
Gorkov-Green’s functions in mid-mass nuclei 
with chiral interactions

Nuclear structure & reactions: experimental and ab initio theoretical perspectives

TRIUMF, 21 February 2014

Vittorio Somà (CEA Saclay)

38 40 42 44 46 48 50 52
5

10

15

20

25

30

35

40
Experiment
NN + 3N (full)
NN + 3N (ind.)
SM (NN + 3N)
CC

ACa

S 2
n [

M
eV

]

                      with
Carlo Barbieri (Uni. Surrey)
Andrea Cipollone (Uni. Surrey) 
Thomas Duguet (CEA Saclay) 
Petr Navrátil (TRIUMF) 



Going open-shell: Gorkov-Green’s functions

✪ Self-consistent Green’s functions
➟ Many-body truncation in the self-energy expansion (cf. CC, IM-SRG, ...)
➟ Access to A±1 systems via spectral function
➟ Natural connection to scattering (e.g. optical potentials)



Going open-shell: Gorkov-Green’s functions

➟ Goes beyond standard expansion schemes limited to doubly closed-shell
✪ Gorkov scheme

○ Formulate the expansion scheme around a Bogoliubov vacuum
○ Single-reference method (cf. MR in quantum chemistry or IM-SRG )

➟ From few tens to hundreds of medium-mass open-shell nuclei

✪ Self-consistent Green’s functions
➟ Many-body truncation in the self-energy expansion (cf. CC, IM-SRG, ...)
➟ Access to A±1 systems via spectral function

○ Exploit breaking (and restoration) of U(1) symmetry

➟ Natural connection to scattering (e.g. optical potentials)



Going open-shell: Gorkov-Green’s functions

➟ Goes beyond standard expansion schemes limited to doubly closed-shell
✪ Gorkov scheme

○ Formulate the expansion scheme around a Bogoliubov vacuum
○ Single-reference method (cf. MR in quantum chemistry or IM-SRG )

➟ From few tens to hundreds of medium-mass open-shell nuclei

✪ Self-consistent Green’s functions
➟ Many-body truncation in the self-energy expansion (cf. CC, IM-SRG, ...)

○ Formalism   VS, Duguet & Barbieri, PRC 84 064317 (2011)
○ Proof of principle   VS, Barbieri & Duguet, PRC 87 011303 (2013)
○ Technical aspects   VS, Barbieri & Duguet, arXiv:1311.1989 (2013)
○ NN+3N   VS, Cipollone, Barbieri, Navrátil & Duguet, arXiv:1312.2068 (2013)

➟ Access to A±1 systems via spectral function

○ Exploit breaking (and restoration) of U(1) symmetry

➟ Natural connection to scattering (e.g. optical potentials)



Gorkov framework

✪ Auxiliary many-body state

➟ Introduce a “grand-canonical” potential

➟ Mixes various particle numbers

➟ Observables of the A-body system
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FIG. 2: (Color online) Same as Fig. 1 for a correlated system.

from zero for any combination4 of µ, p and q (⌫, p and
q) indices. The SDD is thus fragmented as schemat-
ically displayed in Figure 2, i.e. a larger number of
many-body states are reached through the direct addition
and removal of a nucleon compared to the uncorrelated
case5. Consequently, the number of peaks with non-zero
strength in the SDD is greater than the dimension of H1,
which forbids the establishment of a bijection between
this set of peaks and any basis of H1. Accordingly, and
because the SDD still integrates to the dimension of H1

by construction (see Eq. (10)), spectroscopic factors are
smaller than one. The impossibility to realize such a bi-
jection constitutes the most direct and intuitive way to
understand why observable one-nucleon separation ener-
gies cannot be rigorously associated with single-particle
energies when correlations are present in the system, i.e.
as soon as many-body eigenstates of H di↵er from Slater
determinants.

D. E↵ective single-particle energies

The discussion provided above underlines the fact that
a rigorous definition of ESPEs is yet to be provided in
the realistic context of correlated many-nucleon systems.
A key question is: how can one extract a set of single-
particle energy levels that (i) are in one-to-one correspon-

dence with a basis of H1, (ii) are independent of the par-
ticular single-particle basis one is working with, (iii) are
computable only using quantities coming out of the corre-
lated A-body Schrodinger equation and that (iv) reduce
to HF single-particle energies in the HF approximation
to the A-body problem.
Let us make the hypothesis that ideal one-nucleon pick-

up and stripping reactions have been performed such that
separation energies (E+

µ , E�
⌫ ) and spectroscopic ampli-

tudes (overlap functions) (Uµ(~r�⌧), V⌫(~r�⌧)) have been
extracted consistently, i.e. in a way that is consistent
with the chosen nuclear Hamiltonian H(⇤) defined at a
resolution scale ⇤. In such a context, a meaningful defi-
nition of ESPEs does exist and goes back to French [11]
and Baranger [12]. It involves the computation of the
so-called centroid matrix which, in an arbitrary spherical
basis of H1 {a†p}, reads

hcent
pq ⌘

X

µ2HA+1

S+pq
µ E+

µ +
X

⌫2HA�1

S�pq
⌫ E�

⌫ , (13a)

and is nothing but the first moment M(1) of the spectral
function matrix (see Eq. 9). E↵ective single-particle en-
ergies and associated states are extracted, respectively,
as eigenvalues and eigenvectors of hcent, i.e. by solving

hcent  cent
p = ecentp  cent

p , (14)

where the resulting spherical basis is denoted as {c†p}.
Written in that basis, centroid energies invoke diagonal
spectroscopic probabilities6

ecentp ⌘
X

µ2HA+1

S+pp
µ E+

µ +
X

⌫2HA�1

S�pp
⌫ E�

⌫ , (15)

and acquire the meaning of an average of one-nucleon sep-
aration energies weighted by the probability to reach the
corresponding A+1 (A-1) eigenstates by adding (remov-
ing) a nucleon to (from) the single-particle state  cent

p .
Centroid energies are by construction in one-to-one cor-
respondence with states of a single-particle basis of H1

which, as already pointed out before, is not the case of
correlated one-nucleon separation energies with non-zero
spectroscopic strength.

S�
a (!) ⌘

X
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k |aa| A

0 i
��2 �(! � (EA

0 � EA�1
k )) =

1

⇡
ImGaa(!) (16)

Gab(!) =
X

k

h A
0 |aa| A+1

k ih A+1
k |a†a| A

0 i
! � (EA+1

k � EA
0 ) + i⌘

+
X

k

h A
0 |a†a| A�1

k ih A�1
k |aa| A

0 i
! � (EA

0 � EA�1
k )� i⌘

(17)

| 0i ⌘
evenX

A

cA | A
0 i (18)
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⌦ = H � µA (19)

Equation (14) ensures that  cent
p (~r�⌧) and ecentp are

consistent in the sense that the asymptotic behaviour of
the former is driven by the latter, e.g. for ecentp < 0 the
radial part of the wave function behaves asymptotically
as

 cent
p (r�⌧) �!

r!+1 Cp
e�⇠p r

⇠p r
, (20)

where ⇠p ⌘ (�2mecentp /~2)1/2. Such a result under-
lines that single-particle wave-functions associated with
ESPEs are intrinsically di↵erent from overlap functions
Uµ(r�⌧) (V⌫(r�⌧)) which are probed in transfer experi-
ments.

Experimentally, the extraction of ESPEs requires to
collect the full spectroscopic strength up to high enough
missing energies, i.e. the complete set of separation en-
ergies and cross sections from both one-nucleon stripping
and pickup reactions. This unfortunately limits the pos-
sibility to perform sound comparisons on a systematic
basis. Indeed, there are at best only a few nuclei along a
given isotopic or isotonic chain that are characterized by
complete enough spectroscopic data.

E. Sum rule

It is tedious but straightforward to prove that the nth

moment of S(!) fulfils the identity

M(n)
pq = h A

0 |{
n commutatorsz }| {

[. . . [[ap, H], H], . . .], a†q}| A
0 i . (21)

Using the second quantized form of T , V 2N, and V 3N, to-
gether with identities provided in Appendix A and sym-
metries of interaction matrix elements, Eq. (20) applied
to n = 1 leads to [12, 13, 21]

hcent
pq = Tpq +

X

rs

V̄ 2N
prqs ⇢

[1]
sr +

1

4

X

rstv

V̄ 3N
prtqsv ⇢

[2]
svrt

⌘ h1 , (22)

where V̄ 2N
prqs and V̄ 3N

prtqsv are anti-symmetrized matrix el-
ements and where

⇢[1]pq ⌘ h A
0 |a†qap| A

0 i =
X

µ

V p
µ
⇤ V q

µ , (23a)

⇢[2]pqrs ⌘ h A
0 |a†ra†saqap| A

0 i , (23b)

denote one- and two-body density matrices of the corre-

lated A-body ground-state, respectively. The static field
h1, already introduced in Sec. II A, contains both the

kinetic energy and the energy-independent part of the
one-nucleon self-energy in the A-body ground state [21].

Equation (21) demonstrates that the centroid matrix
is a one-body field possessing a simple structure and an
intuitive meaning. In particular, the centroid field re-
duces to the Hartree-Fock (HF) mean field in the HF
approximation. As a result, ESPEs are nothing but HF
single-particle energies in such a case and are equal to
one-nucleon separation energies according to Koopmans’
theorem [22]. Consistently, overlap, centroid, and HF
single-particle wave-functions coincide in that limit. Of
course, centroid energies also reduce to eigenvalues of
the one-body Hamiltonian in the limit of an uncorrelated
system. When correlations beyond HF are switched on,
ESPEs are modified through the presence of correlated
density matrices in Eq. (21); i.e. the B-nucleon interac-
tion is folded with the correlated (B-1)-body density ma-
trix ⇢[B-1]. Through that transition, ESPEs continuously
evolve as centroid energies rather than as observable sep-
aration energies such that Koopmans’ theorem does not
hold any more. Centroid energies are schematically com-
pared to observable binding and separation energies in
Figure 3.

On the practical side, Eq. (21) underlines that the av-
eraged information contained in ESPEs only requires the
computation of the A-body ground-state. As long as
one is not interested in the full spectroscopic strength
of the A±1 systems but only in their centroids, one only
needs to compute one nucleus instead of three. In prac-
tice however, Eq. (25) is rarely computed in terms of
the correlated density matrix, e.g. shell-model applica-
tions usually invoke a filling approximation typical of an
independent-particle approximation. This is believed to
be a decent approximation as long as (i) low-lying states
carry a major part of the single-particle spectroscopic
strength, as for the transfer on a doubly closed-shell nu-
cleus, and (ii) nucleons of the other species are themselves
not strongly correlated, because of pairing for example.
See, e.g., Ref. [23] and references therein for a related
discussion. Such an issue becomes critical whenever one
is looking into, e.g., the neutron shell structure of a neu-
tron open-shell nucleus. In such a situation, a normal
filling is inappropriate and it is mandatory to fold the
monopole interaction in Eq. (25) with a density matrix
reflecting the presence of correlations in the system.

Using that the even-even ground state the one-nucleon
transfer is performed on is a J⇧ = 0+ state, Wigner-
Eckart’s theorem allows one to obtain the explicit de-
pendence of spectroscopic amplitudes on mp and Mµ,
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X
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X
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denote one- and two-body density matrices of the corre-

lated A-body ground-state, respectively. The static field
h1, already introduced in Sec. II A, contains both the
kinetic energy and the energy-independent part of the
one-nucleon self-energy in the A-body ground state [21].
Equation (24) demonstrates that the centroid matrix

is a one-body field possessing a simple structure and an
intuitive meaning. In particular, the centroid field re-
duces to the Hartree-Fock (HF) mean field in the HF
approximation. As a result, ESPEs are nothing but HF
single-particle energies in such a case and are equal to
one-nucleon separation energies according to Koopmans’
theorem [22]. Consistently, overlap, centroid, and HF
single-particle wave-functions coincide in that limit. Of
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system. When correlations beyond HF are switched on,
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density matrices in Eq. (24); i.e. the B-nucleon interac-
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Figure 3.
On the practical side, Eq. (24) underlines that the av-

eraged information contained in ESPEs only requires the
computation of the A-body ground-state. As long as
one is not interested in the full spectroscopic strength
of the A±1 systems but only in their centroids, one only
needs to compute one nucleus instead of three. In prac-
tice however, Eq. (28) is rarely computed in terms of
the correlated density matrix, e.g. shell-model applica-
tions usually invoke a filling approximation typical of an
independent-particle approximation. This is believed to
be a decent approximation as long as (i) low-lying states
carry a major part of the single-particle spectroscopic

✪ Set of 4 propagators [Gorkov 1958]35

are irreducible by definition. An example at second or-
der is given by the two diagrams (C14): the first term
(C14a) is a skeleton diagram while the second self-energy
contribution (C14b) can be generated by two successive
insertions of the first-order term (C13b).

↑ ω′ ↑ ω′′

j g

↓ ω′′′

i f

d

c

h

e

, (C14a)

c i e g
↓ ω′

← ω′′

d j f h

→ ω′′′

.(C14b)

After this distinction one can work out that the com-
plete propagators expansion can be generated by keep-
ing only irreducible skeleton self-energy diagrams and by
substituting in such diagrams all unperturbed propaga-
tors with dressed ones. Dressed propagators are Green’s
functions that are solution of Gorkov’s equations: their
appearance in the self-energy expansion generates the
self-consistency characterizing the method.
It follows that only irreducible skeleton self-energy di-

agrams with dressed or interacting propagators have to
be computed. Single-particle dressed propagators are de-
picted as solid double lines and are labelled by two indices

and an energy as the unperturbed ones, i.e.

G11
ab(ω) ≡ ↑ ω

b

a

, (C15a)

G12
ab(ω) ≡ ↑ ω

b̄

a

, (C15b)

G21
ab(ω) ≡ ↑ ω

b

ā

, (C15c)

G22
ab(ω) ≡ ↑ ω

b̄

ā

. (C15d)

The diagrammatic rules for computing the irreducible
self-energies are then the same of the reducible case, with
the only difference that dressed propagators (C15) have
to be used instead of the bare ones.

2. Self-energies

a. First order

This subsection addresses the calculation of the first-
order self-energy diagrams.
The first normal contribution corresponds to the stan-

dard Hartree-Fock self-energy. It is depicted as

Σ11 (1)
ab (ω) =

b

c

d

a
↓ ω′ ,

(C16)
and reads

Σ11 (1)
ab (ω) = −i

∫

C↑

dω′

2π

∑

cd

V̄acbd G
11
dc(ω

′) , (C17)

where the energy integral is to be performed in the up-
per half of the complex energy plane, according to the
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I. INTRODUCTION

Self-consistent Green’s function (SCGF) methods are
being successfully applied to the study of nuclear sys-
tems. Over the last two decades progress has been made
in the development of suitable formalisms and computa-
tional algorithms both for finite nuclei and infinite nu-
clear matter [1]. In infinite systems, bulk and single-
particle properties are computed through the resum-
mation of particle-particle (pp) and hole-hole (hh) lad-
der diagrams (i.e. in the T-matrix approximation) that
take into account short-range correlations induced by the
hard-core of conventional nucleon-nucleon (NN) inter-
actions. Results have been obtained at zero and finite
temperature for both symmetric and pure neutron mat-
ter based on various conventional NN potentials [2–4].
Recently, microscopic three-nucleon (NNN) forces have
been incorporated [5, 6]. There have been also attempts
to take into account nucleonic superfluidity through the
consistent treatment of anomalous propagators [7, 8].
In finite systems the most advanced SCGF calculations

feature the Faddeev random-phase approximation tech-
nique, which allows the simultaneous inclusion of pp and
ph excitations, together with a G-matrix resummation
of short-range correlations [9, 10]. At the moment, ap-
plications can access all doubly-magic nuclei up to 56Ni
[11].
In the present work SCGF calculations of finite nuclei

are implemented within a Gorkov scheme, allowing in this
way for a treatment of nucleonic superfluidity. Suitable
numerical techniques are developed in order to perform
systematic calculations of doubly-magic and semi-magic
medium-mass nuclei. One of the goals is to be able to
tackle various types of nuclear interactions, in particu-
lar in view of the recent progress involving chiral poten-
tials based on effective field theory (EFT) [12] and low-
momentum potentials obtained through the further ap-
plication of renormalization group (RG) techniques [13].
The present work also relates to the long-term devel-

opment of so-called non-empirical energy density func-
tionals (EDFs) [14–16]. There exist on-going efforts to
construct nuclear EDFs starting from underlying nuclear
interactions, with the main goal of improving the pre-
dictive power of the method away from known data that
is rather poor for existing phenomenological EDFs. The
connection with NN and NNN interactions is typically
obtained by means of density matrix expansion (DME)
techniques and many-body perturbation theory, which
allow for the construction of schemes that can be system-

atically tested and improved order by order in the inter-
action [17–21]. In this regard, recent developments and
applications of low-momentum potentials [22–24], which
seem to exhibit a perturbative nature, are instrumental.
Such schemes towards non-empirical EDFs, however, are
presently available only in their first stages. Their devel-
opment necessitates a comparison with fully microscopic
methods that can provide useful benchmarks over which
the EDFs approaches can be tested and improved. In
this context, SCGF techniques represent a valid ab-initio
method of reference. In particular, as the breaking and
restoration of symmetries (particle number, rotational,
...) is central to nuclear EDF methods, it is crucial to de-
velop a SCGF approach that includes and exploits such
concepts [25].

II. NUCLEAR HAMILTONIAN

A. Single-particle basis

Let us first introduce a notation for labeling single-
particle states that will be used throughout the work.
Any basis {a†a} of the one-body Hilbert space H1 can
be divided into two blocks according to the value (or
more precisely to the sign) of an appropriate quantum
number. To any state a belonging to the first block,
one can associate a single-particle state ā belonging to
the second block and having the same quantum numbers
as a, except for the one differentiating the two blocks.
For example one may use an anti-unitary transformation
connecting, up to a phase, the state a with the state ā.
With that in mind one can define, in addition to {a†a}, a
dual basis {ā†a} through

ā†b(t) ≡ ηba
†

b̄
(t) , āb(t) ≡ ηbab̄(t) , (1)

which correspond to exchanging the state b by its part-
ner b̄ up to the phase ηb̄. By convention ¯̄a = a with
ηa ηā = − 1.

B. Hamiltonian

Let us consider a finite system of N fermions interact-
ing via two- and three-body potentials V NN and V NNN

respectively. The corresponding Hamiltonian can be
written as

H ≡ T + V NN + V NNN ≡
∑

ab

tab a
†
aab +

1

(2!)2

∑

abcd

V̄ NN
abcd a†aa

†
badac +

1

(3!)2

∑

abcdef

V̄ NNN
abcdef a

†
aa

†
ba

†
cafaead (2)

where a†a (aa) is the creation (annihilation) operator of a
particle in the single-particle state a,

tab ≡ (1:a|Tkin|1:b) (3)

is the matrix element of the kinetic energy operator Tkin

and

V̄ NN
abcd ≡ 〈1:a; 2:b|V NN |1:c; 2:d〉

≡ (1:a; 2:b|V NN |1:c; 2:d)
− (1:a; 2:b|V NN |1:d; 2:c) (4)
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Self-consistent Green’s function (SCGF) methods are
being successfully applied to the study of nuclear sys-
tems. Over the last two decades progress has been made
in the development of suitable formalisms and computa-
tional algorithms both for finite nuclei and infinite nu-
clear matter [1]. In infinite systems, bulk and single-
particle properties are computed through the resum-
mation of particle-particle (pp) and hole-hole (hh) lad-
der diagrams (i.e. in the T-matrix approximation) that
take into account short-range correlations induced by the
hard-core of conventional nucleon-nucleon (NN) inter-
actions. Results have been obtained at zero and finite
temperature for both symmetric and pure neutron mat-
ter based on various conventional NN potentials [2–4].
Recently, microscopic three-nucleon (NNN) forces have
been incorporated [5, 6]. There have been also attempts
to take into account nucleonic superfluidity through the
consistent treatment of anomalous propagators [7, 8].
In finite systems the most advanced SCGF calculations

feature the Faddeev random-phase approximation tech-
nique, which allows the simultaneous inclusion of pp and
ph excitations, together with a G-matrix resummation
of short-range correlations [9, 10]. At the moment, ap-
plications can access all doubly-magic nuclei up to 56Ni
[11].
In the present work SCGF calculations of finite nuclei

are implemented within a Gorkov scheme, allowing in this
way for a treatment of nucleonic superfluidity. Suitable
numerical techniques are developed in order to perform
systematic calculations of doubly-magic and semi-magic
medium-mass nuclei. One of the goals is to be able to
tackle various types of nuclear interactions, in particu-
lar in view of the recent progress involving chiral poten-
tials based on effective field theory (EFT) [12] and low-
momentum potentials obtained through the further ap-
plication of renormalization group (RG) techniques [13].
The present work also relates to the long-term devel-

opment of so-called non-empirical energy density func-
tionals (EDFs) [14–16]. There exist on-going efforts to
construct nuclear EDFs starting from underlying nuclear
interactions, with the main goal of improving the pre-
dictive power of the method away from known data that
is rather poor for existing phenomenological EDFs. The
connection with NN and NNN interactions is typically
obtained by means of density matrix expansion (DME)
techniques and many-body perturbation theory, which
allow for the construction of schemes that can be system-

atically tested and improved order by order in the inter-
action [17–21]. In this regard, recent developments and
applications of low-momentum potentials [22–24], which
seem to exhibit a perturbative nature, are instrumental.
Such schemes towards non-empirical EDFs, however, are
presently available only in their first stages. Their devel-
opment necessitates a comparison with fully microscopic
methods that can provide useful benchmarks over which
the EDFs approaches can be tested and improved. In
this context, SCGF techniques represent a valid ab-initio
method of reference. In particular, as the breaking and
restoration of symmetries (particle number, rotational,
...) is central to nuclear EDF methods, it is crucial to de-
velop a SCGF approach that includes and exploits such
concepts [25].

