^{22}(\omega) \end{pmatrix} \Big|_{\omega_{k}} \begin{pmatrix} \mathcal{U}_{b}^{k} \\ \mathcal{V}_{b}^{k} \end{pmatrix} = \omega_{k} \begin{pmatrix} \mathcal{U}_{a}^{k} \\ \mathcal{V}_{a}^{k} \end{pmatrix}$ [Schirmer & Angonoa 1989] energy *independent* eigenvalue problem $\propto N_{b}^{3}$ typically ~10⁶-10⁷ $\begin{pmatrix} T - \mu + \Lambda & \tilde{h} & \mathcal{C} & -\mathcal{D}^{\dagger} \\ \tilde{h}^{\dagger} & -T + \mu - \Lambda & -\mathcal{D}^{\dagger} & \mathcal{C} \\ \mathcal{C}^{\dagger} & -\mathcal{D} & E & 0 \\ -\mathcal{D} & \mathcal{C}^{\dagger} & 0 & -E \end{pmatrix} \begin{pmatrix} \mathcal{U}^{k} \\ \mathcal{V}^{k} \\ \mathcal{W}_{k} \\ \mathcal{Z}_{k} \end{pmatrix} = \omega_{k} \begin{pmatrix} \mathcal{U}^{k} \\ \mathcal{V}^{k} \\ \mathcal{W}_{k} \\ \mathcal{Z}_{k} \end{pmatrix}$

Gorkov equation energy *dependent* eigenvalue problem $\sum_{k} \begin{pmatrix} t_{ab} - \mu_{ab} + \Sigma_{ab}^{11}(\omega) & \Sigma_{ab}^{12}(\omega) \\ \Sigma_{ab}^{21}(\omega) & -t_{ab} + \mu_{ab} + \Sigma_{ab}^{22}(\omega) \end{pmatrix} \Big|_{\omega_{k}} \begin{pmatrix} \mathcal{U}_{b}^{k} \\ \mathcal{V}_{b}^{k} \end{pmatrix} = \omega_{k} \begin{pmatrix} \mathcal{U}_{a}^{k} \\ \mathcal{V}_{a}^{k} \end{pmatrix}$ [Schirmer & Angonoa 1989] energy *independent* eigenvalue problem $\propto N_{b}^{3}$ typically ~10⁶-10⁷ $\begin{pmatrix} T - \mu + \Lambda & \tilde{h} & \mathcal{C} & -\mathcal{D}^{\dagger} \\ \tilde{h}^{\dagger} & -T + \mu - \Lambda & -\mathcal{D}^{\dagger} & \mathcal{C} \\ \mathcal{C}^{\dagger} & -\mathcal{D} & E & 0 \\ -\mathcal{D} & \mathcal{C}^{\dagger} & 0 & -E \end{pmatrix} \begin{pmatrix} \mathcal{U}^{k} \\ \mathcal{V}^{k} \\ \mathcal{W}_{k} \\ \mathcal{Z}_{k} \end{pmatrix} = \omega_{k} \begin{pmatrix} \mathcal{U}^{k} \\ \mathcal{V}^{k} \\ \mathcal{W}_{k} \\ \mathcal{Z}_{k} \end{pmatrix}$ Krylov space eigenvalue problem

Testing Krylov projection

- Energy & spectral distribution independent of the projection
- Same behavior for all model spaces

[VS, Barbieri & Duguet 2013]

𝔅 Current implementation targets $J^{\Pi} = 0^+$ states

➡ Equations simplify: j-coupled scheme, block-diagonal structure, ...

𝔅 Current implementation targets $J^{\Pi} = 0^+$ states

Olifferent possibilities to compute odd-even g.s. energies:

1 From separation energies

→ Either from A-1 or A+1

• Current implementation targets $J^{\Pi} = 0^+$ states

---- Equations simplify: j-coupled scheme, block-diagonal structure, ...

Olifferent possibilities to compute odd-even g.s. energies:

1 From separation energies

→ Either from A-1 or A+1

[Cipollone, Barbieri & Navrátil 2013]

• Current implementation targets $J^{\Pi} = 0^+$ states

➡ Equations simplify: j-coupled scheme, block-diagonal structure, ...