II. NUCLEAR HAMILTONIAN

A. Single-particle basis

Let us first introduce a notation for labeling single-
particle states that will be used throughout the work.
Any basis {a†a} of the one-body Hilbert space H1 can
be divided into two blocks according to the value (or
more precisely to the sign) of an appropriate quantum
number. To any state a belonging to the first block,
one can associate a single-particle state ā belonging to
the second block and having the same quantum numbers
as a, except for the one differentiating the two blocks.
For example one may use an anti-unitary transformation
connecting, up to a phase, the state a with the state ā.
With that in mind one can define, in addition to {a†a}, a
dual basis {ā†a} through

ā†b(t) ≡ ηba
†

b̄
(t) , āb(t) ≡ ηbab̄(t) , (1)

which correspond to exchanging the state b by its part-
ner b̄ up to the phase ηb̄. By convention ¯̄a = a with
ηa ηā = − 1.
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Let us consider a finite system of N fermions interact-
ing via two- and three-body potentials V NN and V NNN
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are irreducible by definition. An example at second or-
der is given by the two diagrams (C14): the first term
(C14a) is a skeleton diagram while the second self-energy
contribution (C14b) can be generated by two successive
insertions of the first-order term (C13b).

↑ ω′ ↑ ω′′

j g

↓ ω′′′

i f

d

c

h

e

, (C14a)

c i e g
↓ ω′

← ω′′

d j f h

→ ω′′′

.(C14b)

After this distinction one can work out that the com-
plete propagators expansion can be generated by keep-
ing only irreducible skeleton self-energy diagrams and by
substituting in such diagrams all unperturbed propaga-
tors with dressed ones. Dressed propagators are Green’s
functions that are solution of Gorkov’s equations: their
appearance in the self-energy expansion generates the
self-consistency characterizing the method.
It follows that only irreducible skeleton self-energy di-

agrams with dressed or interacting propagators have to
be computed. Single-particle dressed propagators are de-
picted as solid double lines and are labelled by two indices

and an energy as the unperturbed ones, i.e.

G11
ab(ω) ≡ ↑ ω

b

a

, (C15a)

G12
ab(ω) ≡ ↑ ω

b̄

a

, (C15b)

G21
ab(ω) ≡ ↑ ω

b

ā

, (C15c)

G22
ab(ω) ≡ ↑ ω

b̄

ā

. (C15d)

The diagrammatic rules for computing the irreducible
self-energies are then the same of the reducible case, with
the only difference that dressed propagators (C15) have
to be used instead of the bare ones.

2. Self-energies

a. First order

This subsection addresses the calculation of the first-
order self-energy diagrams.
The first normal contribution corresponds to the stan-

dard Hartree-Fock self-energy. It is depicted as

Σ11 (1)
ab (ω) =

b

c

d

a
↓ ω′ ,

(C16)
and reads

Σ11 (1)
ab (ω) = −i

∫

C↑

dω′

2π

∑

cd

V̄acbd G
11
dc(ω

′) , (C17)

where the energy integral is to be performed in the up-
per half of the complex energy plane, according to the
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and approximations are introduced by including only a
certain class or subset of terms in the computation of
the self-energy, chosen according to the hierarchies be-
tween the various types of diagrams, depending on the
system considered. The validity of the standard per-
turbative expansion, however, is not always guaranteed.
This is true in particular for nuclear interactions that in-
duce strong pairing correlations between the constituents
of the many-body system, making the usual expansion
inappropriate for the large majority of existing nuclei.
The breakdown of the perturbative expansion is signaled
by the appearance of (Cooper) instabilities, which occur
when summing up certain classes of diagrams and point
out the necessity of developing an alternative diagram-
matic method.

B. Auxiliary many-body problem

In the presence of pairing effects one can develop an al-
ternative expansion method that accounts in a controlled
fashion for the appearance and destruction of condensed
nucleonic pairs.
Instead of targeting the actual ground state |ΨN

0 〉 of
the system, one considers a symmetry breaking state |Ψ0〉
defined as a superposition of the true ground states of the
(N − 2)-, N -, (N + 2)-, ... particle systems, i.e.

|Ψ0〉 ≡
even
∑

N

cN |ψN
0 〉 , (20)

where cN denote complex coefficients. The sum over even
particle number is said to respect the (even) number-
parity quantum number. Together with such a state, one
considers the grand-canonical-like potential Ω = H−µN ,
with µ being the chemical potential and N the particle-
number operator, in place of H [26]. The state |Ψ0〉 is
chosen to minimize

Ω0 = 〈Ψ0|Ω|Ψ0〉 (21)

under the constraint

N = 〈Ψ0|N |Ψ0〉 , (22)

i.e. it is not an eigenstate of the particle number operator
but it has a fixed number of particle on average. Equation
(21), together with the normalization condition

〈Ψ0|Ψ0〉 =
even
∑

N

|cN |2 = 1 , (23)

determines coefficients cN , while Eq. (22) fixes the chem-
ical potential µ.
By choosing |Ψ0〉 as the targeted state the initial prob-

lem of solving the many-body system with N nucleons is
replaced with another problem, whose solution approxi-
mates the initial one. The validity of such an approxi-
mation resides in the degeneracy which characterizes the

ground state of the system. The presence of a condensate
(ideally) implies that pairs of nucleons can be added or
removed from the ground-state of the system with the
same energy cost, independently of N . Such an hypoth-
esis translates into the fact that the binding energies of
the systems with N,N±2, N±4, ... particles differ by 2µ;
i.e. the idealized situation considered here corresponds
to the ansatz that all ground states obtained from the
system with N nucleons by removing or adding pairs of
particles are degenerate eigenstates of Ω such that their
binding energies fulfill

... ≈ EN+2
0 − EN

0 ≈ EN
0 − EN−2

0 ≈ ... ≈ 2µ , (24)

with µ independent of N . If the assumption is valid,
the energy obtained by solving the auxiliary many-body
problem provides the energy of the initial problem as

Ω0 =
∑

N ′

|cN ′ |2ΩN ′

0 ≈ EN
0 − µN , (25)

which follows from Eqs. (21) and (24).

C. Gorkov propagators

In order to access all one-body information contained
in |Ψ0〉, one must generalize the single-particle propaga-
tor defined in (11) by introducing additional objects that
take into account the formation and destruction of pairs.
One introduces a set of four Green’s functions, known

as Gorkov propagators [27]

i G11
ab(t, t

′) ≡ 〈Ψ0|T
{

aa(t)a
†
b(t

′)
}

|Ψ0〉 , (26a)

i G12
ab(t, t

′) ≡ 〈Ψ0|T {aa(t)āb(t′)} |Ψ0〉 , (26b)

i G21
ab(t, t

′) ≡ 〈Ψ0|T
{

ā†a(t)a
†
b(t

′)
}

|Ψ0〉 , (26c)

i G22
ab(t, t

′) ≡ 〈Ψ0|T
{

ā†a(t)āb(t
′)
}

|Ψ0〉 , (26d)

where single-particle operators associated with the dual
basis are as defined in Eq. (1) and where the modified
Heisenberg representation is defined as

aa(t) = a(Ω)
a (t) ≡ exp[iΩt] aa exp[−iΩt] , (27a)

a†a(t) =
[

a(Ω)
a (t)

]†

≡ exp[iΩt] a†a exp[−iΩt] . (27b)

Besides the time dependence and quantum numbers
a and b identifying single-particle states, Gorkov propa-
gators Gg1g2

ab carry two additional labels g1 and g2 that
span Gorkov’s space. When g1 = 1 (g1 = 2) a particle is
annihilated in the block of a (created in the block of ā)
and vice versa for g2; i.e. g2 = 1 (g2 = 2) corresponds to
a second particle created in the block of b (annihilated
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which follows from Eqs. (21) and (24).

C. Gorkov propagators

In order to access all one-body information contained
in |Ψ0〉, one must generalize the single-particle propaga-
tor defined in (11) by introducing additional objects that
take into account the formation and destruction of pairs.
One introduces a set of four Green’s functions, known

as Gorkov propagators [27]
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where single-particle operators associated with the dual
basis are as defined in Eq. (1) and where the modified
Heisenberg representation is defined as

aa(t) = a(Ω)
a (t) ≡ exp[iΩt] aa exp[−iΩt] , (27a)

a†a(t) =
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a(Ω)
a (t)
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≡ exp[iΩt] a†a exp[−iΩt] . (27b)

Besides the time dependence and quantum numbers
a and b identifying single-particle states, Gorkov propa-
gators Gg1g2

ab carry two additional labels g1 and g2 that
span Gorkov’s space. When g1 = 1 (g1 = 2) a particle is
annihilated in the block of a (created in the block of ā)
and vice versa for g2; i.e. g2 = 1 (g2 = 2) corresponds to
a second particle created in the block of b (annihilated
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and approximations are introduced by including only a
certain class or subset of terms in the computation of
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duce strong pairing correlations between the constituents
of the many-body system, making the usual expansion
inappropriate for the large majority of existing nuclei.
The breakdown of the perturbative expansion is signaled
by the appearance of (Cooper) instabilities, which occur
when summing up certain classes of diagrams and point
out the necessity of developing an alternative diagram-
matic method.

B. Auxiliary many-body problem

In the presence of pairing effects one can develop an al-
ternative expansion method that accounts in a controlled
fashion for the appearance and destruction of condensed
nucleonic pairs.
Instead of targeting the actual ground state |ΨN

0 〉 of
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determines coefficients cN , while Eq. (22) fixes the chem-
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By choosing |Ψ0〉 as the targeted state the initial prob-
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mates the initial one. The validity of such an approxi-
mation resides in the degeneracy which characterizes the
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esis translates into the fact that the binding energies of
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i.e. the idealized situation considered here corresponds
to the ansatz that all ground states obtained from the
system with N nucleons by removing or adding pairs of
particles are degenerate eigenstates of Ω such that their
binding energies fulfill

... ≈ EN+2
0 − EN

0 ≈ EN
0 − EN−2

0 ≈ ... ≈ 2µ , (24)

with µ independent of N . If the assumption is valid,
the energy obtained by solving the auxiliary many-body
problem provides the energy of the initial problem as

Ω0 =
∑

N ′

|cN ′ |2ΩN ′

0 ≈ EN
0 − µN , (25)

which follows from Eqs. (21) and (24).

C. Gorkov propagators

In order to access all one-body information contained
in |Ψ0〉, one must generalize the single-particle propaga-
tor defined in (11) by introducing additional objects that
take into account the formation and destruction of pairs.
One introduces a set of four Green’s functions, known

as Gorkov propagators [27]

i G11
ab(t, t

′) ≡ 〈Ψ0|T
{

aa(t)a
†
b(t

′)
}

|Ψ0〉 , (26a)

i G12
ab(t, t
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basis are as defined in Eq. (1) and where the modified
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a†a(t) =
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Besides the time dependence and quantum numbers
a and b identifying single-particle states, Gorkov propa-
gators Gg1g2

ab carry two additional labels g1 and g2 that
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are irreducible by definition. An example at second or-
der is given by the two diagrams (C14): the first term
(C14a) is a skeleton diagram while the second self-energy
contribution (C14b) can be generated by two successive
insertions of the first-order term (C13b).

↑ ω′ ↑ ω′′

j g

↓ ω′′′

i f

d

c

h

e

, (C14a)

c i e g
↓ ω′

← ω′′

d j f h

→ ω′′′

.(C14b)

After this distinction one can work out that the com-
plete propagators expansion can be generated by keep-
ing only irreducible skeleton self-energy diagrams and by
substituting in such diagrams all unperturbed propaga-
tors with dressed ones. Dressed propagators are Green’s
functions that are solution of Gorkov’s equations: their
appearance in the self-energy expansion generates the
self-consistency characterizing the method.
It follows that only irreducible skeleton self-energy di-

agrams with dressed or interacting propagators have to
be computed. Single-particle dressed propagators are de-
picted as solid double lines and are labelled by two indices

and an energy as the unperturbed ones, i.e.

G11
ab(ω) ≡ ↑ ω

b

a

, (C15a)

G12
ab(ω) ≡ ↑ ω

b̄

a

, (C15b)

G21
ab(ω) ≡ ↑ ω

b

ā

, (C15c)

G22
ab(ω) ≡ ↑ ω

b̄

ā

. (C15d)

The diagrammatic rules for computing the irreducible
self-energies are then the same of the reducible case, with
the only difference that dressed propagators (C15) have
to be used instead of the bare ones.

2. Self-energies

a. First order

This subsection addresses the calculation of the first-
order self-energy diagrams.
The first normal contribution corresponds to the stan-

dard Hartree-Fock self-energy. It is depicted as

Σ11 (1)
ab (ω) =

b

c

d

a
↓ ω′ ,

(C16)
and reads

Σ11 (1)
ab (ω) = −i

∫

C↑

dω′

2π

∑

cd

V̄acbd G
11
dc(ω

′) , (C17)

where the energy integral is to be performed in the up-
per half of the complex energy plane, according to the
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tween the various types of diagrams, depending on the
system considered. The validity of the standard per-
turbative expansion, however, is not always guaranteed.
This is true in particular for nuclear interactions that in-
duce strong pairing correlations between the constituents
of the many-body system, making the usual expansion
inappropriate for the large majority of existing nuclei.
The breakdown of the perturbative expansion is signaled
by the appearance of (Cooper) instabilities, which occur
when summing up certain classes of diagrams and point
out the necessity of developing an alternative diagram-
matic method.

B. Auxiliary many-body problem

In the presence of pairing effects one can develop an al-
ternative expansion method that accounts in a controlled
fashion for the appearance and destruction of condensed
nucleonic pairs.
Instead of targeting the actual ground state |ΨN

0 〉 of
the system, one considers a symmetry breaking state |Ψ0〉
defined as a superposition of the true ground states of the
(N − 2)-, N -, (N + 2)-, ... particle systems, i.e.

|Ψ0〉 ≡
even
∑

N

cN |ψN
0 〉 , (15)

where cN denote complex coefficients. The sum over even
particle number is said to respect the (even) number-
parity quantum number. Together with such a state, one
considers the grand-canonical-like potential Ω = H−µN ,
with µ being the chemical potential and N the particle-
number operator, in place of H [26]. The state |Ψ0〉 is
chosen to minimize

Ω0 = 〈Ψ0|Ω|Ψ0〉 (16)

under the constraint

N = 〈Ψ0|N |Ψ0〉 , (17)

i.e. it is not an eigenstate of the particle number operator
but it has a fixed number of particle on average. Equation
(15), together with the normalization condition

〈Ψ0|Ψ0〉 =
even
∑

N

|cN |2 = 1 , (18)

determines coefficients cN , while Eq. (16) fixes the chem-
ical potential µ.
By choosing |Ψ0〉 as the targeted state the initial prob-

lem of solving the many-body system with N nucleons is
replaced with another problem, whose solution approxi-
mates the initial one. The validity of such an approxi-
mation resides in the degeneracy which characterizes the
ground state of the system. The presence of a condensate
(ideally) implies that pairs of nucleons can be added or

removed from the ground-state of the system with the
same energy cost, independently of N . Such an hypoth-
esis translates into the fact that the binding energies of
the systems with N,N±2, N±4, ... particles differ by 2µ;
i.e. the idealized situation considered here corresponds
to the ansatz that all ground states obtained from the
system with N nucleons by removing or adding pairs of
particles are degenerate eigenstates of Ω such that their
binding energies fulfill

... ≈ EN+2
0 − EN

0 ≈ EN
0 − EN−2

0 ≈ ... ≈ 2µ , (19)

with µ independent of N . If the assumption is valid,
the energy obtained by solving the auxiliary many-body
problem provides the energy of the initial problem as

Ω0 =
∑

N ′

|cN ′ |2ΩN ′

0 ≈ EN
0 − µN , (20)

which follows from Eqs. (15) and (18).

C. Gorkov propagators

In order to access all one-body information contained
in |Ψ0〉, one must generalize the single-particle propaga-
tor defined in (11) by introducing additional objects that
take into account the formation and destruction of pairs.
One introduces a set of four Green’s functions, known

as Gorkov propagators [27]

i G11
ab(t, t

′) ≡ 〈Ψ0|T
{

aa(t)a
†
b(t

′)
}

|Ψ0〉 , (21a)

i G12
ab(t, t

′) ≡ 〈Ψ0|T {aa(t)āb(t′)} |Ψ0〉 , (21b)

i G21
ab(t, t

′) ≡ 〈Ψ0|T
{

ā†a(t)a
†
b(t

′)
}

|Ψ0〉 , (21c)

i G22
ab(t, t

′) ≡ 〈Ψ0|T
{

ā†a(t)āb(t
′)
}

|Ψ0〉 , (21d)

where single-particle operators associated with the dual
basis are as defined in Eq. (1) and where the modified
Heisenberg representation is defined as

aa(t) = a(Ω)
a (t) ≡ exp[iΩt] aa exp[−iΩt] , (22a)

a†a(t) =
[

a(Ω)
a (t)

]†
≡ exp[iΩt] a†a exp[−iΩt] . (22b)

Besides the time dependence and quantum numbers
a and b identifying single-particle states, Gorkov propa-
gators Gg1g2

ab carry two additional labels g1 and g2 that
span Gorkov’s space. When g1 = 1 (g1 = 2) a particle is
annihilated in the block of a (created in the block of ā)
and vice versa for g2; i.e. g2 = 1 (g2 = 2) corresponds to
a second particle created in the block of b (annihilated
in the block of b̄). Green’s functions G11 and G22 are
called normal propagators while off-diagonal ones, G12

and G21, are denoted as anomalous propagators.
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tween the various types of diagrams, depending on the
system considered. The validity of the standard per-
turbative expansion, however, is not always guaranteed.
This is true in particular for nuclear interactions that in-
duce strong pairing correlations between the constituents
of the many-body system, making the usual expansion
inappropriate for the large majority of existing nuclei.
The breakdown of the perturbative expansion is signaled
by the appearance of (Cooper) instabilities, which occur
when summing up certain classes of diagrams and point
out the necessity of developing an alternative diagram-
matic method.
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fashion for the appearance and destruction of condensed
nucleonic pairs.
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defined as a superposition of the true ground states of the
(N − 2)-, N -, (N + 2)-, ... particle systems, i.e.
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where cN denote complex coefficients. The sum over even
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with µ being the chemical potential and N the particle-
number operator, in place of H [26]. The state |Ψ0〉 is
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but it has a fixed number of particle on average. Equation
(15), together with the normalization condition
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∑
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|cN |2 = 1 , (18)

determines coefficients cN , while Eq. (16) fixes the chem-
ical potential µ.
By choosing |Ψ0〉 as the targeted state the initial prob-

lem of solving the many-body system with N nucleons is
replaced with another problem, whose solution approxi-
mates the initial one. The validity of such an approxi-
mation resides in the degeneracy which characterizes the
ground state of the system. The presence of a condensate
(ideally) implies that pairs of nucleons can be added or

removed from the ground-state of the system with the
same energy cost, independently of N . Such an hypoth-
esis translates into the fact that the binding energies of
the systems with N,N±2, N±4, ... particles differ by 2µ;
i.e. the idealized situation considered here corresponds
to the ansatz that all ground states obtained from the
system with N nucleons by removing or adding pairs of
particles are degenerate eigenstates of Ω such that their
binding energies fulfill
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which follows from Eqs. (15) and (18).
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In order to access all one-body information contained
in |Ψ0〉, one must generalize the single-particle propaga-
tor defined in (11) by introducing additional objects that
take into account the formation and destruction of pairs.
One introduces a set of four Green’s functions, known
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′) ≡ 〈Ψ0|T {aa(t)āb(t′)} |Ψ0〉 , (21b)

i G21
ab(t, t

′) ≡ 〈Ψ0|T
{
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′)
}

|Ψ0〉 , (21d)

where single-particle operators associated with the dual
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Heisenberg representation is defined as

aa(t) = a(Ω)
a (t) ≡ exp[iΩt] aa exp[−iΩt] , (22a)

a†a(t) =
[

a(Ω)
a (t)

]†
≡ exp[iΩt] a†a exp[−iΩt] . (22b)
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span Gorkov’s space. When g1 = 1 (g1 = 2) a particle is
annihilated in the block of a (created in the block of ā)
and vice versa for g2; i.e. g2 = 1 (g2 = 2) corresponds to
a second particle created in the block of b (annihilated
in the block of b̄). Green’s functions G11 and G22 are
called normal propagators while off-diagonal ones, G12
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minimizes under the constraint➟
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⌦ = H � µA (19)

A = h 0|A| 0i (20)

Equation (14) ensures that  cent
p (~r�⌧) and ecentp are

consistent in the sense that the asymptotic behaviour of
the former is driven by the latter, e.g. for ecentp < 0 the
radial part of the wave function behaves asymptotically
as

 cent
p (r�⌧) �!

r!+1 Cp
e�⇠p r

⇠p r
, (21)

where ⇠p ⌘ (�2mecentp /~2)1/2. Such a result under-
lines that single-particle wave-functions associated with
ESPEs are intrinsically di↵erent from overlap functions
Uµ(r�⌧) (V⌫(r�⌧)) which are probed in transfer experi-
ments.

Experimentally, the extraction of ESPEs requires to
collect the full spectroscopic strength up to high enough
missing energies, i.e. the complete set of separation en-
ergies and cross sections from both one-nucleon stripping
and pickup reactions. This unfortunately limits the pos-
sibility to perform sound comparisons on a systematic
basis. Indeed, there are at best only a few nuclei along a
given isotopic or isotonic chain that are characterized by
complete enough spectroscopic data.

E. Sum rule

It is tedious but straightforward to prove that the nth

moment of S(!) fulfils the identity

M(n)
pq = h A

0 |{
n commutatorsz }| {

[. . . [[ap, H], H], . . .], a†q}| A
0 i . (22)

Using the second quantized form of T , V 2N, and V 3N, to-
gether with identities provided in Appendix A and sym-
metries of interaction matrix elements, Eq. (21) applied
to n = 1 leads to [12, 13, 21]

hcent
pq = Tpq +

X

rs

V̄ 2N
prqs ⇢

[1]
sr +

1

4

X

rstv

V̄ 3N
prtqsv ⇢

[2]
svrt

⌘ h1 , (23)

where V̄ 2N
prqs and V̄ 3N

prtqsv are anti-symmetrized matrix el-
ements and where

⇢[1]pq ⌘ h A
0 |a†qap| A

0 i =
X

µ

V p
µ
⇤ V q

µ , (24a)

⇢[2]pqrs ⌘ h A
0 |a†ra†saqap| A

0 i , (24b)

denote one- and two-body density matrices of the corre-

lated A-body ground-state, respectively. The static field
h1, already introduced in Sec. II A, contains both the
kinetic energy and the energy-independent part of the
one-nucleon self-energy in the A-body ground state [21].
Equation (22) demonstrates that the centroid matrix

is a one-body field possessing a simple structure and an
intuitive meaning. In particular, the centroid field re-
duces to the Hartree-Fock (HF) mean field in the HF
approximation. As a result, ESPEs are nothing but HF
single-particle energies in such a case and are equal to
one-nucleon separation energies according to Koopmans’
theorem [22]. Consistently, overlap, centroid, and HF
single-particle wave-functions coincide in that limit. Of
course, centroid energies also reduce to eigenvalues of
the one-body Hamiltonian in the limit of an uncorrelated
system. When correlations beyond HF are switched on,
ESPEs are modified through the presence of correlated
density matrices in Eq. (22); i.e. the B-nucleon interac-
tion is folded with the correlated (B-1)-body density ma-
trix ⇢[B-1]. Through that transition, ESPEs continuously
evolve as centroid energies rather than as observable sep-
aration energies such that Koopmans’ theorem does not
hold any more. Centroid energies are schematically com-
pared to observable binding and separation energies in
Figure 3.
On the practical side, Eq. (22) underlines that the av-

eraged information contained in ESPEs only requires the
computation of the A-body ground-state. As long as
one is not interested in the full spectroscopic strength
of the A±1 systems but only in their centroids, one only
needs to compute one nucleus instead of three. In prac-
tice however, Eq. (26) is rarely computed in terms of
the correlated density matrix, e.g. shell-model applica-
tions usually invoke a filling approximation typical of an
independent-particle approximation. This is believed to
be a decent approximation as long as (i) low-lying states
carry a major part of the single-particle spectroscopic
strength, as for the transfer on a doubly closed-shell nu-
cleus, and (ii) nucleons of the other species are themselves
not strongly correlated, because of pairing for example.
See, e.g., Ref. [23] and references therein for a related
discussion. Such an issue becomes critical whenever one
is looking into, e.g., the neutron shell structure of a neu-
tron open-shell nucleus. In such a situation, a normal
filling is inappropriate and it is mandatory to fold the
monopole interaction in Eq. (26) with a density matrix
reflecting the presence of correlations in the system.
Using that the even-even ground state the one-nucleon
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Eventually, standard Dyson’s equation is generalized as
set of coupled equations involving the two types of prop-
agators and self-energies. These are known as Gorkov’s
equations [45] and read, in Nambu’s notation,

Gab(ω) = G
(0)
ab (ω)+

∑

cd

G(0)
ac (ω) Σ̃cd(ω)Gdb(ω) . (34)

As Dyson’s equation in the standard case, Gorkov’s equa-
tions represent an expansion of interacting or dressed
one-body normal and anomalous Green’s functions in
terms of unperturbed ones. If the method is self-
consistent, the final result does not depend on the choice
of the auxiliary potential, which disappears from the
equations once the propagators are dressed with the cor-
responding self-energies. From a practical point of view
it is useful to track where the auxiliary potential enters
and how its cancelation is eventually worked out. This
point is addressed in Section IVA, where the solution of
Gorkov’s equations is discussed. In particular, and since
such a solution is to be found through an iterative pro-
cedure, one is eventually interested in choosing a good
auxiliary potential as a starting point.

Let us further remark that, as the auxiliary potential
(29) has a one-body character, i.e. it acts as a mean field,
the search for the ground state of ΩU corresponds to solv-

ing a Bogoliubov-like problem, as becomes evident when
writing the unperturbed grand potential in its Nambu’s
form

[ΩU ]ab =

(

Tab + Uab − µ δab Ũ †
ab

Ũab −Tab − Uab + µ δab

)

.

(35)
In fact a convenient choice for ΩU is constituted by
ΩHFB , i.e. one first solves the Hartree-Fock-Bogoliubov
(HFB) problem and then uses the resulting propagators
GHFB

ab as the unperturbed ones. Notice that the self-
energy corresponding to this solution, ΣHFB , eventually
differs from the first-order self-energy Σ(1) as soon as
higher orders are included in the calculation because of
the associated self-consistent dressing of the one-body
propagators.

G. Lehmann representation

Let us consider a complete set of normalized eigen-
states of Ω with no definite particle number

Ω|Ψk〉 = Ωk|Ψk〉 , (36)

and which span the Fock space F . Inserting the corre-
sponding completeness relation, G11(t, t′) becomes

G11
ab(t, t

′) = −iθ(t− t′)
∑

k

〈Ψ0|aa|Ψk〉〈Ψk|a†b|Ψ0〉 ei[Ω0−Ωk](t−t′) + iθ(t′ − t)
∑

k

〈Ψ0|a†b|Ψk〉〈Ψk|aa|Ψ0〉 e−i[Ω0−Ωk](t−t′) .

Using the integral representation of the theta function
and reading out the Fourier transform, one obtains the
propagator in energy representation under the form

G11
ab(ω) =

∑

k

〈Ψ0|aa|Ψk〉〈Ψk|a†b|Ψ0〉
ω − [Ωk − Ω0] + iη

+
∑

k

〈Ψ0|a†b|Ψk〉〈Ψk|aa|Ψ0〉
ω + [Ωk − Ω0]− iη

. (37)

One can proceed similarly for the other three Gorkov-
Green’s functions and obtain the following set of
Lehmann representations

G11
ab(ω) =

∑

k

{
Uk
a Uk∗

b

ω − ωk + iη
+

V̄k∗
a V̄k

b

ω + ωk − iη

}

, (38a)

G12
ab(ω) =

∑

k

{
Uk
a Vk∗

b

ω − ωk + iη
+

V̄k∗
a Ūk

b

ω + ωk − iη

}

, (38b)

G21
ab(ω) =

∑

k

{
Vk
a Uk∗

b

ω − ωk + iη
+

Ūk∗
a V̄k

b

ω + ωk − iη

}

, (38c)

G22
ab(ω) =

∑

k

{
Vk
a Vk∗

b

ω − ωk + iη
+

Ūk∗
a Ūk

b

ω + ωk − iη

}

. (38d)

with Gorkov’s spectroscopic amplitudes defined as

Uk∗
a ≡ 〈Ψk|a†a|Ψ0〉 , (39a)

Vk∗
a ≡ 〈Ψk|āa|Ψ0〉 , (39b)

and

Ūk∗
a ≡ 〈Ψk|ā†a|Ψ0〉 , (40a)

V̄k∗
a ≡ 〈Ψk|aa|Ψ0〉 , (40b)

from which follows that2

Ūk
a = +ηa Uk

ã , (41a)

V̄k
a = −ηa Vk

ã . (41b)

The poles of the propagators3 are given by ωk ≡ Ωk−Ω0.
The relation of such poles to separation energies between

2 Similarly to Eq. 5, we may equivalently write Eq. 41 as Ūk
a =

+Uk
ā and V̄k

a = −Vk
ā .

3 As discussed later on, eigensolutions of Gorkov’s equations come
in pairs (ωk ,−ωk) such that one should only sum on positive
solutions in Eq. 39.
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Eventually, standard Dyson’s equation is generalized as
set of coupled equations involving the two types of prop-
agators and self-energies. These are known as Gorkov’s
equations [45] and read, in Nambu’s notation,

Gab(ω) = G
(0)
ab (ω)+

∑

cd

G(0)
ac (ω) Σ̃cd(ω)Gdb(ω) . (34)

As Dyson’s equation in the standard case, Gorkov’s equa-
tions represent an expansion of interacting or dressed
one-body normal and anomalous Green’s functions in
terms of unperturbed ones. If the method is self-
consistent, the final result does not depend on the choice
of the auxiliary potential, which disappears from the
equations once the propagators are dressed with the cor-
responding self-energies. From a practical point of view
it is useful to track where the auxiliary potential enters
and how its cancelation is eventually worked out. This
point is addressed in Section IVA, where the solution of
Gorkov’s equations is discussed. In particular, and since
such a solution is to be found through an iterative pro-
cedure, one is eventually interested in choosing a good
auxiliary potential as a starting point.

Let us further remark that, as the auxiliary potential
(29) has a one-body character, i.e. it acts as a mean field,
the search for the ground state of ΩU corresponds to solv-

ing a Bogoliubov-like problem, as becomes evident when
writing the unperturbed grand potential in its Nambu’s
form

[ΩU ]ab =

(

Tab + Uab − µ δab Ũ †
ab

Ũab −Tab − Uab + µ δab

)

.

(35)
In fact a convenient choice for ΩU is constituted by
ΩHFB , i.e. one first solves the Hartree-Fock-Bogoliubov
(HFB) problem and then uses the resulting propagators
GHFB

ab as the unperturbed ones. Notice that the self-
energy corresponding to this solution, ΣHFB , eventually
differs from the first-order self-energy Σ(1) as soon as
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the associated self-consistent dressing of the one-body
propagators.

G. Lehmann representation
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Green’s functions and obtain the following set of
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and
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from which follows that2
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The poles of the propagators3 are given by ωk ≡ Ωk−Ω0.
The relation of such poles to separation energies between

2 Similarly to Eq. 5, we may equivalently write Eq. 41 as Ūk
a =
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where the symmetry quantum number denoting the par-
ticle number has been singled out. The label µ collects
a principal quantum number nµ, total angular momen-
tum Jµ, the projection of the latter along the z axis Mµ,
parity ⇧µ and isospin projection along the z axis Tµ of
the many-body state of interest. Use of the Greek label
µ will be made to denote the subset of quantum num-
bers µ ⌘ (⇧µ, Jµ, Tµ). Due to rotational invariance of
the nuclear Hamiltonian, eigenenergies EA

µ ⌘ EA
nµµ

are
independent of Mµ.

In the following, we consider a spherical single-
particle basis {a†p} appropriate to discussing the spher-

ical shell structure. Basis states are labelled by p ⌘
{np,⇡p, jp,mp, ⌧p} ⌘ {np,mp,↵p}, where np represents
the principal quantum number, ⇡p the parity, jp the total
angular momentum, mp its projection along the z-axis,
and ⌧p the isospin projection along the same axis.

We also consider the direct-product basis {b†~r�⌧},
where ~r is the position vector, � the projection of the
nucleon spin along the z axis, and ⌧ its isospin projec-
tion.

A. Spectroscopic amplitudes

The physical processes providing information on the
single-particle shell structure are one-nucleon transfer re-
actions. Although the discussion can be carried out for
the transfer on any initial [13]. many-body state, we
restrict ourselves in the following to the transfer on the
ground state | A

0 i of an even-even system, i.e. a J⇡ = 0+

state. Furthermore, we consider this nucleus to be of dou-
bly closed-shell character2.

In this context, let us introduce Uµ (V⌫) as the ampli-
tude to reach a specific eigenstate | A+1

µ i (| A-1
⌫ i) of the

A+1 (A-1) system by adding (removing) a nucleon in a
specific single-particle state to (from) the ground state of
the A-body system | A

0 i. Such spectroscopic amplitudes
can be defined through their representation in any given
single-particle basis. In basis {a†p}, they read

Up
µ ⌘ h A+1

µ |a†p| A
0 i⇤ , (2a)

V p
⌫ ⌘ h A-1

⌫ |ap| A
0 i⇤, (2b)

whereas their representation in basis {b†~r�q} provides the
associated wave functions or overlap functions

Uµ(~r�⌧) ⌘ h A+1
µ |b†~r�⌧ | A

0 i⇤ , (3a)

V⌫(~r�⌧) ⌘ h A-1
⌫ |b~r�⌧ | A

0 i⇤. (3b)

An important property regarding the asymptotic be-
haviour of overlap functions derives from their equation

2 Such a notion relates to the filling of shells in the uncorrelated,
e.g. Hartree-Fock, picture.

of motion given by [18]

[h1 + ⌃(!)]!=E+
µ
Uµ = E+

µ Uµ , (4)

and similarly for (V⌫ , E�
⌫ ), where (observable) one-

nucleon separation energies are defined through

E+
µ ⌘ EA+1

µ � EA
0 , (5a)

E�
⌫ ⌘ EA

0 � EA-1
⌫ . (5b)

The energy-dependent potential ⌃(!) denotes the dynam-

ical part of the irreducible self-energy [18] that naturally
arises in self-consistent Green’s-function theory and that
is to be evaluated at the eigensolution E+

µ in Eq. (4).
The static field h1 is defined in Eq. (18) and contains
both the kinetic energy and the energy-independent part
of the one nucleon self-energy. One can show from Eq. (4)
that the long-distance behaviour of the radial part of the
overlap function is governed by the corresponding one-
nucleon separation energy, e.g. for E+

µ < 0

Uµ(r�⌧) �!
r!+1 A+

µ
e�&+µ r

&+µ r
, (6)

where A+
µ denotes the so-called asymptotic normalization

coe�cient (ANC) while the decay constant is given by
&+µ ⌘ (�2mE+

µ /~2)1/2, where m is the nucleon mass3.
A similar result can, of course, be obtained for V⌫(r�⌧)
whose decay constant &�⌫ relates to E�

⌫ .
From spectroscopic amplitudes one defines addition S+

µ

and removal S�
⌫ spectroscopic probability matrices asso-

ciated with states | A+1
µ i and | A-1

⌫ i, respectively. Their
matrix elements read in basis {a†p}

S+pq
µ ⌘ h A

0 |ap| A+1
µ ih A+1

µ |a†q| A
0 i (7a)

= Up
µ Uq ⇤

µ ,

S�pq
⌫ ⌘ h A

0 |a†q| A-1
⌫ ih A-1

⌫ |ap| A
0 i (7b)

= V p ⇤
⌫ V q

⌫ ,

such that their diagonal parts, when expressed in the co-
ordinate space basis, are nothing but transition densities

for the one-nucleon transfer from | A
0 i to | A+1

µ i and
| A-1

⌫ i, respectively.
Tracing the two spectroscopic probability matrices

over the one-body Hilbert space H1 gives access to spec-
troscopic factors

SF+
k ⌘

X

a2H1

��h k|a†a| 0i
��2 =

X

a2H1

��Uk
a

��2 , (8a)

SF�
k ⌘

X

a2H1

|h k|aa| 0i|2 =
X

a2H1

��Vk
a

��2 , (8b)

3 Subtracting the center-of-mass motion would lead to using the
reduced mass of the added/removed nucleon.
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FIG. 2: (Color online) Same as Fig. ?? for a correlated system.

from zero for any combination4 of µ, p and q (⌫, p and
q) indices. The SDD is thus fragmented as schemat-
ically displayed in Figure ??, i.e. a larger number of
many-body states are reached through the direct addition
and removal of a nucleon compared to the uncorrelated
case5. Consequently, the number of peaks with non-zero
strength in the SDD is greater than the dimension of H1,
which forbids the establishment of a bijection between
this set of peaks and any basis of H1. Accordingly, and
because the SDD still integrates to the dimension of H1

by construction (see Eq. (??)), spectroscopic factors are
smaller than one. The impossibility to realize such a bi-
jection constitutes the most direct and intuitive way to
understand why observable one-nucleon separation ener-
gies cannot be rigorously associated with single-particle
energies when correlations are present in the system, i.e.
as soon as many-body eigenstates of H di↵er from Slater
determinants.

D. E↵ective single-particle energies

The discussion provided above underlines the fact that
a rigorous definition of ESPEs is yet to be provided in
the realistic context of correlated many-nucleon systems.
A key question is: how can one extract a set of single-
particle energy levels that (i) are in one-to-one correspon-
dence with a basis of H1, (ii) are independent of the par-
ticular single-particle basis one is working with, (iii) are
computable only using quantities coming out of the corre-
lated A-body Schrodinger equation and that (iv) reduce
to HF single-particle energies in the HF approximation
to the A-body problem.

Let us make the hypothesis that ideal one-nucleon pick-

4 Except for selection rules dictated by symmetries that lead, ac-
cording to Eq. (??), to ⇡p = ⇡µ, jp = Jµ and ⌧p = Tµ � T0.

5 Of course, the dimension of HA+1 or HA�1 remains the same
whether the system is correlated or not.

up and stripping reactions have been performed such that
separation energies (E+

µ , E�
⌫ ) and spectroscopic ampli-

tudes (overlap functions) (Uµ(~r�⌧), V⌫(~r�⌧)) have been
extracted consistently, i.e. in a way that is consistent
with the chosen nuclear Hamiltonian H(⇤) defined at a
resolution scale ⇤. In such a context, a meaningful def-
inition of ESPEs does exist and goes back to French [?
] and Baranger [? ]. It involves the computation of the
so-called centroid matrix which, in an arbitrary spherical
basis of H1 {a†p}, reads

hcent
pq ⌘

X

µ2HA+1

S+pq
µ E+

µ +
X

⌫2HA�1

S�pq
⌫ E�

⌫ , (13a)

and is nothing but the first moment M(1) of the spectral
function matrix (see Eq. ??). E↵ective single-particle
energies and associated states are extracted, respectively,
as eigenvalues and eigenvectors of hcent, i.e. by solving

hcent  cent
p = ecentp  cent

p , (14)

where the resulting spherical basis is denoted as {c†p}.
Written in that basis, centroid energies invoke diagonal
spectroscopic probabilities6

ecentp ⌘
X

µ2HA+1

S+pp
µ E+

µ +
X

⌫2HA�1

S�pp
⌫ E�

⌫ , (15)

and acquire the meaning of an average of one-nucleon sep-
aration energies weighted by the probability to reach the
corresponding A+1 (A-1) eigenstates by adding (remov-
ing) a nucleon to (from) the single-particle state  cent

p .
Centroid energies are by construction in one-to-one cor-
respondence with states of a single-particle basis of H1

which, as already pointed out before, is not the case of
correlated one-nucleon separation energies with non-zero
spectroscopic strength.

E+(A)
k ⌘ EA+1

k � EA
0 ⌘ µ+ !k (16)

Equation (??) ensures that  cent
p (~r�⌧) and ecentp are

consistent in the sense that the asymptotic behaviour of
the former is driven by the latter, e.g. for ecentp < 0 the
radial part of the wave function behaves asymptotically
as

 cent
p (r�⌧) �!

r!+1 Cp
e�⇠p r

⇠p r
, (17)

where ⇠p ⌘ (�2mecentp /~2)1/2. Such a result under-
lines that single-particle wave-functions associated with

6 The definition of ecentp sometimes incorporates the denominator
P

µ2HA+1
S+pp
µ +

P
⌫2HA�1

S�pp
⌫ in Eq. (??) to compensate for

the possibility that, e.g. experimentally, normalization condi-
tion ?? might not be exhausted.
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from zero for any combination4 of µ, p and q (⌫, p and
q) indices. The SDD is thus fragmented as schemat-
ically displayed in Figure 2, i.e. a larger number of
many-body states are reached through the direct addition
and removal of a nucleon compared to the uncorrelated
case5. Consequently, the number of peaks with non-zero
strength in the SDD is greater than the dimension of H1,
which forbids the establishment of a bijection between
this set of peaks and any basis of H1. Accordingly, and
because the SDD still integrates to the dimension of H1

by construction (see Eq. (10)), spectroscopic factors are
smaller than one. The impossibility to realize such a bi-
jection constitutes the most direct and intuitive way to
understand why observable one-nucleon separation ener-
gies cannot be rigorously associated with single-particle
energies when correlations are present in the system, i.e.
as soon as many-body eigenstates of H di↵er from Slater
determinants.

D. E↵ective single-particle energies

The discussion provided above underlines the fact that
a rigorous definition of ESPEs is yet to be provided in
the realistic context of correlated many-nucleon systems.
A key question is: how can one extract a set of single-
particle energy levels that (i) are in one-to-one correspon-
dence with a basis of H1, (ii) are independent of the par-
ticular single-particle basis one is working with, (iii) are
computable only using quantities coming out of the corre-
lated A-body Schrodinger equation and that (iv) reduce
to HF single-particle energies in the HF approximation
to the A-body problem.

Let us make the hypothesis that ideal one-nucleon pick-

4 Except for selection rules dictated by symmetries that lead, ac-
cording to Eq. (21), to ⇡p = ⇡µ, jp = Jµ and ⌧p = Tµ � T0.