Olifferent possibilities to compute odd-even g.s. energies:

① From separation energies

2 From fully-paired even number-parity state

→ Either from A-1 or A+1

"→ "Fake" odd-A plus correction

[Duguet et al. 2001]

• Current implementation targets $J^{\Pi} = 0^+$ states

➡ Equations simplify: j-coupled scheme, block-diagonal structure, ...

Olifferent possibilities to compute odd-even g.s. energies:

① From separation energies

2 From fully-paired even number-parity state

→ Either from A-1 or A+1

→ "Fake" odd-A plus correction

[[]Duguet et al. 2001]

Two methods agree within 2-300 keV

Three-body forces

One- and two-body forces de lements of Green Function theory

NF can enter the diagrams in three different ways Galitskii-Koltun sum rule modified to account for 3N piece

Defining 1- and 2-body effective interaction and use only *irreducible* diagrams

Beware that defining

h

[Cipollone *et al.* 2013]

would double-count the 1-body term

The GGF input: NN & 3N interactions

NN potential: chiral N³LO (500 MeV) SRG-evolved to 2.0 fm⁻¹

[Entem and Machleidt 2003]

♦ 3N potential: chiral N²LO (400 MeV) SRG-evolved to 2.0 fm⁻¹ [Navrátil 2007]

→ Fit to three- and four-body systems only

→ Modified cutoff to reduce induced 4N contributions [Roth et al. 2012]

In the future:

- → Chiral 3NF at N³LO
- $\rightarrow \Delta$ -full chiral interactions
- → NN & 3N consistently SRG-evolved in momentum space

•••

- Chiral interactions with improved / correct power counting
- → Inputs from lattice QCD: couplings & YN interactions

- Results confirmed within different many-body approaches
- → NN + full 3N correct the trend of binding energies
- Systematic overbinding through all chains around Z=20

- \implies S_{2n} well reproduced with chiral NN + 3N interactions
- Microscopic calculations extended to the whole Ca chain

- \implies S_{2n} well reproduced with chiral NN + 3N interactions
- Microscopic calculations extended to the whole Ca chain

- \implies S_{2n} well reproduced with chiral NN + 3N interactions
- Microscopic calculations extended to the whole Ca chain
- → Neighbouring Z=18-22 chains computed within the same GGF framework

- \implies S_{2n} well reproduced with chiral NN + 3N interactions
- Microscopic calculations extended to the whole Ca chain
- → Neighbouring Z=18-22 chains computed within the same GGF framework
- → Overestimation of N=20 gap traced back to spectrum too spread out

- \implies S_{2n} well reproduced with chiral NN + 3N interactions
- Microscopic calculations extended to the whole Ca chain
- → Neighbouring Z=18-22 chains computed within the same GGF framework
- → Overestimation of N=20 gap traced back to spectrum too spread out

- \implies S_{2n} well reproduced with chiral NN + 3N interactions
- Microscopic calculations extended to the whole Ca chain
- → Neighbouring Z=18-22 chains computed within the same GGF framework
- → Overestimation of N=20 gap traced back to spectrum too spread out

Extrapolation of the neutron-rich end

✿ Convergence worsens after N=32

Extrapolation to infinite model space [Coon *et al.*, Furnstahl *et al.*]

Potassium ground states (re)inversion

Laser spectroscopy (@ ISOLDE)

[Papuga *et al.* 2013]

Theory (GGF)

[VS et al. unpublished]

Knockout & transfer experiments

♦ Neutron removal from proton- and neutron-rich Ar isotopes @ NSCL

				(theo.)	(ex	pt.)	(expt.)		
Isotopes	lj^{π}	Sn(MeV)	ΔS (MeV)	SF(LB-SM)	SF(JLM + HF)	Rs(JLM + HF)	SF(CH89)	<i>Rs</i> (CH89)	
³⁴ Ar	$s1/2^{+}$	17.07	12.41	1.31	0.85 ± 0.09	0.65 ± 0.07	1.10 ± 0.11	0.84 ± 0.08	
³⁶ Ar	$d3/2^{+}$	15.25	6.75	2.10	1.60 ± 0.16	0.76 ± 0.08	2.29 ± 0.23	1.09 ± 0.11	
⁴⁶ Ar	$f7/2^{-}$	8.07	-10.03	5.16	3.93 ± 0.39	0.76 ± 0.08	5.29 ± 0.53	1.02 ± 0.10	