5 Of course, the dimension of HA+1 or HA�1 remains the same
whether the system is correlated or not.

up and stripping reactions have been performed such that
separation energies (E+

µ , E�
⌫ ) and spectroscopic ampli-

tudes (overlap functions) (Uµ(~r�⌧), V⌫(~r�⌧)) have been
extracted consistently, i.e. in a way that is consistent
with the chosen nuclear Hamiltonian H(⇤) defined at a
resolution scale ⇤. In such a context, a meaningful defi-
nition of ESPEs does exist and goes back to French [11]
and Baranger [12]. It involves the computation of the
so-called centroid matrix which, in an arbitrary spherical
basis of H1 {a†p}, reads

hcent
pq ⌘

X

µ2HA+1

S+pq
µ E+

µ +
X

⌫2HA�1

S�pq
⌫ E�

⌫ , (13a)

and is nothing but the first moment M(1) of the spectral
function matrix (see Eq. 9). E↵ective single-particle en-
ergies and associated states are extracted, respectively,
as eigenvalues and eigenvectors of hcent, i.e. by solving

hcent  cent
p = ecentp  cent

p , (14)

where the resulting spherical basis is denoted as {c†p}.
Written in that basis, centroid energies invoke diagonal
spectroscopic probabilities6

ecentp ⌘
X

µ2HA+1

S+pp
µ E+

µ +
X

⌫2HA�1

S�pp
⌫ E�

⌫ , (15)

and acquire the meaning of an average of one-nucleon sep-
aration energies weighted by the probability to reach the
corresponding A+1 (A-1) eigenstates by adding (remov-
ing) a nucleon to (from) the single-particle state  cent

p .
Centroid energies are by construction in one-to-one cor-
respondence with states of a single-particle basis of H1

which, as already pointed out before, is not the case of
correlated one-nucleon separation energies with non-zero
spectroscopic strength.

E� (A)
k ⌘ EA

0 � EA�1
k ⌘ µ� !k (16)

Equation (14) ensures that  cent
p (~r�⌧) and ecentp are

consistent in the sense that the asymptotic behaviour of
the former is driven by the latter, e.g. for ecentp < 0 the
radial part of the wave function behaves asymptotically
as

 cent
p (r�⌧) �!

r!+1 Cp
e�⇠p r

⇠p r
, (17)

where ⇠p ⌘ (�2mecentp /~2)1/2. Such a result under-
lines that single-particle wave-functions associated with

6 The definition of ecentp sometimes incorporates the denominator
P

µ2HA+1
S+pp
µ +

P
⌫2HA�1

S�pp
⌫ in Eq. (15) to compensate for

the possibility that, e.g. experimentally, normalization condi-
tion 10 might not be exhausted.
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pearance in the self-energy expansion generates the self-
consistency characterizing the method.
It follows that only irreducible self-energy diagrams

with dressed or interacting propagators have to be com-
puted. Single-particle dressed propagators are depicted
as solid double lines and are labelled by two indices and
an energy as the unperturbed ones, i.e.

G11
ab(ω) ≡ ↑ ω

b

a

, (C9a)

G12
ab(ω) ≡ ↑ ω

b̄

a

, (C9b)

G21
ab(ω) ≡ ↑ ω

b

ā

, (C9c)

G22
ab(ω) ≡ ↑ ω

b̄

ā

. (C9d)

The diagrammatic rules for computing the irreducible
self-energies are then the same of the reducible case, with
the only difference that dressed propagators (C9) have to
be used instead of the bare ones.

2. Self-energies

a. First order

This subsection addresses the calculation of the first-
order self-energy diagrams.
The first normal contribution corresponds to the stan-

dard Hartree-Fock self-energy. It is depicted as

Σ11 (1)
ab =

b

c

d

a
↓ ω′ , (C10)

and reads

Σ11 (1)
ab (ω) = −i

∫

C↑

dω′

2π

∑

cd

V̄acbd G
11
dc(ω

′) , (C11)

where the energy integral is to be performed in the up-
per half of the complex energy plane, according to the
convention introduced in Rule 6. Inserting the Lehmann
form (54a) of the propagator one obtains

Σ11 (1)
ab (ω) = −i

∫

C↑

dω′

2π

∑

cd,k

V̄acbd
Ūk
d Ūk∗

c

ω′ − ωk + iη

− i

∫

C↑

dω′

2π

∑

cd,k

V̄acbd
Vk∗
d Vk

c

ω′ + ωk − iη

=
∑

cd,k

V̄acbd Vk∗
d Vk

c , (C12)

where the residue theorem has been used, i.e. the first
term, with +iη in the denominator, contains no pole in
the upper plane and thus cancels out. As in the standard
case the Hartree-Fock self-energy is energy independent.
Similarly one computes the other normal self-energy

term

Σ22 (1)
ab (ω) =

b̄

c̄

d̄

ā
↓ ω′ ,

(C13)
which reads

Σ22 (1)
ab (ω) = −i

∫

C↓

dω′

2π

∑

cd

V̄āc̄b̄d̄G
22
cd(ω

′)

= −i

∫

C↓

dω′

2π

∑

cd,k

V̄āc̄b̄d̄
V̄k
c V̄k∗

d

ω′ − ωk + iη

− i

∫

C↓

dω′

2π

∑

cd,k

V̄āc̄b̄d̄
Uk∗
c Uk

d

ω′ + ωk − iη

= −
∑

cd,k

V̄āc̄b̄d̄ V̄k
c V̄k∗

d

= −
∑

cd,k

V̄ācb̄d Vk
c̄ Vk∗

d̄

= −
∑

cd,k

V̄acbd Vk
c Vk∗

d

= −Σ11 (1)
ab (ω) . (C14)

The anomalous contributions to the self-energy at first
order are

Σ12 (1)
ab =

b̄

← ω′

a
c d̄

, (C15)
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ā

. (C9d)
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self-energies are then the same of the reducible case, with
the only difference that dressed propagators (C9) have to
be used instead of the bare ones.

2. Self-energies

a. First order

This subsection addresses the calculation of the first-
order self-energy diagrams.
The first normal contribution corresponds to the stan-

dard Hartree-Fock self-energy. It is depicted as

Σ11 (1)
ab =

b

c

d

a
↓ ω′ , (C10)

and reads

Σ11 (1)
ab (ω) = −i

∫

C↑

dω′

2π

∑

cd

V̄acbd G
11
dc(ω

′) , (C11)

where the energy integral is to be performed in the up-
per half of the complex energy plane, according to the
convention introduced in Rule 6. Inserting the Lehmann
form (54a) of the propagator one obtains

Σ11 (1)
ab (ω) = −i

∫

C↑

dω′

2π

∑

cd,k

V̄acbd
Ūk
d Ūk∗

c

ω′ − ωk + iη

− i

∫

C↑

dω′

2π

∑

cd,k

V̄acbd
Vk∗
d Vk

c

ω′ + ωk − iη

=
∑

cd,k

V̄acbd Vk∗
d Vk

c , (C12)

where the residue theorem has been used, i.e. the first
term, with +iη in the denominator, contains no pole in
the upper plane and thus cancels out. As in the standard
case the Hartree-Fock self-energy is energy independent.
Similarly one computes the other normal self-energy

term

Σ22 (1)
ab (ω) =

b̄

c̄

d̄

ā
↓ ω′ ,

(C13)
which reads

Σ22 (1)
ab (ω) = −i

∫

C↓

dω′

2π

∑

cd

V̄āc̄b̄d̄G
22
cd(ω

′)

= −i

∫

C↓

dω′

2π

∑

cd,k

V̄āc̄b̄d̄
V̄k
c V̄k∗

d

ω′ − ωk + iη

− i

∫

C↓

dω′

2π

∑

cd,k

V̄āc̄b̄d̄
Uk∗
c Uk

d

ω′ + ωk − iη

= −
∑

cd,k

V̄āc̄b̄d̄ V̄k
c V̄k∗

d

= −
∑

cd,k

V̄ācb̄d Vk
c̄ Vk∗

d̄

= −
∑

cd,k

V̄acbd Vk
c Vk∗

d

= −Σ11 (1)
ab (ω) . (C14)

The anomalous contributions to the self-energy at first
order are

Σ12 (1)
ab =

b̄

← ω′

a
c d̄

, (C15)
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where the notation Ek1k2k3 ≡ ωk1 + ωk2 + ωk3 has been introduced. Summing the two terms one has

Σ11 (2′+2′′)
ab (ω) =

1

2

∑

k1k2k3

{

Mk1k2k3
a (Mk1k2k3

b + 2Pk1k2k3
b )†

ω − Ek1k2k3 + iη
+

N k1k2k3
a

†
(N k1k2k3

b + 2Qk1k2k3
b )

ω + Ek1k2k3 − iη

}

, (94)

which can be written, using properties (90) and (91), as

Σ11 (2)
ab (ω) =

1

2

∑

k1k2k3

{

Mk1k2k3
a (Mk1k2k3

b + Pk1k2k3
b +Rk1k2k3

b )†

ω − Ek1k2k3 + iη
+

N k1k2k3
a

†
(N k1k2k3

b +Qk1k2k3
b + Sk1k2k3

b )

ω + Ek1k2k3 − iη

}

=
1

6

∑

k1k2k3

{

(Mk1k2k3
a + Pk1k2k3

a +Rk1k2k3
a ) (Mk1k2k3

b + Pk1k2k3
b +Rk1k2k3

b )†

ω − Ek1k2k3 + iη

}

+
1

6

∑

k1k2k3

{

(N k1k2k3
a +Qk1k2k3

a + Sk1k2k3
a )† (N k1k2k3

b +Qk1k2k3
b + Sk1k2k3

b )

ω + Ek1k2k3 − iη

}

Σ11
ab(ω) =

∑

k1k2k3

{

Ck1k2k3
a Ck1k2k3

b

†

ω − Ek1k2k3 + iη
+

Dk1k2k3
a

†Dk1k2k3
b

ω + Ek1k2k3 + iη

}

, (95)

with the definitions

Ck1k2k3
a ≡ 1√

6

[

Mk1k2k3
a + Pk1k2k3

a +Rk1k2k3
a

]

, (96a)

Dk1k2k3
a ≡ 1√

6

[

N k1k2k3
a +Qk1k2k3

a + Sk1k2k3
a

]

. (96b)

One can write in a similar way all other second-order self-energies computed in Section C 2 to obtain

Σ12 (2′+2′′)
ab (ω) = −

∑

k1k2k3

{

Ck1k2k3
a Dk1k2k3

b

ω − Ek1k2k3 + iη
+

Dk1k2k3
a

† Ck1k2k3
b

†

ω + Ek1k2k3 + iη

}

, (97a)

Σ21 (2′+2′′)
ab (ω) = −

∑

k1k2k3

{

Dk1k2k3
a

† Ck1k2k3
b

†

ω − Ek1k2k3 + iη
+

Ck1k2k3
a Dk1k2k3

b

ω + Ek1k2k3 + iη

}

, (97b)

Σ22 (2′+2′′)
ab (ω) =

∑

k1k2k3

{

Dk1k2k3
a

†Dk1k2k3
b

ω − Ek1k2k3 + iη
+

Ck1k2k3
a Ck1k2k3

b

†

ω + Ek1k2k3 + iη

}

. (97c)

F. Matrix representation of Gorkov’s equations

Defining quantities W and Z through

(ωk − Ek1k2k3)Wk1k2k3
k ≡

∑

a

[

Ck1k2k3
a

† Uk
a −Dk1k2k3

a Vk
a

]

(98a)

(ωk + Ek1k2k3)Zk1k2k3
k ≡

∑

a

[

−Dk1k2k3
a Uk

a + Ck1k2k3
a

† Vk
a

]

(98b)

Gorkov’s equations (67) computed in terms of second-order self-energies can be rewritten as

ωk Uk
a =

∑

b

[

(tab − µ δab + Λab)Uk
b + h̃ab Vk

b

]

+
∑

k1k2k3

[

Ck1k2k3
a Wk1k2k3

k −Dk1k2k3
a

†Zk1k2k3
k

]

(99a)

ωk Vk
a =

∑

b

[

−(tab − µ δab + Λab)Vk
b + h̃†

ab U
k
b

]

+
∑

k1k2k3

[

−Dk1k2k3
a

†Wk1k2k3
k + Ck1k2k3

a Zk1k2k3
k

]

(99b)

which grouped together with Eq. (98) provide a set of four coupled equations for unknowns U , V , W and Z that can
be displayed in a matrix form as

ωk






U
V
W
Z






k

=







T − µ+ Λ h̃ C −D†

h̃† −T + µ− Λ −D† C
C† −D E 0
−D C† 0 −E












U
V
W
Z






k

≡ Ξ






U
V
W
Z






k

(100)
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convention introduced in Rule 6. Inserting the Lehmann
form (53a) of the propagator one obtains

Σ11 (1)
ab (ω) = −i

∫

C↑

dω′

2π

∑

cd,k

V̄acbd
Ūk
d Ūk∗

c

ω′ − ωk + iη

− i

∫

C↑

dω′

2π

∑

cd,k

V̄acbd
Vk∗
d Vk

c

ω′ + ωk − iη

=
∑

cd,k

V̄acbd Vk∗
d Vk

c , (C18)

where the residue theorem has been used, i.e. the first
term, with +iη in the denominator, contains no pole in
the upper plane and thus cancels out. As in the standard
case the Hartree-Fock self-energy is energy independent.
Similarly one computes the other normal self-energy

term

Σ22 (1)
ab (ω) =

b̄

c̄

d̄

ā
↓ ω′ ,

(C19)
which reads

Σ22 (1)
ab (ω) = −i

∫

C↓

dω′

2π

∑

cd

V̄āc̄b̄d̄ G
22
cd(ω

′)

= −i

∫

C↓

dω′

2π

∑

cd,k

V̄āc̄b̄d̄
V̄k
c V̄k∗

d

ω′ − ωk + iη

− i

∫

C↓

dω′

2π

∑

cd,k

V̄āc̄b̄d̄
Uk∗
c Uk

d

ω′ + ωk − iη

= −
∑

cd,k

V̄āc̄b̄d̄ V̄k
c V̄k∗

d

= −
∑

cd,k

V̄ācb̄d Vk
c̄ Vk∗

d̄

= −
∑

cd,k

V̄acbd Vk
c Vk∗

d

= −Σ11 (1)
ab (ω) . (C20)

The anomalous contributions to the self-energy at first
order are

Σ12 (1)
ab (ω) =

b̄

← ω′

a
c d̄

, (C21)

Σ21 (1)
ab (ω) = d

← ω′

c̄
ā b

, (C22)

and are written respectively as

Σ12 (1)
ab (ω) = − i

2

∫

C↑

dω′

2π

∑

cd

V̄ab̄cd̄G
12
cd(ω

′)

= − i

2

∫

C↑

dω′

2π

∑

cd,k

V̄ab̄cd̄
Ūk
c V̄k∗

d

ω′ − ωk + iη

− i

2

∫

C↑

dω′

2π

∑

cd,k

V̄ab̄cd̄
Vk∗
c Uk

d

ω′ + ωk − iη

=
1

2

∑

cd,k

V̄ab̄cd̄ Vk∗
c Uk

d , (C23)

and

Σ21 (1)
ab (ω) = − i

2

∫

C↑

dω′

2π

∑

cd

V̄c̄dāb G
21
cd(ω

′)

= − i

2

∫

C↑

dω′

2π

∑

cd,k

V̄c̄dāb
V̄k
c Ūk∗

d

ω′ − ωk + iη

− i

2

∫

C↑

dω′

2π

∑

cd,k

V̄c̄dāb
Uk∗
c Vk

d

ω′ + ωk − iη

=
1

2

∑

cd,k

V̄c̄dāb Uk∗
c Vk

d

=
1

2

∑

cd,k

V̄ābc̄d Uk∗
c Vk

d

=
[

Σ12 (1)
ba (ω)

]∗

, (C24)

where the same integration technique as in (C18) has
been used.

b. Second order

Let us proceed now the computation of the second-
order contributions. The first term is the standard
second-order self-energy

Σ11 (2′)
ab (ω) = ↑ ω′ ↑ ω′′

d g

↓ ω′′′

c f

b

a

h

e

(C25)

which reads
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21
cd(ω

′)

= − i

2

∫

C↑

dω′

2π

∑

cd,k

V̄c̄dāb
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= −
∑

cd,k

V̄acbd Vk
c Vk∗

d

= −Σ11 (1)
ab (ω) . (C20)

The anomalous contributions to the self-energy at first
order are

Σ12 (1)
ab (ω) =

b̄

← ω′

a
c d̄

, (C21)

Σ21 (1)
ab (ω) = d

← ω′

c̄
ā b

, (C22)

and are written respectively as

Σ12 (1)
ab (ω) = − i

2

∫

C↑

dω′

2π

∑

cd

V̄ab̄cd̄G
12
cd(ω

′)

= − i

2

∫

C↑

dω′

2π

∑

cd,k

V̄ab̄cd̄
Ūk
c V̄k∗

d

ω′ − ωk + iη

− i

2

∫

C↑

dω′

2π

∑

cd,k

V̄ab̄cd̄
Vk∗
c Uk

d

ω′ + ωk − iη

=
1

2

∑

cd,k

V̄ab̄cd̄ Vk∗
c Uk

d , (C23)

and

Σ21 (1)
ab (ω) = − i

2

∫

C↑

dω′

2π

∑

cd

V̄c̄dāb G
21
cd(ω

′)

= − i

2

∫

C↑

dω′

2π

∑

cd,k

V̄c̄dāb
V̄k
c Ūk∗

d

ω′ − ωk + iη

− i

2

∫

C↑

dω′

2π

∑

cd,k

V̄c̄dāb
Uk∗
c Vk

d

ω′ + ωk − iη

=
1

2

∑

cd,k

V̄c̄dāb Uk∗
c Vk

d

=
1

2

∑

cd,k

V̄ābc̄d Uk∗
c Vk

d

=
[

Σ12 (1)
ba (ω)

]∗

, (C24)

where the same integration technique as in (C18) has
been used.

b. Second order

Let us proceed now the computation of the second-
order contributions. The first term is the standard
second-order self-energy

Σ11 (2′)
ab (ω) = ↑ ω′ ↑ ω′′

d g

↓ ω′′′

c f

b

a

h

e

(C25)

which reads

30

which yields

Σ22 (2′)
ab (ω) = −1

2

∫
dω′

2π

dω′′

2π

∑

cdefgh

V̄āēc̄f̄ V̄d̄ḡb̄h̄ G22
cd(ω′)G22

fg(ω
′′)G22

he(ω
′ + ω′′ − ω)

= −1

2

∫
dω′

2π

dω′′

2π

∑

cdefgh,k1k2k3

V̄āēc̄f̄ V̄d̄ḡb̄h̄

{

V̄k1
c V̄k1∗

d

ω′ − ωk1
+ iη

+
Uk1∗

c Uk1

d

ω′ + ωk1
− iη

}

×
{

V̄k2

f V̄k2∗
g

ω′ − ωk2
+ iη

+
Uk2∗

f Uk2
g

ω′ + ωk2
− iη

} {

V̄k3

h V̄k3∗
e

ω′ − ωk3
+ iη

+
Uk3∗

h Uk3
e

ω′ + ωk3
− iη

}

=
1

2

∑

cdefgh,k1k2k3

V̄āēc̄f̄ V̄d̄ḡb̄h̄

{

V̄k1
c V̄k1∗

d V̄k2

f V̄k2∗
g Uk3∗

h Uk3
e

ω − (ωk1
+ ωk2

+ ωk3
) + iη

+
Uk1∗

c Uk1

d Uk2∗
f Uk2

g V̄k3

h V̄k3∗
e

ω + (ωk3
+ ωk1

+ ωk2
)− iη

}

, (C19)

and

Σ22 (2′′)
ab (ω) =

d̄ ḡ

↑ ω′

c̄ f

↑ ω′′′↑ ω′′

b̄

ā

h̄

e

, (C20)

which is evaluated as

Σ22 (2′′)
ab (ω) = −

∫
dω′

2π

dω′′

2π

∑

cdefgh

V̄āec̄f V̄d̄ḡb̄h̄ G22
cd(ω′)G12

fh(ω′′)G21
ge(ω

′ + ω′′ − ω) (C21)

= −
∫

dω′

2π

dω′′

2π

∑

cdefgh,k1k2k3

V̄āec̄f V̄d̄ḡb̄h̄

{

V̄k1
c V̄k1∗

d

ω′ − ωk1
+ iη

+
Uk1∗

c Uk1

d

ω′ + ωk1
− iη

}

×
{

Ūk2

f V̄k2∗
h

ω′′ − ωk2
+ iη

+
Vk2∗

f Uk2

h

ω′′ + ωk2
− iη

} {

V̄k3
g Ūk3∗

e

ω′ + ω′′ − ω − ωk3
+ iη

+
Uk3∗

g Vk3
e

ω′ + ω′′ − ω + ωk3
− iη

}

=
∑

cdefgh,k1k2k3

V̄āec̄f V̄d̄ḡb̄h̄

{

V̄k1
c V̄k1∗

d Ūk2

f V̄k2∗
h V̄k3

g Ūk3∗
e

ω − (ωk1
+ ωk2

+ ωk3
) + iη

+
Uk1∗

c Uk1

d Vk2∗
f Uk2

h Uk3∗
g Vk3

e

ω + (ωk3
+ ωk1

+ ωk2
)− iη

}

.

The first of the anomalous self-energy is

Σ12 (2′)
ab (ω) = h b̄

← ω′

↑ ω′′ ↓ ω′′′

c f

a

d̄g

e

, (C22)

29

Σ11 (2′)
ab (ω) = −1

2

∫
dω′

2π

dω′′

2π

dω′′′

2π

∑

cdefgh

V̄aecf V̄dgbh G11
cd(ω′)G11

fg(ω
′′)G11

he(ω
′′′) δ(ω − ω′ − ω′′ + ω′′′)

= −1

2

∫
dω′

2π

dω′′

2π

∑

cdefgh

V̄aecf V̄dgbh G11
cd(ω′)G11

fg(ω
′′)G11

he(ω
′ + ω′′ − ω) . (C13)

The integrations over the two energy variables are performed in this case using two successive applications of the
formula

I(E) =

∫ +∞

−∞

dE′

2πi

{
F1

E′ − f1 + iη
+

B1

E′ − b1 − iη

} {
F2

E′ − E − f2 + iη
+

B2

E′ − E − b2 − iη

}

=

{
F1B2

E − (f1 − b2) + iη
− F2B1

E − (f2 − b1)− iη

}

. (C14)

The above integral, defined on the real axis, is computed by extending the integration to a large semicircle in the
upper or lower complex half plane of E′ (this can be done since the integrand behaves as |E′|−2 for |E′| → ∞ and
this branch do not contribute to the integral) and then by using the residue theorem. Of the four terms, two have
poles in the same half plane and yield zero as the contour can be closed in the other half. Applying this formula to
the integral (C13) we obtain

Σ11 (2′)
ab (ω) = −1

2

∫
dω′

2π

dω′′

2π

∑

cdefgh,k1k2k3

V̄aecf V̄dgbh

{

Ūk1
c Ūk1∗

d

ω′ − ωk1
+ iη

+
Vk1∗

c Vk1

d

ω′ + ωk1
− iη

}

×
{

Ūk2

f Ūk2∗
g

ω′′ − ωk2
+ iη

+
Vk2∗

f Vk2
g

ω′′ + ωk2
− iη

} {

Ūk3

h Ūk3∗
e

ω′ + ω′′ − ω − ωk3
+ iη

+
Vk3∗

h Vk3
e

ω′ + ω′′ − ω + ωk3
− iη

}

=
1

2

∑

cdefgh,k1k2k3

V̄aecf V̄dgbh

{

Ūk1
c Ūk1∗

d Ūk2

f Ūk2∗
g Vk3∗

h Vk3
e

ω − (ωk1
+ ωk2

+ ωk3
) + iη

+
Vk1∗

c Vk1

d Vk2∗
f Vk2

g Ūk3

h Ūk3∗
e

ω + (ωk3
+ ωk1

+ ωk2
)− iη

}

. (C15)

With the same technique we can evaluate all other terms contributing to the second order self-energy. We have

Σ11 (2′′)
ab (ω) = ↑ ω′

d ḡ

c f

↑ ω′′′↑ ω′′

b

a

h̄

e

(C16)

which reads

Σ11 (2′′)
ab (ω) = −

∫
dω′

2π

dω′′

2π

∑

cdefgh

V̄aecf V̄dḡbh̄ G11
cd(ω′)G12

fh(ω′′)G21
ge(ω

′ + ω′′ − ω) (C17)

= −
∫

dω′

2π

dω′′

2π

∑

cdefgh,k1k2k3

V̄aecf V̄dḡbh̄

{

Ūk1
c Ūk1∗

d

ω′ − ωk1
+ iη

+
Vk1∗

c Vk1

d

ω′ + ωk1
− iη

}

×
{

Ūk2

f V̄k2∗
h

ω′′ − ωk2
+ iη

+
Vk2∗

f Uk2

h

ω′′ + ωk2
− iη

} {

V̄k3
g Ūk3∗

e

ω′ + ω′′ − ω − ωk3
+ iη

+
Uk3∗

g Vk3
e

ω′ + ω′′ − ω + ωk3
− iη

}

=
∑

cdefgh,k1k2k3

V̄aecf V̄dḡbh̄

{

Ūk1
c Ūk1∗

d Ūk2

f V̄k2∗
h Uk3∗

g Vk3
e

ω − (ωk1
+ ωk2

+ ωk3
) + iη

+
Vk1∗

c Vk1

d Vk2∗
f Uk2

h V̄k3
g Ūk3∗

e

ω + (ωk3
+ ωk1

+ ωk2
)− iη

}

.

The two diagrams of the other normal self-energy Σ22 are respectively

Σ22 (2′)
ab (ω) = ↑ ω′ ↓ ω′′′

d̄ ḡ

↑ ω′′

c̄ f̄

b̄

ā

h̄

ē

, (C18)
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for what concerns the first contribution, which reads

Σ12 (2′)
ab (ω) =

∫
dω′

2π

dω′′

2π

∑

cdefgh

V̄aecf V̄hb̄gd̄ G12
cd(ω′)G11

eg(ω′′)G11
hf (ω′ + ω′′ − ω) (C23)

=

∫
dω′

2π

dω′′

2π

∑

cdefgh,k1k2k3

V̄aecf V̄hb̄gd̄

{

Ūk1
c V̄k1∗

d

ω′ − ωk1
+ iη

+
Vk1∗

c Uk1

d

ω′ + ωk1
− iη

}

×
{

Ūk2
e Ūk2∗

g

ω′′ − ωk2
+ iη

+
Vk2∗

e Vk2
g

ω′′ + ωk2
− iη

} {

Ūk3

h Ūk3∗
f

ω′ + ω′′ − ω − ωk3
+ iη

+
Vk3∗

h Vk3

f

ω′ + ω′′ − ω + ωk3
− iη

}

= −
∑

cdefgh,k1k2k3

V̄aecf V̄hb̄gd̄

{

Ūk1
c V̄k1∗

d Ūk2
e Ūk2∗

g Vk3∗
h Vk3

f

ω − (ωk1
+ ωk2

+ ωk3
) + iη

+
Vk1∗

c Uk1

d Vk2∗
e Vk2

g Ūk3

h Ūk3∗
f

ω + (ωk3
+ ωk1

+ ωk2
)− iη

}

,

and

Σ12 (2′′)
ab (ω) =

c f

← ω′

↓ ω′′′

h̄ b̄

↖ ω′′

e
a

d̄ḡ

, (C24)

yielding

Σ12 (2′′)
ab (ω) =

1

2

∫
dω′

2π

dω′′

2π

∑

cdefgh

V̄aecf Vh̄b̄ḡd̄ G12
cd(ω′)G12

fg(ω
′′)G21

he(ω
′ + ω′′ − ω) (C25)

=
1

2

∫
dω′

2π

dω′′

2π

∑

cdefgh,k1k2k3

V̄aecf Vh̄b̄ḡd̄

{

Ūk1
c V̄k1∗

d

ω′ − ωk1
+ iη

+
Vk1∗

c Uk1

d

ω′ + ωk1
− iη

}

×
{

Ūk2

f V̄k2∗
g

ω′′ − ωk2
+ iη

+
Vk2∗

f Uk2
g

ω′′ + ωk2
− iη

} {

V̄k3

h Ūk3∗
e

ω′ + ω′′ − ω − ωk3
+ iη

+
Uk3∗

h Vk3
e

ω′ + ω′′ − ω + ωk3
− iη

}

= −1

2

∑

cdefgh,k1k2k3

V̄aecf Vh̄b̄ḡd̄

{

Ūk1
c V̄k1∗

d Ūk2

f V̄k2∗
g Uk3∗

h Vk3
e

ω − (ωk1
+ ωk2

+ ωk3
) + iη

+
Vk1∗

c Uk1

d Vk2∗
f Vk2

g V̄k3

h Ūk3∗
e

ω + (ωk3
+ ωk1

+ ωk2
)− iη

}

,

Finally

Σ21 (2′)
ab (ω) =

g d

↑ ω′′ ↓ ω′′′

ā e

c̄

b

↑ ω′′′

h

f

, (C26)

✪ Gorkov equation energy dependent eigenvalue problem

10

substituting the Lehmann representation (59) for G and the operatorial form

G
(0)
ab = (ω − ΩU )

−1
ab (61)

for the unperturbed propagator, lead to

lim
ω→−ωk

{

Y
k†
a Y

k
b =

∑

cd

(ω − ΩU )
−1
ac Σ̃cd(ω)Y

k†
d Y

k
b

}

. (62)

Multiplying both sides by (ω − ΩU )ea and summing over a yields

lim
ω→−ωk

{

∑

a

(ω − ΩU )ea Y
k†
a =

∑

d

Σ̃ed(ω)Y
k†
d

}

, (63)

such that (33) and (35) finally allows one to write the matrix equation

ω

(

Vk∗
a

Uk∗
a

)

=
∑

b

(

tab − µab + Σ11
ab(ω) Σ12

ab(ω)
Σ21

ab(ω) −tab + µab + Σ22
ab(ω)

)(

Vk∗
b

Uk∗
b

)

, (64)

where the two sides are evaluated at ω = −ωk. Computing the residue at ωk one similarly obtains

ω

(

Ūk
a

V̄k
a

)

=
∑

b

(

tab − µab + Σ11
ab(ω) Σ12

ab(ω)
Σ21

ab(ω) −tab + µab + Σ22
ab(ω)

)(

Ūk
b

V̄k
b

)

, (65)

expression now evaluated at ω = ωk, which can be rewritten as

∑

b

(

tab − µab + Σ11
ab(ω) Σ12

ab(ω)
Σ21

ab(ω) −tab + µab + Σ22
ab(ω)

)∣
∣
∣
∣
ωk

(

Uk
b

Vk
b

)

= ωk

(

Uk
a

Vk
a

)

. (66)

The latter relationship represents a system of coupled eigenvalue equations for the spectroscopic amplitudes U and
V . The result is independent of the auxiliary potential U , which cancelled out leaving only the proper self-energy
contributions that act as an energy-dependent potential. The self-energy depends in turn on the amplitudes U and V ,
which requires the solution to be obtained through an iterative procedure. At each iteration the chemical potential µ
has to be fixed such that Eq. (16) is fulfilled, which translates into the condition that amplitudes V satisfy

N =
∑

a

ρaa =
∑

a,k

∣
∣Vk

a

∣
∣
2
, (67)

where

ρab ≡ 〈Ψ0|a†baa|Ψ0〉 =
∑

k

Vk
b Vk

a
∗

(68)

is the (normal) density matrix.

B. Normalization condition

In order to work out the normalization of the spectroscopic amplitudes let us consider the expansion of Gorkov’s
equations (34) around the pole −ωk. Let us remind that a complex function f(z) can be expanded in a Laurent series
around a point c in the complex plane as

f(z) =
n=+∞
∑

n=−∞

an (z − c)n , (69)

with

an ≡ 1

2πi

∫

C

f(z) dz

(z − c)n+1
, (70)
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∣Vk
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∣
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energy independent eigenvalue problem
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F. Matrix representation of Gorkov’s equations

Defining quantities W and Z through

(ωk − Ek1k2k3)Wk1k2k3
k ≡

∑

a

[

Ck1k2k3
a

† Uk
a −Dk1k2k3

a Vk
a

]

(98a)

(ωk + Ek1k2k3)Zk1k2k3
k ≡

∑

a

[

−Dk1k2k3
a Uk

a + Ck1k2k3
a

† Vk
a

]

(98b)

Gorkov’s equations (66) computed in terms of second-order self-energies can be rewritten as

ωk Uk
a =

∑

b

[

(tab − µab + Λab)Uk
b + h̃ab Vk

b

]

+
∑

k1k2k3

[

Ck1k2k3
a Wk1k2k3

k −Dk1k2k3
a

†Zk1k2k3
k

]

, (99a)

ωk Vk
a =

∑

b

[

−(tab − µab + Λab)Vk
b + h̃†

ab U
k
b

]

+
∑

k1k2k3

[

−Dk1k2k3
a

†Wk1k2k3
k + Ck1k2k3

a Zk1k2k3
k

]

, (99b)

which grouped together with Eq. (98) provide a set of four coupled equations for unknowns U , V , W and Z that can
be displayed in a matrix form as







T − µ+ Λ h̃ C −D†

h̃† −T + µ− Λ −D† C
C† −D E 0
−D C† 0 −E













Uk

Vk

Wk

Zk







= ωk







Uk

Vk

Wk

Zk







(100)

where Ξ is an energy-independent Hermitian matrix. The diagonalization of Ξ is equivalent to solving the second-
order Gorkov equations. Such a transformation is made possible by the explicit energy dependence embodied in the
Lehmann representation: the known pole structure of the propagators, and consequently of second-order self-energy
contributions, is used to recast Gorkov’s equations under the form of an energy-independent eigenvalue problem,
whose eigenvalues and eigenvectors yield the complete set of poles of one-body Green’s functions. The solution of this
eigenvalue problem still has to be solved self-consistently together with Eq. (67).
In order to derive a normalization condition for the column vectors in Eq. (100) let us expand Eq. (81) by inserting

the second-order self-energies in the form (95) and (97)

∑

a

∣
∣X

k
a

∣
∣
2
= 1 +

∑

ab

X
k
a
† ∂Σab(ω)

∂ω
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∣
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∣
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∂
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†
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+
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ω + Ek1k2k3 + iη

]

Uk
b

− Uk∗
a

∂
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+
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a

† Ck1k2k3
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†

ω + Ek1k2k3 + iη
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a
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†

ω − Ek1k2k3 + iη
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a Dk1k2k3

b
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]
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∂

∂ω
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a
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b
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+

Ck1k2k3
a Ck1k2k3
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†
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b
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∣
∣
∣
∣
ω=ωk

= 1−
∑

ab

∑

k1k2k3







(

Uk∗
a Ck1k2k3

a − Vk∗
a Dk1k2k3

a
†
) (

Ck1k2k3
b

† Uk
b −Dk1k2k3

b Vk
b

)

(ωk − Ek1k2k3)
2

−

(

Uk∗
a Dk1k2k3

a
† − Vk∗

a Ck1k2k3
a

) (

Dk1k2k3
b Uk

b − Ck1k2k3
b

† Vk
b
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(ωk + Ek1k2k3)
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= 1−
∑

k1k2k3

[

Wk1k2k3
k

†Wk1k2k3
k + Zk1k2k3

k

†Zk1k2k3
k

]

. (101)

∝ Nb3

[Schirmer & Angonoa 1989]
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Gorkov equation

✪ Gorkov equation energy dependent eigenvalue problem
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substituting the Lehmann representation (59) for G and the operatorial form

G
(0)
ab = (ω − ΩU )

−1
ab (61)

for the unperturbed propagator, lead to

lim
ω→−ωk

{

Y
k†
a Y

k
b =

∑

cd

(ω − ΩU )
−1
ac Σ̃cd(ω)Y

k†
d Y

k
b

}

. (62)

Multiplying both sides by (ω − ΩU )ea and summing over a yields

lim
ω→−ωk

{

∑

a

(ω − ΩU )ea Y
k†
a =

∑

d

Σ̃ed(ω)Y
k†
d

}

, (63)

such that (33) and (35) finally allows one to write the matrix equation

ω

(

Vk∗
a

Uk∗
a

)

=
∑

b

(

tab − µab + Σ11
ab(ω) Σ12

ab(ω)
Σ21

ab(ω) −tab + µab + Σ22
ab(ω)

)(

Vk∗
b

Uk∗
b

)

, (64)

where the two sides are evaluated at ω = −ωk. Computing the residue at ωk one similarly obtains

ω

(

Ūk
a

V̄k
a

)

=
∑

b

(

tab − µab + Σ11
ab(ω) Σ12

ab(ω)
Σ21

ab(ω) −tab + µab + Σ22
ab(ω)

)(

Ūk
b

V̄k
b

)

, (65)

expression now evaluated at ω = ωk, which can be rewritten as

∑

b

(

tab − µab + Σ11
ab(ω) Σ12

ab(ω)
Σ21

ab(ω) −tab + µab + Σ22
ab(ω)

)∣
∣
∣
∣
ωk

(

Uk
b

Vk
b

)

= ωk

(

Uk
a

Vk
a

)

. (66)

The latter relationship represents a system of coupled eigenvalue equations for the spectroscopic amplitudes U and
V . The result is independent of the auxiliary potential U , which cancelled out leaving only the proper self-energy
contributions that act as an energy-dependent potential. The self-energy depends in turn on the amplitudes U and V ,
which requires the solution to be obtained through an iterative procedure. At each iteration the chemical potential µ
has to be fixed such that Eq. (16) is fulfilled, which translates into the condition that amplitudes V satisfy

N =
∑

a

ρaa =
∑

a,k

∣
∣Vk

a

∣
∣
2
, (67)

where

ρab ≡ 〈Ψ0|a†baa|Ψ0〉 =
∑

k

Vk
b Vk

a
∗

(68)

is the (normal) density matrix.

B. Normalization condition

In order to work out the normalization of the spectroscopic amplitudes let us consider the expansion of Gorkov’s
equations (34) around the pole −ωk. Let us remind that a complex function f(z) can be expanded in a Laurent series
around a point c in the complex plane as

f(z) =
n=+∞
∑

n=−∞

an (z − c)n , (69)

with

an ≡ 1

2πi

∫

C

f(z) dz

(z − c)n+1
, (70)

energy independent eigenvalue problem
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F. Matrix representation of Gorkov’s equations

Defining quantities W and Z through

(ωk − Ek1k2k3)Wk1k2k3
k ≡

∑

a

[

Ck1k2k3
a

† Uk
a −Dk1k2k3

a Vk
a

]

(98a)

(ωk + Ek1k2k3)Zk1k2k3
k ≡

∑

a

[

−Dk1k2k3
a Uk

a + Ck1k2k3
a

† Vk
a

]

(98b)

Gorkov’s equations (66) computed in terms of second-order self-energies can be rewritten as

ωk Uk
a =

∑

b

[

(tab − µab + Λab)Uk
b + h̃ab Vk

b

]

+
∑

k1k2k3

[

Ck1k2k3
a Wk1k2k3

k −Dk1k2k3
a

†Zk1k2k3
k

]

, (99a)

ωk Vk
a =

∑

b

[

−(tab − µab + Λab)Vk
b + h̃†

ab U
k
b

]

+
∑

k1k2k3

[

−Dk1k2k3
a

†Wk1k2k3
k + Ck1k2k3

a Zk1k2k3
k

]

, (99b)

which grouped together with Eq. (98) provide a set of four coupled equations for unknowns U , V , W and Z that can
be displayed in a matrix form as







T − µ+ Λ h̃ C −D†

h̃† −T + µ− Λ −D† C
C† −D E 0
−D C† 0 −E













Uk

Vk

Wk

Zk







= ωk







Uk

Vk

Wk

Zk







(100)

where Ξ is an energy-independent Hermitian matrix. The diagonalization of Ξ is equivalent to solving the second-
order Gorkov equations. Such a transformation is made possible by the explicit energy dependence embodied in the
Lehmann representation: the known pole structure of the propagators, and consequently of second-order self-energy
contributions, is used to recast Gorkov’s equations under the form of an energy-independent eigenvalue problem,
whose eigenvalues and eigenvectors yield the complete set of poles of one-body Green’s functions. The solution of this
eigenvalue problem still has to be solved self-consistently together with Eq. (67).
In order to derive a normalization condition for the column vectors in Eq. (100) let us expand Eq. (81) by inserting

the second-order self-energies in the form (95) and (97)

∑

a

∣
∣X

k
a

∣
∣
2
= 1 +

∑

ab

X
k
a
† ∂Σab(ω)

∂ω

∣
∣
∣
∣
ω=ωk

X
k
b

= 1 +
∑

ab

∑

k1k2k3

{

Uk∗
a

∂

∂ω

[

Ck1k2k3
a Ck1k2k3

b

†

ω − Ek1k2k3 + iη
+

Dk1k2k3
a

† Dk1k2k3
b

ω + Ek1k2k3 + iη

]

Uk
b

− Uk∗
a

∂

∂ω

[

Ck1k2k3
a Dk1k2k3

b

ω − Ek1k2k3 + iη
+

Dk1k2k3
a

† Ck1k2k3
b

†

ω + Ek1k2k3 + iη

]

Vk
b

− Vk∗
a

∂

∂ω

[

Dk1k2k3
a

† Ck1k2k3
b

†

ω − Ek1k2k3 + iη
+

Ck1k2k3
a Dk1k2k3

b

ω + Ek1k2k3 + iη

]

Uk
b

+ Vk∗
a

∂

∂ω

[

Dk1k2k3
a

†Dk1k2k3
b

ω − Ek1k2k3 + iη
+

Ck1k2k3
a Ck1k2k3

b

†

ω + Ek1k2k3 + iη

]

Vk
b

}∣
∣
∣
∣
∣
ω=ωk

= 1−
∑

ab

∑

k1k2k3







(

Uk∗
a Ck1k2k3

a − Vk∗
a Dk1k2k3

a
†
) (

Ck1k2k3
b

† Uk
b −Dk1k2k3

b Vk
b

)

(ωk − Ek1k2k3)
2

−

(

Uk∗
a Dk1k2k3

a
† − Vk∗

a Ck1k2k3
a

) (

Dk1k2k3
b Uk

b − Ck1k2k3
b

† Vk
b

)

(ωk + Ek1k2k3)
2







= 1−
∑

k1k2k3

[

Wk1k2k3
k

†Wk1k2k3
k + Zk1k2k3

k

†Zk1k2k3
k

]

. (101)

∝ Nb3

∝ NLanczos

Krylov space eigenvalue problem
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F. Matrix representation of Gorkov’s equations

Defining quantities W and Z through
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∑
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k ≡

∑
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[
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a

† Vk
a

]

(98b)

Gorkov’s equations (66) computed in terms of second-order self-energies can be rewritten as

ωk Uk
a =

∑

b

[

(tab − µab + Λab)Uk
b + h̃ab Vk

b

]

+
∑

k1k2k3

[
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a Wk1k2k3

k −Dk1k2k3
a

†Zk1k2k3
k

]

, (99a)

ωk Vk
a =

∑

b

[

−(tab − µab + Λab)Vk
b + h̃†

ab U
k
b

]