[Lee *et al.* 2010]

	Sn (MeV)	ΔS (MeV)	SF	
³⁴ Ar	33.0	18.6	1.46	$\Delta S = Sn - Sp$
³⁶ Ar	27.7	7.5	1.46	Gorkov GF NN
⁴⁶ Ar	16.0	-22.3	5.88	
³⁴ Ar	22.4	15.5	1.56	
³⁶ Ar	15.3	7.2	1.54	Gorkov GF NN + 3N
⁴⁶ Ar	6.5	-15.7	6.64	
				[VS <i>et al.</i> unpublished]

Knockout & transfer experiments

Solution Neutron removal from proton- and neutron-rich Ar isotopes @ NSCL

[[]VS *et al.* unpublished]

Summary & outlook

- Agreement between different many-body methods
 - Model independent calculations challenge chiral interactions
- Gorkov-Green's functions
 - Novel path to extend first-principle calculations to open-shells
 - → GGF(2) provides good reproduction of S2n around Ca
 - Separation spectra at a qualitative level
 - → Work in progress: GGF(3)

Appendix

Scaling, convergence & theoretical errors

Scaling and convergence thoroughly assessed

Estimation of theoretical errors in *ab initio* methods

1) HamiltonianX2) Many-body expansionX/✓3) Model space truncation✓4) Numerical algorithms✓

⇐ GGF

Noteonly oxygen...

Consistent description of Z = 7, 8, 9 isotopic chains with GF method

[Cipollone, Barbieri & Navrátil 2013]

- → 3NF crucial for reproducing driplines
- → d_{3/2} raised by genuine 3NF

Single-nucleon transfer in the oxygen chain

• Analysis of ${}^{14}O(d, t) {}^{13}O$ and ${}^{14}O(d, {}^{3}He) {}^{13}N$ transfer reactions @ SPIRAL

Reaction	E^* (MeV)	J^{π}	R ^{HFB} (fm)	<i>r</i> ₀ (fm)	$C^2 S_{exp}$ (WS)	$\frac{C^2 S_{\rm th}}{0p + 2\hbar\omega}$	R _s (WS)	$\begin{array}{c} C^2 S_{\rm exp} \\ ({\rm SCGF}) \end{array}$	$\begin{array}{c} C^2 S_{\rm th} \\ ({\rm SCGF}) \end{array}$	<i>R</i> _s (SCGF)
14 O (<i>d</i> , <i>t</i>) 13 O	0.00	3/2-	2.69	1.40	1.69 (17)(20)	3.15	0.54(5)(6)	1.89(19)(22)	3.17	0.60(6)(7)
14 O (<i>d</i> , 3 He) 13 N	0.00	$1/2^{-}$	3.03	1.23	1.14(16)(15)	1.55	0.73(10)(10)	1.58(22)(2)	1.58	1.00(14)(1)
	3.50	$3/2^{-}$	2.77	1.12	0.94(19)(7)	1.90	0.49(10)(4)	1.00(20)(1)	1.90	0.53(10)(1)
$^{16}O(d, t)$ ^{15}O	0.00	$1/2^{-}$	2.91	1.46	0.91(9)(8)	1.54	0.59(6)(5)	0.96(10)(7)	1.73	0.55(6)(4)
16 O (<i>d</i> , 3 He) 15 N [19,20]	0.00	$1/2^{-}$	2.95	1.46	0.93(9)(9)	1.54	0.60(6)(6)	1.25(12)(5)	1.74	0.72(7)(3)
	6.32	$3/2^{-}$	2.80	1.31	1.83(18)(24)	3.07	0.60(6)(8)	2.24(22)(10)	3.45	0.65(6)(3)
$^{18}O(d, {}^{3}\text{He}) {}^{17}N$ [21]	0.00	$1/2^{-}$	2.91	1.46	0.92(9)(12)	1.58	0.58(6)(10)			

- → Overlaps functions and cross sections from GF
- R_s independent of asymmetry

[Flavigny et al. 2013]