+
∑

k1k2k3
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−Dk1k2k3
a

†Wk1k2k3
k + Ck1k2k3

a Zk1k2k3
k

]

, (99b)

which grouped together with Eq. (98) provide a set of four coupled equations for unknowns U , V , W and Z that can
be displayed in a matrix form as







T − µ+ Λ h̃ C −D†

h̃† −T + µ− Λ −D† C
C† −D E 0
−D C† 0 −E













Uk
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Wk

Zk
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Uk
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(100)

where Ξ is an energy-independent Hermitian matrix. The diagonalization of Ξ is equivalent to solving the second-
order Gorkov equations. Such a transformation is made possible by the explicit energy dependence embodied in the
Lehmann representation: the known pole structure of the propagators, and consequently of second-order self-energy
contributions, is used to recast Gorkov’s equations under the form of an energy-independent eigenvalue problem,
whose eigenvalues and eigenvectors yield the complete set of poles of one-body Green’s functions. The solution of this
eigenvalue problem still has to be solved self-consistently together with Eq. (67).
In order to derive a normalization condition for the column vectors in Eq. (100) let us expand Eq. (81) by inserting

the second-order self-energies in the form (95) and (97)

∑

a

∣
∣X

k
a

∣
∣
2
= 1 +

∑

ab

X
k
a
† ∂Σab(ω)

∂ω

∣
∣
∣
∣
ω=ωk

X
k
b

= 1 +
∑

ab

∑

k1k2k3

{

Uk∗
a

∂

∂ω

[

Ck1k2k3
a Ck1k2k3

b

†

ω − Ek1k2k3 + iη
+

Dk1k2k3
a

† Dk1k2k3
b

ω + Ek1k2k3 + iη

]

Uk
b

− Uk∗
a

∂

∂ω

[

Ck1k2k3
a Dk1k2k3

b

ω − Ek1k2k3 + iη
+

Dk1k2k3
a

† Ck1k2k3
b

†

ω + Ek1k2k3 + iη

]
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− Vk∗
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∂

∂ω

[

Dk1k2k3
a

† Ck1k2k3
b
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ω − Ek1k2k3 + iη
+

Ck1k2k3
a Dk1k2k3

b

ω + Ek1k2k3 + iη

]

Uk
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+ Vk∗
a

∂

∂ω

[

Dk1k2k3
a

†Dk1k2k3
b

ω − Ek1k2k3 + iη
+

Ck1k2k3
a Ck1k2k3

b

†

ω + Ek1k2k3 + iη

]

Vk
b

}∣
∣
∣
∣
∣
ω=ωk

= 1−
∑

ab

∑

k1k2k3







(

Uk∗
a Ck1k2k3

a − Vk∗
a Dk1k2k3

a
†
) (

Ck1k2k3
b

† Uk
b −Dk1k2k3

b Vk
b

)

(ωk − Ek1k2k3)
2

−

(

Uk∗
a Dk1k2k3

a
† − Vk∗

a Ck1k2k3
a

) (

Dk1k2k3
b Uk

b − Ck1k2k3
b

† Vk
b

)

(ωk + Ek1k2k3)
2







= 1−
∑

k1k2k3

[

Wk1k2k3
k

†Wk1k2k3
k + Zk1k2k3

k

†Zk1k2k3
k

]

. (101)

typically ~106-107

[Schirmer & Angonoa 1989]
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Testing Krylov projection
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Odd-even systems

① From separation energies

✪ Current implementation targets JΠ = 0+ states

✪ Different possibilities to compute odd-even g.s. energies:

Inside the Green’s function

✪ Separation energy spectrum
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Odd-even systems

① From separation energies

Inside the Green’s function

✪ Separation energy spectrum

② From fully-paired even number-parity state

✪ Current implementation targets JΠ = 0+ states

✪ Different possibilities to compute odd-even g.s. energies:

Such a perturbative qp creation on top of the odd fully
paired state, instead of the even neighbor’s one, has already
been introduced by Ring et al. !6" and has been used with
success in Ref. !7". Its main justification was simplicity with
respect to the self-consistent blocking, but not the formal
step achieved with respect to a perturbative qp creation per-
formed on the even vacuum.
The introduction of an intermediate reference vacuum re-

quires one to study an odd nucleus in two steps. This proce-
dure, illustrated on Fig. 1, eliminates the inconsistency be-
tween the addition of a nucleon and the creation of an
energetically favorable qp excitation. From a mathematical
point of view, it shows that the odd fully paired state is better
grounded than an even neighbor ground state as the zero-
order reference for a perturbation theory of odd nuclei. In the
rest of this paper, we will analyze these steps from a physical
point of view and use them to separate self-consistent calcu-
lations in two identified processes.

C. Limit of zero pairing

The description of an odd nucleus with respect to an even
neighbor is at first sight less complicated in the absence of
pairing. Indeed, there is no problem related to the particle
number and an odd nucleus is simply obtained by adding a
nucleon on the first empty level in the even neighbor’s HF
state. Two different approximations are used within this pic-
ture.
If time-reversal invariance is not broken, each single-

particle state is at least doubly degenerate and the odd
nucleon is added using the filling approximation: the first
pair of empty levels in the even neighbor are identically oc-
cupied with probability 0.5 in the odd state.3

If time-reversal symmetry breaking is properly taken into
account and for a deformed configuration, all degeneracies
are lifted and the first pair of empty levels in the even isotope
are occupied with probability 1 and 0 in the odd neighbor.4
Let us now analyze how the standard HF picture matches

with the zero-pairing limit of the perturbative method de-
scribed in Sec. II B. Most of the developments presented in
this section have straightforward zero-pairing limits. Let us
look explicitly to the limit for odd states only.
The limit of the perturbative one qp BCS state with an

odd particle number is

!#n
BCS$N!1 %&→!#n

HF$N!1 %&"an
†'

k"1

N/2

ak
†ak 
†!0&, $3%

whereas the fully paired odd vacuum leads to

!#BCSE$N!1 %&→!#HFE$N!1 %&

"
1
!2

$1!an
†an 
†
%'

k"1

N/2

ak
†ak 
†!0&. $4%

One can check that

!#n
HF$N!1 %&"(n

†!#HFE$N!1 %& $5%

where (n
†"1/!2(an

†#an ) is the singular5 zero-pairing limit
for the lowest qp creation operator.
The wave function !#HFE(N!1)& introduced as the limit

of the BCSE state is none of the two currently used HF wave
functions. However it leads to the same one-body density
matrix, and thus to the same energy as the HF wave function6
obtained using the filling approximation.
The HF ground state for odd nuclei is now described by a

one qp excitation on top of the HFE state and not as in the
usual procedure directly on top of the HF wave function of
an even neighbor through particle operators. The two-step
picture defined in the BCS case is thus extended to the zero-
pairing limit and will allow an analysis of the OES for any
pairing correlations intensity.
The zero-pairing limit illustrates the physical content of

the nucleon addition process. The nucleon is added in the
HFE wave function by increasing the occupation of each
state of the last couple of degenerate orbits by 0.5. For odd
N, the qp excitation specifies which one of the two states will
eventually be occupied by the single nucleon in the odd

3For spherical nuclei, one adds 1/2j!1 particle in each state of
the last degenerate j shell.

4For spherical nuclei, one orbital of the shell is completely filled,
thus lifting the degeneracies. Several tries have to be made in order
to get the lowest in energy.
5Other qp operators (k

(†) (k)n ,n ) tend to standard particle cre-
ation or annihilation operators ak

(†) .
6The filling approximation is actually defined through a density
operator that is a statistical mixture of the two Slater determinants
where one of the two time-reversed orbitals at the Fermi energy is
filled. The !#HFE& state $4% for odd nuclei is a linear combination of
the two neighboring even HF states.

FIG. 1. Schematic picture of the two-step procedure proposed to
determine the ground state of an odd isotope.
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014310-3

➟ “Fake” odd-A plus correction

➟ Equations simplify: j-coupled scheme, block-diagonal structure, ...

[Duguet et al. 2001]
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Odd-even systems

① From separation energies

Inside the Green’s function

✪ Separation energy spectrum

② From fully-paired even number-parity state

✪ Current implementation targets JΠ = 0+ states

Two methods agree within 2-300 keV

✪ Different possibilities to compute odd-even g.s. energies:

Such a perturbative qp creation on top of the odd fully
paired state, instead of the even neighbor’s one, has already
been introduced by Ring et al. !6" and has been used with
success in Ref. !7". Its main justification was simplicity with
respect to the self-consistent blocking, but not the formal
step achieved with respect to a perturbative qp creation per-
formed on the even vacuum.
The introduction of an intermediate reference vacuum re-

quires one to study an odd nucleus in two steps. This proce-
dure, illustrated on Fig. 1, eliminates the inconsistency be-
tween the addition of a nucleon and the creation of an
energetically favorable qp excitation. From a mathematical
point of view, it shows that the odd fully paired state is better
grounded than an even neighbor ground state as the zero-
order reference for a perturbation theory of odd nuclei. In the
rest of this paper, we will analyze these steps from a physical
point of view and use them to separate self-consistent calcu-
lations in two identified processes.

C. Limit of zero pairing

The description of an odd nucleus with respect to an even
neighbor is at first sight less complicated in the absence of
pairing. Indeed, there is no problem related to the particle
number and an odd nucleus is simply obtained by adding a
nucleon on the first empty level in the even neighbor’s HF
state. Two different approximations are used within this pic-
ture.
If time-reversal invariance is not broken, each single-

particle state is at least doubly degenerate and the odd
nucleon is added using the filling approximation: the first
pair of empty levels in the even neighbor are identically oc-
cupied with probability 0.5 in the odd state.3

If time-reversal symmetry breaking is properly taken into
account and for a deformed configuration, all degeneracies
are lifted and the first pair of empty levels in the even isotope
are occupied with probability 1 and 0 in the odd neighbor.4
Let us now analyze how the standard HF picture matches

with the zero-pairing limit of the perturbative method de-
scribed in Sec. II B. Most of the developments presented in
this section have straightforward zero-pairing limits. Let us
look explicitly to the limit for odd states only.
The limit of the perturbative one qp BCS state with an

odd particle number is

!#n
BCS$N!1 %&→!#n

HF$N!1 %&"an
†'

k"1

N/2

ak
†ak 
†!0&, $3%

whereas the fully paired odd vacuum leads to

!#BCSE$N!1 %&→!#HFE$N!1 %&

"
1
!2

$1!an
†an 
†
%'

k"1

N/2

ak
†ak 
†!0&. $4%

One can check that

!#n
HF$N!1 %&"(n

†!#HFE$N!1 %& $5%

where (n
†"1/!2(an

†#an ) is the singular5 zero-pairing limit
for the lowest qp creation operator.
The wave function !#HFE(N!1)& introduced as the limit

of the BCSE state is none of the two currently used HF wave
functions. However it leads to the same one-body density
matrix, and thus to the same energy as the HF wave function6
obtained using the filling approximation.
The HF ground state for odd nuclei is now described by a

one qp excitation on top of the HFE state and not as in the
usual procedure directly on top of the HF wave function of
an even neighbor through particle operators. The two-step
picture defined in the BCS case is thus extended to the zero-
pairing limit and will allow an analysis of the OES for any
pairing correlations intensity.
The zero-pairing limit illustrates the physical content of

the nucleon addition process. The nucleon is added in the
HFE wave function by increasing the occupation of each
state of the last couple of degenerate orbits by 0.5. For odd
N, the qp excitation specifies which one of the two states will
eventually be occupied by the single nucleon in the odd

3For spherical nuclei, one adds 1/2j!1 particle in each state of
the last degenerate j shell.

4For spherical nuclei, one orbital of the shell is completely filled,
thus lifting the degeneracies. Several tries have to be made in order
to get the lowest in energy.
5Other qp operators (k

(†) (k)n ,n ) tend to standard particle cre-
ation or annihilation operators ak

(†) .
6The filling approximation is actually defined through a density
operator that is a statistical mixture of the two Slater determinants
where one of the two time-reversed orbitals at the Fermi energy is
filled. The !#HFE& state $4% for odd nuclei is a linear combination of
the two neighboring even HF states.

FIG. 1. Schematic picture of the two-step procedure proposed to
determine the ground state of an odd isotope.
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➟ Equations simplify: j-coupled scheme, block-diagonal structure, ...

➟ “Fake” odd-A plus correction➟ Either from A-1 or A+1
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✪ One- and two-body forces derived from the 3N part of the Hamiltonian

➟ Contractions with fully correlated density matrix

➟ Generalization of normal ordering

Elements of Green Function theory

Beware that defining

g
(pp/hh)

+
1
4

+=

=

Defining 1- and 2-body e�ective interaction and
use only irreducible diagrams

!3NF can enter the diagrams in three di�erent ways

would double-count the 1-body term

!

!

= +

✪ Galitskii-Koltun sum rule modified to account for 3N piece

➟ Use of dressed propagators provides significant extra correlations

[Cipollone et al. 2013]



✪ 3N potential: chiral N2LO (400 MeV) SRG-evolved to 2.0 fm-1  [Navrátil 2007]

➟ Fit to three- and four-body systems only

➟ Modified cutoff to reduce induced 4N contributions  [Roth et al. 2012]

✪ NN potential: chiral N3LO (500 MeV) SRG-evolved to 2.0 fm-1

[Entem and Machleidt 2003]

✪ In the future:

➟ Chiral 3NF at N3LO
➟ !-full chiral interactions
➟ NN & 3N consistently SRG-evolved in momentum space

➟ Inputs from lattice QCD: couplings & YN interactions
➟ Chiral interactions with improved/correct power counting
➟ ...

The GGF input: NN & 3N interactions
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FIG. 1. (Color online) Convergence of the binging energy of 51K with
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model space from Nmax=12 to 13 lowers its ground-state en-
ergy by 2.1 MeV, which corresponds to about 0.5% of the
total binding energy. This is much smaller than the uncer-
tainties resulting from truncating the many-body expansion of
the self-energy at second order (see below). Other isotopes
have similar speeds of convergence. For example, the change
for the same variation of the model space induces a change
of 1.7 MeV for 49K which slowly decreases to about 1 MeV
in 40Ca. Thus, one expects convergence errors to cancel to a
large extent when calculating two-neutron separation energies
S2n ⌘ EA

0 � EA�2
0 , where the change in A is for the removal of

two neutrons. To test this we performed exponential extrap-
olations of the calculated binding energies of a few nuclei,
using the last few odd values of Nmax. We found variations
of at most ⇡500 keV with respect to the value calculated at
Nmax=13. Hence, we take this as an estimate of the conver-
gence error on computed S2n. In the following we present our
results calculated for Nmax=13 and ~⌦=28 MeV, which corre-
sponds to the minimum of the curve in Fig 1. For isotopes
beyond N=32, appropriate extrapolations and larger model
spaces are required and will be considered in future works.

The accuracy of the many-body truncation of the self-
energy at second order must also be assessed. We do so
by calculating closed-shell isotopes 40Ca, 48Ca and 52Ca for
which Dyson ADC(3) calculations with Nmax=9 can be per-
formed and compared to second order Gorkov calculations
(Gorkov-GF theory intrinsically reduces to Dyson-GF theory
in closed-shell systems). Results in the top panel of Fig. 2
show that the correction from third- and higher-order dia-
grams is similar in the three isotopes. Specifically, we ob-
tain EADC(3)�Dys

0 � E2nd�Gkv
0 = -10.6, -12.1 and -12.6 MeV that

correspond to ⇡2.7% of the total binding energy. Assuming
that these di↵erences are converged with respect to the model
space, we add them to our second order Gorkov results with
Nmax=13 and display the results in the bottom panel of Fig. 2.
Resulting values agree well with IM-SRG calculations of 40Ca
and 48Ca based on the same Hamiltonian [10]. This confirms
the robustness of the present results across di↵erent many-
body methods. The error due to missing induced 4NFs was
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FIG. 2. (Color online) Experimental (full squares) [28–30] and cal-
culated ground-state energies of Ca isotopes. Top panel: second or-
der Gorkov and Dyson-ADC(3) results for 40,48,52Ca obtained with a
Nmax =9 model space and the full Hamiltonian. Bottom panel: sec-
ond order Gorkov results with NN plus induced (crosses) and NN
plus full (open squares) 3NFs and Nmax =13. Second order Gorkov
results including full 3NF corrected for the ADC(3) correlation en-
ergy extracted from the top panel (dotted line with full triangles).
IM-SRG results [10] are for the same 3NF and are extrapolated to
infinite model space (diamonds with error bars).

also estimated in Ref. [10] by varying the SRG cuto↵ over a
(limited) range. Up to ⇡1% variations were found for masses
A  56 (e.g. less than 0.5% for 40Ca and 48Ca) when chang-
ing � between 1.88 and 2.24 fm�1. We take this estimate to be
generally valid for all the present results.

A first important result of this Letter appears in the bot-
tom panel of Fig. 2, which compares the results obtained with
NN plus induced and NN plus full 3NFs. The trend of the
binding energy of Ca isotopes is predicted incorrectly by the
induced 3NF alone. This is fully amended by the inclusion of
leading chiral 3NFs. However, the latter introduce additional
attraction that results in a systematic overbinding of ground-
state energies throughout the whole chain. Analogous results
are obtained for Ar, K, Sc and Ti isotopic chains (not shown
here), leading to the same conclusion regarding the role of the
initial chiral 3NF in providing the correct trend and in gener-
ating overbinding at the same time.

The NN plus induced 3N interaction, which originates from
the NN-only N3LO potential, generates a wrong slope in
Fig. 2 and exaggerates the kink at 40Ca. The corresponding
two-nucleon separation energies are shown in Fig. 3 and are
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model space from Nmax=12 to 13 lowers its ground-state en-
ergy by 2.1 MeV, which corresponds to about 0.5% of the
total binding energy. This is much smaller than the uncer-
tainties resulting from truncating the many-body expansion of
the self-energy at second order (see below). Other isotopes
have similar speeds of convergence. For example, the change
for the same variation of the model space induces a change
of 1.7 MeV for 49K which slowly decreases to about 1 MeV
in 40Ca. Thus, one expects convergence errors to cancel to a
large extent when calculating two-neutron separation energies
S2n ⌘ EA

0 � EA�2
0 , where the change in A is for the removal of

two neutrons. To test this we performed exponential extrap-
olations of the calculated binding energies of a few nuclei,
using the last few odd values of Nmax. We found variations
of at most ⇡500 keV with respect to the value calculated at
Nmax=13. Hence, we take this as an estimate of the conver-
gence error on computed S2n. In the following we present our
results calculated for Nmax=13 and ~⌦=28 MeV, which corre-
sponds to the minimum of the curve in Fig 1. For isotopes
beyond N=32, appropriate extrapolations and larger model
spaces are required and will be considered in future works.

The accuracy of the many-body truncation of the self-
energy at second order must also be assessed. We do so
by calculating closed-shell isotopes 40Ca, 48Ca and 52Ca for
which Dyson ADC(3) calculations with Nmax=9 can be per-
formed and compared to second order Gorkov calculations
(Gorkov-GF theory intrinsically reduces to Dyson-GF theory
in closed-shell systems). Results in the top panel of Fig. 2
show that the correction from third- and higher-order dia-
grams is similar in the three isotopes. Specifically, we ob-
tain EADC(3)�Dys

0 � E2nd�Gkv
0 = -10.6, -12.1 and -12.6 MeV that

correspond to ⇡2.7% of the total binding energy. Assuming
that these di↵erences are converged with respect to the model
space, we add them to our second order Gorkov results with
Nmax=13 and display the results in the bottom panel of Fig. 2.
Resulting values agree well with IM-SRG calculations of 40Ca
and 48Ca based on the same Hamiltonian [10]. This confirms
the robustness of the present results across di↵erent many-
body methods. The error due to missing induced 4NFs was
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FIG. 2. (Color online) Experimental (full squares) [28–30] and cal-
culated ground-state energies of Ca isotopes. Top panel: second or-
der Gorkov and Dyson-ADC(3) results for 40,48,52Ca obtained with a
Nmax =9 model space and the full Hamiltonian. Bottom panel: sec-
ond order Gorkov results with NN plus induced (crosses) and NN
plus full (open squares) 3NFs and Nmax =13. Second order Gorkov
results including full 3NF corrected for the ADC(3) correlation en-
ergy extracted from the top panel (dotted line with full triangles).
IM-SRG results [10] are for the same 3NF and are extrapolated to
infinite model space (diamonds with error bars).

also estimated in Ref. [10] by varying the SRG cuto↵ over a
(limited) range. Up to ⇡1% variations were found for masses
A  56 (e.g. less than 0.5% for 40Ca and 48Ca) when chang-
ing � between 1.88 and 2.24 fm�1. We take this estimate to be
generally valid for all the present results.

A first important result of this Letter appears in the bot-
tom panel of Fig. 2, which compares the results obtained with
NN plus induced and NN plus full 3NFs. The trend of the
binding energy of Ca isotopes is predicted incorrectly by the
induced 3NF alone. This is fully amended by the inclusion of
leading chiral 3NFs. However, the latter introduce additional
attraction that results in a systematic overbinding of ground-
state energies throughout the whole chain. Analogous results
are obtained for Ar, K, Sc and Ti isotopic chains (not shown
here), leading to the same conclusion regarding the role of the
initial chiral 3NF in providing the correct trend and in gener-
ating overbinding at the same time.

The NN plus induced 3N interaction, which originates from
the NN-only N3LO potential, generates a wrong slope in
Fig. 2 and exaggerates the kink at 40Ca. The corresponding
two-nucleon separation energies are shown in Fig. 3 and are

Estimate of the many-body 
truncation error
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model space from Nmax=12 to 13 lowers its ground-state en-
ergy by 2.1 MeV, which corresponds to about 0.5% of the
total binding energy. This is much smaller than the uncer-
tainties resulting from truncating the many-body expansion of
the self-energy at second order (see below). Other isotopes
have similar speeds of convergence. For example, the change
for the same variation of the model space induces a change
of 1.7 MeV for 49K which slowly decreases to about 1 MeV
in 40Ca. Thus, one expects convergence errors to cancel to a
large extent when calculating two-neutron separation energies
S2n ⌘ EA

0 � EA�2
0 , where the change in A is for the removal of

two neutrons. To test this we performed exponential extrap-
olations of the calculated binding energies of a few nuclei,
using the last few odd values of Nmax. We found variations
of at most ⇡500 keV with respect to the value calculated at
Nmax=13. Hence, we take this as an estimate of the conver-
gence error on computed S2n. In the following we present our
results calculated for Nmax=13 and ~⌦=28 MeV, which corre-
sponds to the minimum of the curve in Fig 1. For isotopes
beyond N=32, appropriate extrapolations and larger model
spaces are required and will be considered in future works.

The accuracy of the many-body truncation of the self-
energy at second order must also be assessed. We do so
by calculating closed-shell isotopes 40Ca, 48Ca and 52Ca for
which Dyson ADC(3) calculations with Nmax=9 can be per-
formed and compared to second order Gorkov calculations
(Gorkov-GF theory intrinsically reduces to Dyson-GF theory
in closed-shell systems). Results in the top panel of Fig. 2
show that the correction from third- and higher-order dia-
grams is similar in the three isotopes. Specifically, we ob-
tain EADC(3)�Dys

0 � E2nd�Gkv
0 = -10.6, -12.1 and -12.6 MeV that

correspond to ⇡2.7% of the total binding energy. Assuming
that these di↵erences are converged with respect to the model
space, we add them to our second order Gorkov results with
Nmax=13 and display the results in the bottom panel of Fig. 2.
Resulting values agree well with IM-SRG calculations of 40Ca
and 48Ca based on the same Hamiltonian [10]. This confirms
the robustness of the present results across di↵erent many-
body methods. The error due to missing induced 4NFs was
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FIG. 2. (Color online) Experimental (full squares) [28–30] and cal-
culated ground-state energies of Ca isotopes. Top panel: second or-
der Gorkov and Dyson-ADC(3) results for 40,48,52Ca obtained with a
Nmax =9 model space and the full Hamiltonian. Bottom panel: sec-
ond order Gorkov results with NN plus induced (crosses) and NN
plus full (open squares) 3NFs and Nmax =13. Second order Gorkov
results including full 3NF corrected for the ADC(3) correlation en-
ergy extracted from the top panel (dotted line with full triangles).
IM-SRG results [10] are for the same 3NF and are extrapolated to
infinite model space (diamonds with error bars).

also estimated in Ref. [10] by varying the SRG cuto↵ over a
(limited) range. Up to ⇡1% variations were found for masses
A  56 (e.g. less than 0.5% for 40Ca and 48Ca) when chang-
ing � between 1.88 and 2.24 fm�1. We take this estimate to be
generally valid for all the present results.

A first important result of this Letter appears in the bot-
tom panel of Fig. 2, which compares the results obtained with
NN plus induced and NN plus full 3NFs. The trend of the
binding energy of Ca isotopes is predicted incorrectly by the
induced 3NF alone. This is fully amended by the inclusion of
leading chiral 3NFs. However, the latter introduce additional
attraction that results in a systematic overbinding of ground-
state energies throughout the whole chain. Analogous results
are obtained for Ar, K, Sc and Ti isotopic chains (not shown
here), leading to the same conclusion regarding the role of the
initial chiral 3NF in providing the correct trend and in gener-
ating overbinding at the same time.

The NN plus induced 3N interaction, which originates from
the NN-only N3LO potential, generates a wrong slope in
Fig. 2 and exaggerates the kink at 40Ca. The corresponding
two-nucleon separation energies are shown in Fig. 3 and are

Estimate of the many-body 
truncation error

Original 3NF correct for trend
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model space from Nmax=12 to 13 lowers its ground-state en-
ergy by 2.1 MeV, which corresponds to about 0.5% of the
total binding energy. This is much smaller than the uncer-
tainties resulting from truncating the many-body expansion of
the self-energy at second order (see below). Other isotopes
have similar speeds of convergence. For example, the change
for the same variation of the model space induces a change
of 1.7 MeV for 49K which slowly decreases to about 1 MeV
in 40Ca. Thus, one expects convergence errors to cancel to a
large extent when calculating two-neutron separation energies
S2n ⌘ EA

0 � EA�2
0 , where the change in A is for the removal of

two neutrons. To test this we performed exponential extrap-
olations of the calculated binding energies of a few nuclei,
using the last few odd values of Nmax. We found variations
of at most ⇡500 keV with respect to the value calculated at
Nmax=13. Hence, we take this as an estimate of the conver-
gence error on computed S2n. In the following we present our
results calculated for Nmax=13 and ~⌦=28 MeV, which corre-
sponds to the minimum of the curve in Fig 1. For isotopes
beyond N=32, appropriate extrapolations and larger model
spaces are required and will be considered in future works.

The accuracy of the many-body truncation of the self-
energy at second order must also be assessed. We do so
by calculating closed-shell isotopes 40Ca, 48Ca and 52Ca for
which Dyson ADC(3) calculations with Nmax=9 can be per-
formed and compared to second order Gorkov calculations
(Gorkov-GF theory intrinsically reduces to Dyson-GF theory
in closed-shell systems). Results in the top panel of Fig. 2
show that the correction from third- and higher-order dia-
grams is similar in the three isotopes. Specifically, we ob-
tain EADC(3)�Dys

0 � E2nd�Gkv
0 = -10.6, -12.1 and -12.6 MeV that

correspond to ⇡2.7% of the total binding energy. Assuming
that these di↵erences are converged with respect to the model
space, we add them to our second order Gorkov results with
Nmax=13 and display the results in the bottom panel of Fig. 2.
Resulting values agree well with IM-SRG calculations of 40Ca
and 48Ca based on the same Hamiltonian [10]. This confirms
the robustness of the present results across di↵erent many-
body methods. The error due to missing induced 4NFs was
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FIG. 2. (Color online) Experimental (full squares) [28–30] and cal-
culated ground-state energies of Ca isotopes. Top panel: second or-
der Gorkov and Dyson-ADC(3) results for 40,48,52Ca obtained with a
Nmax =9 model space and the full Hamiltonian. Bottom panel: sec-
ond order Gorkov results with NN plus induced (crosses) and NN
plus full (open squares) 3NFs and Nmax =13. Second order Gorkov
results including full 3NF corrected for the ADC(3) correlation en-
ergy extracted from the top panel (dotted line with full triangles).
IM-SRG results [10] are for the same 3NF and are extrapolated to
infinite model space (diamonds with error bars).

also estimated in Ref. [10] by varying the SRG cuto↵ over a
(limited) range. Up to ⇡1% variations were found for masses
A  56 (e.g. less than 0.5% for 40Ca and 48Ca) when chang-
ing � between 1.88 and 2.24 fm�1. We take this estimate to be
generally valid for all the present results.

A first important result of this Letter appears in the bot-
tom panel of Fig. 2, which compares the results obtained with
NN plus induced and NN plus full 3NFs. The trend of the
binding energy of Ca isotopes is predicted incorrectly by the
induced 3NF alone. This is fully amended by the inclusion of
leading chiral 3NFs. However, the latter introduce additional
attraction that results in a systematic overbinding of ground-
state energies throughout the whole chain. Analogous results
are obtained for Ar, K, Sc and Ti isotopic chains (not shown
here), leading to the same conclusion regarding the role of the
initial chiral 3NF in providing the correct trend and in gener-
ating overbinding at the same time.

The NN plus induced 3N interaction, which originates from
the NN-only N3LO potential, generates a wrong slope in
Fig. 2 and exaggerates the kink at 40Ca. The corresponding
two-nucleon separation energies are shown in Fig. 3 and are
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Systematic overbinding
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model space from Nmax=12 to 13 lowers its ground-state en-
ergy by 2.1 MeV, which corresponds to about 0.5% of the
total binding energy. This is much smaller than the uncer-
tainties resulting from truncating the many-body expansion of
the self-energy at second order (see below). Other isotopes
have similar speeds of convergence. For example, the change
for the same variation of the model space induces a change
of 1.7 MeV for 49K which slowly decreases to about 1 MeV
in 40Ca. Thus, one expects convergence errors to cancel to a
large extent when calculating two-neutron separation energies
S2n ⌘ EA

0 � EA�2
0 , where the change in A is for the removal of

two neutrons. To test this we performed exponential extrap-
olations of the calculated binding energies of a few nuclei,
using the last few odd values of Nmax. We found variations
of at most ⇡500 keV with respect to the value calculated at
Nmax=13. Hence, we take this as an estimate of the conver-
gence error on computed S2n. In the following we present our
results calculated for Nmax=13 and ~⌦=28 MeV, which corre-
sponds to the minimum of the curve in Fig 1. For isotopes
beyond N=32, appropriate extrapolations and larger model
spaces are required and will be considered in future works.

The accuracy of the many-body truncation of the self-
energy at second order must also be assessed. We do so
by calculating closed-shell isotopes 40Ca, 48Ca and 52Ca for
which Dyson ADC(3) calculations with Nmax=9 can be per-
formed and compared to second order Gorkov calculations
(Gorkov-GF theory intrinsically reduces to Dyson-GF theory
in closed-shell systems). Results in the top panel of Fig. 2
show that the correction from third- and higher-order dia-
grams is similar in the three isotopes. Specifically, we ob-
tain EADC(3)�Dys

0 � E2nd�Gkv
0 = -10.6, -12.1 and -12.6 MeV that

correspond to ⇡2.7% of the total binding energy. Assuming
that these di↵erences are converged with respect to the model
space, we add them to our second order Gorkov results with
Nmax=13 and display the results in the bottom panel of Fig. 2.
Resulting values agree well with IM-SRG calculations of 40Ca
and 48Ca based on the same Hamiltonian [10]. This confirms
the robustness of the present results across di↵erent many-
body methods. The error due to missing induced 4NFs was
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FIG. 2. (Color online) Experimental (full squares) [28–30] and cal-
culated ground-state energies of Ca isotopes. Top panel: second or-
der Gorkov and Dyson-ADC(3) results for 40,48,52Ca obtained with a
Nmax =9 model space and the full Hamiltonian. Bottom panel: sec-
ond order Gorkov results with NN plus induced (crosses) and NN
plus full (open squares) 3NFs and Nmax =13. Second order Gorkov
results including full 3NF corrected for the ADC(3) correlation en-
ergy extracted from the top panel (dotted line with full triangles).
IM-SRG results [10] are for the same 3NF and are extrapolated to
infinite model space (diamonds with error bars).

also estimated in Ref. [10] by varying the SRG cuto↵ over a
(limited) range. Up to ⇡1% variations were found for masses
A  56 (e.g. less than 0.5% for 40Ca and 48Ca) when chang-
ing � between 1.88 and 2.24 fm�1. We take this estimate to be
generally valid for all the present results.

A first important result of this Letter appears in the bot-
tom panel of Fig. 2, which compares the results obtained with
NN plus induced and NN plus full 3NFs. The trend of the
binding energy of Ca isotopes is predicted incorrectly by the
induced 3NF alone. This is fully amended by the inclusion of
leading chiral 3NFs. However, the latter introduce additional
attraction that results in a systematic overbinding of ground-
state energies throughout the whole chain. Analogous results
are obtained for Ar, K, Sc and Ti isotopic chains (not shown
here), leading to the same conclusion regarding the role of the
initial chiral 3NF in providing the correct trend and in gener-
ating overbinding at the same time.

The NN plus induced 3N interaction, which originates from
the NN-only N3LO potential, generates a wrong slope in
Fig. 2 and exaggerates the kink at 40Ca. The corresponding
two-nucleon separation energies are shown in Fig. 3 and are

➟ Results confirmed within different many-body approaches

➟ NN + full 3N correct the trend of binding energies

➟ Systematic overbinding through all chains around Z=20
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FIG. 3. (Color online) Two-nucleon separation energies, S2n , of Ca
isotopes. Results for second order Gorkov calculation for are shown
for the induced (crosses) and full (open squares) Hamiltonians and
are compared to the experiment (full squares) [28–30]. Results from
shell model calculations with chiral 3NFs (full line) [8, 30] and cou-
pled cluster (dashed line) [14] are also shown.

significantly too large (small) for N  20 (N > 20). Including
chiral 3NFs correct this behaviour to a large extent and pre-
dict S2n close to the experiment for isotopes above 42Ca. Fig-
ure 3 also shows results for microscopic shell model [8, 30]
and coupled cluster [14] calculations above 41Ca and 49Ca,
respectively, which are based on similar chiral forces. Our
calculations confirm and extend these results within a full-
fledged ab-initio approach for the first time. The results are
quite remarkable, considering that NN+3N chiral interactions
have been fitted solely to few-body data up to A = 4.

The S2n jump between N=20 and N=22 is largely over-
estimated with the NN plus induced 3NFs, which confirms
the findings of Refs. [13, 31] based on the original NN in-
teraction. The experimental Z=20 magic gap across 48Ca is
�⇡(48Ca) ⌘ 2E

48Ca
0 � E

49Sc
0 � E

47K
0 = 6.2 MeV, whereas it was

found to be 10.5 MeV in Ref. [31]. The magic gap is some-
what larger in the present calculations, i.e. it is equal to
16.5 MeV with the NN plus induced 3NF and is reduced to
12.4 MeV including the full 3NF, which still overestimates
experiment by about 6 MeV.

Performing the integral in the Koltun sum rule (3) expresses
the binding energy as a weighted sum of one-nucleon re-
moval energies. The systematic overbinding observed in the
present results thus relates to a spectrum in the A-1 system
(not shown here) that is too spread out. This has already been
seen in Ref. [13] and is reflected in the excessive distance be-
tween major nuclear shells, or e↵ective single-particle ener-
gies (ESPE) [19, 32]. In turn, the overestimated N=20 magic
gap and the jump of the S2n between N=20 and N=22 relate
to the exaggerated energy separation between sd and pf ma-
jor shells generated by presently employed chiral interactions.
Eventually, a too dilute ESPE spectrum translates into under-
estimated radii.

Presently, ADC(3)-corrected energies with the NN plus full
3NF (Fig. 2) overbind 40Ca, 48Ca and 52Ca by 0.90, 0.73, and
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FIG. 4. (Color online) Two-neutron separation energies, S2n , along
Ar, K, Ca, Sc and Ti isotopic chains. The experimental values (solid
symbols) [28–30] are compared to second order Gorkov calculations
with the NN plus full 3NF (full lines). Values for K, Ca, Sc and Ti
are respectively shifted by +5 MeV, 10 MeV, 15 MeV and 20 MeV
for display purposes. Isolated open symbols are AME2012 extrapo-
lations of experimental data [28].

0.72 MeV/A, respectively. It can be conjectured that such a
behaviour correlates with a predicted saturation point of sym-
metric nuclear matter that is too bound and located at too
high density compared to the empirical point. Recent calcu-
lations of homogeneous nuclear matter based on chiral inter-
actions [2, 3] predict a saturation point in the vicinity of the
empirical point with an uncertainty that is compatible with
the misplacement suggested by our analysis. However, such
calculations use a di↵erent 3NF cuto↵ ⇤3N=500 MeV and dif-
ferent values of cD and cE . Additional SCGF calculations as
in Ref. [3] but with the same NN+3N chiral interactions used
here would help in confirming this conjecture.

The systematic of S2n obtained with the NN plus full 3NF is
displayed in Fig. 4 along Ar, K, Ca, Sc and Ti isotopic chains,
up to N=32. When the neutron chemical potential lies within
the pf shell, predicted S2n reproduce experiment to good ac-
curacy without adjusting any parameter beyond A = 4 data.
Still, the quality slightly deteriorates as the proton chemical
potential moves down into the sd shell, i.e. going from Ca to
K and Ar elements. The increasing underestimation of the S2n

is consistent with a too large gap between proton sd and pf ma-
jor shells that prevents quadrupole neutron-proton correlations
to switch on. The too large jump of the S2n between N=20
and N=22 is visible for all elements and becomes particularly
pronounced as one moves away from the proton magic 40Ca
nucleus where the experimental jump is progressively washed
out. At N=18, the situation deteriorates when going from 38Ca
to 41Sc and 42Ti (but not going to 37K and 36Ar), i.e. when the
proton chemical potential moves up into the pf shell. This is
again consistent with an exaggerated shell gap between sd pf
shells that prevents neutron-proton correlations to switch on

➟ S2n well reproduced with chiral NN + 3N interactions

➟ Microscopic calculations extended to the whole Ca chain
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FIG. 3. (Color online) Two-nucleon separation energies, S2n , of Ca
isotopes. Results for second order Gorkov calculation for are shown
for the induced (crosses) and full (open squares) Hamiltonians and
are compared to the experiment (full squares) [28–30]. Results from
shell model calculations with chiral 3NFs (full line) [8, 30] and cou-
pled cluster (dashed line) [14] are also shown.

significantly too large (small) for N  20 (N > 20). Including
chiral 3NFs correct this behaviour to a large extent and pre-
dict S2n close to the experiment for isotopes above 42Ca. Fig-
ure 3 also shows results for microscopic shell model [8, 30]
and coupled cluster [14] calculations above 41Ca and 49Ca,
respectively, which are based on similar chiral forces. Our
calculations confirm and extend these results within a full-
fledged ab-initio approach for the first time. The results are
quite remarkable, considering that NN+3N chiral interactions
have been fitted solely to few-body data up to A = 4.

The S2n jump between N=20 and N=22 is largely over-
estimated with the NN plus induced 3NFs, which confirms
the findings of Refs. [13, 31] based on the original NN in-
teraction. The experimental Z=20 magic gap across 48Ca is
�⇡(48Ca) ⌘ 2E

48Ca
0 � E

49Sc
0 � E

47K
0 = 6.2 MeV, whereas it was

found to be 10.5 MeV in Ref. [31]. The magic gap is some-
what larger in the present calculations, i.e. it is equal to
16.5 MeV with the NN plus induced 3NF and is reduced to
12.4 MeV including the full 3NF, which still overestimates
experiment by about 6 MeV.

Performing the integral in the Koltun sum rule (3) expresses
the binding energy as a weighted sum of one-nucleon re-
moval energies. The systematic overbinding observed in the
present results thus relates to a spectrum in the A-1 system
(not shown here) that is too spread out. This has already been
seen in Ref. [13] and is reflected in the excessive distance be-
tween major nuclear shells, or e↵ective single-particle ener-
gies (ESPE) [19, 32]. In turn, the overestimated N=20 magic
gap and the jump of the S2n between N=20 and N=22 relate
to the exaggerated energy separation between sd and pf ma-
jor shells generated by presently employed chiral interactions.
Eventually, a too dilute ESPE spectrum translates into under-
estimated radii.

Presently, ADC(3)-corrected energies with the NN plus full
3NF (Fig. 2) overbind 40Ca, 48Ca and 52Ca by 0.90, 0.73, and
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FIG. 4. (Color online) Two-neutron separation energies, S2n , along
Ar, K, Ca, Sc and Ti isotopic chains. The experimental values (solid
symbols) [28–30] are compared to second order Gorkov calculations
with the NN plus full 3NF (full lines). Values for K, Ca, Sc and Ti
are respectively shifted by +5 MeV, 10 MeV, 15 MeV and 20 MeV
for display purposes. Isolated open symbols are AME2012 extrapo-
lations of experimental data [28].

0.72 MeV/A, respectively. It can be conjectured that such a
behaviour correlates with a predicted saturation point of sym-
metric nuclear matter that is too bound and located at too
high density compared to the empirical point. Recent calcu-
lations of homogeneous nuclear matter based on chiral inter-
actions [2, 3] predict a saturation point in the vicinity of the
empirical point with an uncertainty that is compatible with
the misplacement suggested by our analysis. However, such
calculations use a di↵erent 3NF cuto↵ ⇤3N=500 MeV and dif-
ferent values of cD and cE . Additional SCGF calculations as
in Ref. [3] but with the same NN+3N chiral interactions used
here would help in confirming this conjecture.

The systematic of S2n obtained with the NN plus full 3NF is
displayed in Fig. 4 along Ar, K, Ca, Sc and Ti isotopic chains,
up to N=32. When the neutron chemical potential lies within
the pf shell, predicted S2n reproduce experiment to good ac-
curacy without adjusting any parameter beyond A = 4 data.
Still, the quality slightly deteriorates as the proton chemical
potential moves down into the sd shell, i.e. going from Ca to
K and Ar elements. The increasing underestimation of the S2n

is consistent with a too large gap between proton sd and pf ma-
jor shells that prevents quadrupole neutron-proton correlations
to switch on. The too large jump of the S2n between N=20
and N=22 is visible for all elements and becomes particularly
pronounced as one moves away from the proton magic 40Ca
nucleus where the experimental jump is progressively washed
out. At N=18, the situation deteriorates when going from 38Ca
to 41Sc and 42Ti (but not going to 37K and 36Ar), i.e. when the
proton chemical potential moves up into the pf shell. This is
again consistent with an exaggerated shell gap between sd pf
shells that prevents neutron-proton correlations to switch on

➟ S2n well reproduced with chiral NN + 3N interactions

➟ Microscopic calculations extended to the whole Ca chain

[Gallant et al. 2012]
[Wienholtz et al. 2013]

Challenging new data 
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FIG. 3. (Color online) Two-nucleon separation energies, S2n , of Ca
isotopes. Results for second order Gorkov calculation for are shown
for the induced (crosses) and full (open squares) Hamiltonians and
are compared to the experiment (full squares) [28–30]. Results from
shell model calculations with chiral 3NFs (full line) [8, 30] and cou-
pled cluster (dashed line) [14] are also shown.

significantly too large (small) for N  20 (N > 20). Including
chiral 3NFs correct this behaviour to a large extent and pre-
dict S2n close to the experiment for isotopes above 42Ca. Fig-
ure 3 also shows results for microscopic shell model [8, 30]
and coupled cluster [14] calculations above 41Ca and 49Ca,
respectively, which are based on similar chiral forces. Our
calculations confirm and extend these results within a full-
fledged ab-initio approach for the first time. The results are
quite remarkable, considering that NN+3N chiral interactions
have been fitted solely to few-body data up to A = 4.

The S2n jump between N=20 and N=22 is largely over-
estimated with the NN plus induced 3NFs, which confirms
the findings of Refs. [13, 31] based on the original NN in-
teraction. The experimental Z=20 magic gap across 48Ca is
�⇡(48Ca) ⌘ 2E

48Ca
0 � E

49Sc
0 � E

47K
0 = 6.2 MeV, whereas it was

found to be 10.5 MeV in Ref. [31]. The magic gap is some-
what larger in the present calculations, i.e. it is equal to
16.5 MeV with the NN plus induced 3NF and is reduced to
12.4 MeV including the full 3NF, which still overestimates
experiment by about 6 MeV.

Performing the integral in the Koltun sum rule (3) expresses
the binding energy as a weighted sum of one-nucleon re-
moval energies. The systematic overbinding observed in the
present results thus relates to a spectrum in the A-1 system
(not shown here) that is too spread out. This has already been
seen in Ref. [13] and is reflected in the excessive distance be-
tween major nuclear shells, or e↵ective single-particle ener-
gies (ESPE) [19, 32]. In turn, the overestimated N=20 magic
gap and the jump of the S2n between N=20 and N=22 relate
to the exaggerated energy separation between sd and pf ma-
jor shells generated by presently employed chiral interactions.
Eventually, a too dilute ESPE spectrum translates into under-
estimated radii.

Presently, ADC(3)-corrected energies with the NN plus full
3NF (Fig. 2) overbind 40Ca, 48Ca and 52Ca by 0.90, 0.73, and
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FIG. 4. (Color online) Two-neutron separation energies, S2n , along
Ar, K, Ca, Sc and Ti isotopic chains. The experimental values (solid
symbols) [28–30] are compared to second order Gorkov calculations
with the NN plus full 3NF (full lines). Values for K, Ca, Sc and Ti
are respectively shifted by +5 MeV, 10 MeV, 15 MeV and 20 MeV
for display purposes. Isolated open symbols are AME2012 extrapo-
lations of experimental data [28].

0.72 MeV/A, respectively. It can be conjectured that such a
behaviour correlates with a predicted saturation point of sym-
metric nuclear matter that is too bound and located at too
high density compared to the empirical point. Recent calcu-
lations of homogeneous nuclear matter based on chiral inter-
actions [2, 3] predict a saturation point in the vicinity of the
empirical point with an uncertainty that is compatible with
the misplacement suggested by our analysis. However, such
calculations use a di↵erent 3NF cuto↵ ⇤3N=500 MeV and dif-
ferent values of cD and cE . Additional SCGF calculations as
in Ref. [3] but with the same NN+3N chiral interactions used
here would help in confirming this conjecture.

The systematic of S2n obtained with the NN plus full 3NF is
displayed in Fig. 4 along Ar, K, Ca, Sc and Ti isotopic chains,
up to N=32. When the neutron chemical potential lies within
the pf shell, predicted S2n reproduce experiment to good ac-
curacy without adjusting any parameter beyond A = 4 data.
Still, the quality slightly deteriorates as the proton chemical
potential moves down into the sd shell, i.e. going from Ca to
K and Ar elements. The increasing underestimation of the S2n

is consistent with a too large gap between proton sd and pf ma-
jor shells that prevents quadrupole neutron-proton correlations
to switch on. The too large jump of the S2n between N=20
and N=22 is visible for all elements and becomes particularly
pronounced as one moves away from the proton magic 40Ca
nucleus where the experimental jump is progressively washed
out. At N=18, the situation deteriorates when going from 38Ca
to 41Sc and 42Ti (but not going to 37K and 36Ar), i.e. when the
proton chemical potential moves up into the pf shell. This is
again consistent with an exaggerated shell gap between sd pf
shells that prevents neutron-proton correlations to switch on
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FIG. 3. (Color online) Two-nucleon separation energies, S2n , of Ca
isotopes. Results for second order Gorkov calculation for are shown
for the induced (crosses) and full (open squares) Hamiltonians and
are compared to the experiment (full squares) [28–30]. Results from
shell model calculations with chiral 3NFs (full line) [8, 30] and cou-
pled cluster (dashed line) [14] are also shown.

significantly too large (small) for N  20 (N > 20). Including
chiral 3NFs correct this behaviour to a large extent and pre-
dict S2n close to the experiment for isotopes above 42Ca. Fig-
ure 3 also shows results for microscopic shell model [8, 30]
and coupled cluster [14] calculations above 41Ca and 49Ca,
respectively, which are based on similar chiral forces. Our
calculations confirm and extend these results within a full-
fledged ab-initio approach for the first time. The results are
quite remarkable, considering that NN+3N chiral interactions
have been fitted solely to few-body data up to A = 4.

The S2n jump between N=20 and N=22 is largely over-
estimated with the NN plus induced 3NFs, which confirms
the findings of Refs. [13, 31] based on the original NN in-
teraction. The experimental Z=20 magic gap across 48Ca is
�⇡(48Ca) ⌘ 2E

48Ca
0 � E

49Sc
0 � E

47K
0 = 6.2 MeV, whereas it was

found to be 10.5 MeV in Ref. [31]. The magic gap is some-
what larger in the present calculations, i.e. it is equal to
16.5 MeV with the NN plus induced 3NF and is reduced to
12.4 MeV including the full 3NF, which still overestimates
experiment by about 6 MeV.

Performing the integral in the Koltun sum rule (3) expresses
the binding energy as a weighted sum of one-nucleon re-
moval energies. The systematic overbinding observed in the
present results thus relates to a spectrum in the A-1 system
(not shown here) that is too spread out. This has already been
seen in Ref. [13] and is reflected in the excessive distance be-
tween major nuclear shells, or e↵ective single-particle ener-
gies (ESPE) [19, 32]. In turn, the overestimated N=20 magic
gap and the jump of the S2n between N=20 and N=22 relate
to the exaggerated energy separation between sd and pf ma-
jor shells generated by presently employed chiral interactions.
Eventually, a too dilute ESPE spectrum translates into under-
estimated radii.

Presently, ADC(3)-corrected energies with the NN plus full
3NF (Fig. 2) overbind 40Ca, 48Ca and 52Ca by 0.90, 0.73, and
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FIG. 4. (Color online) Two-neutron separation energies, S2n , along
Ar, K, Ca, Sc and Ti isotopic chains. The experimental values (solid
symbols) [28–30] are compared to second order Gorkov calculations
with the NN plus full 3NF (full lines). Values for K, Ca, Sc and Ti
are respectively shifted by +5 MeV, 10 MeV, 15 MeV and 20 MeV
for display purposes. Isolated open symbols are AME2012 extrapo-
lations of experimental data [28].

0.72 MeV/A, respectively. It can be conjectured that such a
behaviour correlates with a predicted saturation point of sym-
metric nuclear matter that is too bound and located at too
high density compared to the empirical point. Recent calcu-
lations of homogeneous nuclear matter based on chiral inter-
actions [2, 3] predict a saturation point in the vicinity of the
empirical point with an uncertainty that is compatible with
the misplacement suggested by our analysis. However, such
calculations use a di↵erent 3NF cuto↵ ⇤3N=500 MeV and dif-
ferent values of cD and cE . Additional SCGF calculations as
in Ref. [3] but with the same NN+3N chiral interactions used
here would help in confirming this conjecture.

The systematic of S2n obtained with the NN plus full 3NF is
displayed in Fig. 4 along Ar, K, Ca, Sc and Ti isotopic chains,
up to N=32. When the neutron chemical potential lies within
the pf shell, predicted S2n reproduce experiment to good ac-
curacy without adjusting any parameter beyond A = 4 data.
Still, the quality slightly deteriorates as the proton chemical
potential moves down into the sd shell, i.e. going from Ca to
K and Ar elements. The increasing underestimation of the S2n

is consistent with a too large gap between proton sd and pf ma-
jor shells that prevents quadrupole neutron-proton correlations
to switch on. The too large jump of the S2n between N=20
and N=22 is visible for all elements and becomes particularly
pronounced as one moves away from the proton magic 40Ca
nucleus where the experimental jump is progressively washed
out. At N=18, the situation deteriorates when going from 38Ca
to 41Sc and 42Ti (but not going to 37K and 36Ar), i.e. when the
proton chemical potential moves up into the pf shell. This is
again consistent with an exaggerated shell gap between sd pf
shells that prevents neutron-proton correlations to switch on

➟ S2n well reproduced with chiral NN + 3N interactions

➟ Microscopic calculations extended to the whole Ca chain

➟ Neighbouring Z=18-22 chains computed within the same GGF framework
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FIG. 3. (Color online) Two-nucleon separation energies, S2n , of Ca
isotopes. Results for second order Gorkov calculation for are shown
for the induced (crosses) and full (open squares) Hamiltonians and
are compared to the experiment (full squares) [28–30]. Results from
shell model calculations with chiral 3NFs (full line) [8, 30] and cou-
pled cluster (dashed line) [14] are also shown.

significantly too large (small) for N  20 (N > 20). Including
chiral 3NFs correct this behaviour to a large extent and pre-
dict S2n close to the experiment for isotopes above 42Ca. Fig-
ure 3 also shows results for microscopic shell model [8, 30]
and coupled cluster [14] calculations above 41Ca and 49Ca,
respectively, which are based on similar chiral forces. Our
calculations confirm and extend these results within a full-
fledged ab-initio approach for the first time. The results are
quite remarkable, considering that NN+3N chiral interactions
have been fitted solely to few-body data up to A = 4.

The S2n jump between N=20 and N=22 is largely over-
estimated with the NN plus induced 3NFs, which confirms
the findings of Refs. [13, 31] based on the original NN in-
teraction. The experimental Z=20 magic gap across 48Ca is
�⇡(48Ca) ⌘ 2E

48Ca
0 � E

49Sc
0 � E

47K
0 = 6.2 MeV, whereas it was

found to be 10.5 MeV in Ref. [31]. The magic gap is some-
what larger in the present calculations, i.e. it is equal to
16.5 MeV with the NN plus induced 3NF and is reduced to
12.4 MeV including the full 3NF, which still overestimates
experiment by about 6 MeV.

Performing the integral in the Koltun sum rule (3) expresses
the binding energy as a weighted sum of one-nucleon re-
moval energies. The systematic overbinding observed in the
present results thus relates to a spectrum in the A-1 system
(not shown here) that is too spread out. This has already been
seen in Ref. [13] and is reflected in the excessive distance be-
tween major nuclear shells, or e↵ective single-particle ener-
gies (ESPE) [19, 32]. In turn, the overestimated N=20 magic
gap and the jump of the S2n between N=20 and N=22 relate
to the exaggerated energy separation between sd and pf ma-
jor shells generated by presently employed chiral interactions.
Eventually, a too dilute ESPE spectrum translates into under-
estimated radii.

Presently, ADC(3)-corrected energies with the NN plus full
3NF (Fig. 2) overbind 40Ca, 48Ca and 52Ca by 0.90, 0.73, and

18 20 22 24 26 28 30 32
0

10

20

30

40

50

60

N

S 2
n [

M
eV

]

Ar

K

Ca
Sc

Ti

FIG. 4. (Color online) Two-neutron separation energies, S2n , along
Ar, K, Ca, Sc and Ti isotopic chains. The experimental values (solid
symbols) [28–30] are compared to second order Gorkov calculations
with the NN plus full 3NF (full lines). Values for K, Ca, Sc and Ti
are respectively shifted by +5 MeV, 10 MeV, 15 MeV and 20 MeV
for display purposes. Isolated open symbols are AME2012 extrapo-
lations of experimental data [28].

0.72 MeV/A, respectively. It can be conjectured that such a
behaviour correlates with a predicted saturation point of sym-
metric nuclear matter that is too bound and located at too
high density compared to the empirical point. Recent calcu-
lations of homogeneous nuclear matter based on chiral inter-
actions [2, 3] predict a saturation point in the vicinity of the
empirical point with an uncertainty that is compatible with
the misplacement suggested by our analysis. However, such
calculations use a di↵erent 3NF cuto↵ ⇤3N=500 MeV and dif-
ferent values of cD and cE . Additional SCGF calculations as
in Ref. [3] but with the same NN+3N chiral interactions used
here would help in confirming this conjecture.

The systematic of S2n obtained with the NN plus full 3NF is
displayed in Fig. 4 along Ar, K, Ca, Sc and Ti isotopic chains,
up to N=32. When the neutron chemical potential lies within
the pf shell, predicted S2n reproduce experiment to good ac-
curacy without adjusting any parameter beyond A = 4 data.
Still, the quality slightly deteriorates as the proton chemical
potential moves down into the sd shell, i.e. going from Ca to
K and Ar elements. The increasing underestimation of the S2n

is consistent with a too large gap between proton sd and pf ma-
jor shells that prevents quadrupole neutron-proton correlations
to switch on. The too large jump of the S2n between N=20
and N=22 is visible for all elements and becomes particularly
pronounced as one moves away from the proton magic 40Ca
nucleus where the experimental jump is progressively washed
out. At N=18, the situation deteriorates when going from 38Ca
to 41Sc and 42Ti (but not going to 37K and 36Ar), i.e. when the
proton chemical potential moves up into the pf shell. This is
again consistent with an exaggerated shell gap between sd pf
shells that prevents neutron-proton correlations to switch on

4

38 40 42 44 46 48 50 52
5

10

15

20

25

30

35

40
Experiment
NN + 3N (full)
NN + 3N (ind.)
SM (NN + 3N)
CC

ACa

S 2
n [

M
eV

]

FIG. 3. (Color online) Two-nucleon separation energies, S2n , of Ca
isotopes. Results for second order Gorkov calculation for are shown
for the induced (crosses) and full (open squares) Hamiltonians and
are compared to the experiment (full squares) [28–30]. Results from
shell model calculations with chiral 3NFs (full line) [8, 30] and cou-
pled cluster (dashed line) [14] are also shown.

significantly too large (small) for N  20 (N > 20). Including
chiral 3NFs correct this behaviour to a large extent and pre-
dict S2n close to the experiment for isotopes above 42Ca. Fig-
ure 3 also shows results for microscopic shell model [8, 30]
and coupled cluster [14] calculations above 41Ca and 49Ca,
respectively, which are based on similar chiral forces. Our
calculations confirm and extend these results within a full-
fledged ab-initio approach for the first time. The results are
quite remarkable, considering that NN+3N chiral interactions
have been fitted solely to few-body data up to A = 4.

The S2n jump between N=20 and N=22 is largely over-
estimated with the NN plus induced 3NFs, which confirms
the findings of Refs. [13, 31] based on the original NN in-
teraction. The experimental Z=20 magic gap across 48Ca is
�⇡(48Ca) ⌘ 2E

48Ca
0 � E

49Sc
0 � E

47K
0 = 6.2 MeV, whereas it was

found to be 10.5 MeV in Ref. [31]. The magic gap is some-
what larger in the present calculations, i.e. it is equal to
16.5 MeV with the NN plus induced 3NF and is reduced to
12.4 MeV including the full 3NF, which still overestimates
experiment by about 6 MeV.

Performing the integral in the Koltun sum rule (3) expresses
the binding energy as a weighted sum of one-nucleon re-
moval energies. The systematic overbinding observed in the
present results thus relates to a spectrum in the A-1 system
(not shown here) that is too spread out. This has already been
seen in Ref. [13] and is reflected in the excessive distance be-
tween major nuclear shells, or e↵ective single-particle ener-
gies (ESPE) [19, 32]. In turn, the overestimated N=20 magic
gap and the jump of the S2n between N=20 and N=22 relate
to the exaggerated energy separation between sd and pf ma-
jor shells generated by presently employed chiral interactions.
Eventually, a too dilute ESPE spectrum translates into under-
estimated radii.

Presently, ADC(3)-corrected energies with the NN plus full
3NF (Fig. 2) overbind 40Ca, 48Ca and 52Ca by 0.90, 0.73, and
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FIG. 4. (Color online) Two-neutron separation energies, S2n , along
Ar, K, Ca, Sc and Ti isotopic chains. The experimental values (solid
symbols) [28–30] are compared to second order Gorkov calculations
with the NN plus full 3NF (full lines). Values for K, Ca, Sc and Ti
are respectively shifted by +5 MeV, 10 MeV, 15 MeV and 20 MeV
for display purposes. Isolated open symbols are AME2012 extrapo-
lations of experimental data [28].

0.72 MeV/A, respectively. It can be conjectured that such a
behaviour correlates with a predicted saturation point of sym-
metric nuclear matter that is too bound and located at too
high density compared to the empirical point. Recent calcu-
lations of homogeneous nuclear matter based on chiral inter-
actions [2, 3] predict a saturation point in the vicinity of the
empirical point with an uncertainty that is compatible with
the misplacement suggested by our analysis. However, such
calculations use a di↵erent 3NF cuto↵ ⇤3N=500 MeV and dif-
ferent values of cD and cE . Additional SCGF calculations as
in Ref. [3] but with the same NN+3N chiral interactions used
here would help in confirming this conjecture.

The systematic of S2n obtained with the NN plus full 3NF is
displayed in Fig. 4 along Ar, K, Ca, Sc and Ti isotopic chains,
up to N=32. When the neutron chemical potential lies within
the pf shell, predicted S2n reproduce experiment to good ac-
curacy without adjusting any parameter beyond A = 4 data.
Still, the quality slightly deteriorates as the proton chemical
potential moves down into the sd shell, i.e. going from Ca to
K and Ar elements. The increasing underestimation of the S2n

is consistent with a too large gap between proton sd and pf ma-
jor shells that prevents quadrupole neutron-proton correlations
to switch on. The too large jump of the S2n between N=20
and N=22 is visible for all elements and becomes particularly
pronounced as one moves away from the proton magic 40Ca
nucleus where the experimental jump is progressively washed
out. At N=18, the situation deteriorates when going from 38Ca
to 41Sc and 42Ti (but not going to 37K and 36Ar), i.e. when the
proton chemical potential moves up into the pf shell. This is
again consistent with an exaggerated shell gap between sd pf
shells that prevents neutron-proton correlations to switch on

➟ S2n well reproduced with chiral NN + 3N interactions

➟ Microscopic calculations extended to the whole Ca chain

➟ Neighbouring Z=18-22 chains computed within the same GGF framework

➟ Overestimation of N=20 gap traced back to spectrum too spread out
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FIG. 3. (Color online) Two-nucleon separation energies, S2n , of Ca
isotopes. Results for second order Gorkov calculation for are shown
for the induced (crosses) and full (open squares) Hamiltonians and
are compared to the experiment (full squares) [28–30]. Results from
shell model calculations with chiral 3NFs (full line) [8, 30] and cou-
pled cluster (dashed line) [14] are also shown.

significantly too large (small) for N  20 (N > 20). Including
chiral 3NFs correct this behaviour to a large extent and pre-
dict S2n close to the experiment for isotopes above 42Ca. Fig-
ure 3 also shows results for microscopic shell model [8, 30]
and coupled cluster [14] calculations above 41Ca and 49Ca,
respectively, which are based on similar chiral forces. Our
calculations confirm and extend these results within a full-
fledged ab-initio approach for the first time. The results are
quite remarkable, considering that NN+3N chiral interactions
have been fitted solely to few-body data up to A = 4.

The S2n jump between N=20 and N=22 is largely over-
estimated with the NN plus induced 3NFs, which confirms
the findings of Refs. [13, 31] based on the original NN in-
teraction. The experimental Z=20 magic gap across 48Ca is
�⇡(48Ca) ⌘ 2E

48Ca
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49Sc
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47K
0 = 6.2 MeV, whereas it was

found to be 10.5 MeV in Ref. [31]. The magic gap is some-
what larger in the present calculations, i.e. it is equal to
16.5 MeV with the NN plus induced 3NF and is reduced to
12.4 MeV including the full 3NF, which still overestimates
experiment by about 6 MeV.

Performing the integral in the Koltun sum rule (3) expresses
the binding energy as a weighted sum of one-nucleon re-
moval energies. The systematic overbinding observed in the
present results thus relates to a spectrum in the A-1 system
(not shown here) that is too spread out. This has already been
seen in Ref. [13] and is reflected in the excessive distance be-
tween major nuclear shells, or e↵ective single-particle ener-
gies (ESPE) [19, 32]. In turn, the overestimated N=20 magic
gap and the jump of the S2n between N=20 and N=22 relate
to the exaggerated energy separation between sd and pf ma-
jor shells generated by presently employed chiral interactions.
Eventually, a too dilute ESPE spectrum translates into under-
estimated radii.

Presently, ADC(3)-corrected energies with the NN plus full
3NF (Fig. 2) overbind 40Ca, 48Ca and 52Ca by 0.90, 0.73, and
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FIG. 4. (Color online) Two-neutron separation energies, S2n , along
Ar, K, Ca, Sc and Ti isotopic chains. The experimental values (solid
symbols) [28–30] are compared to second order Gorkov calculations
with the NN plus full 3NF (full lines). Values for K, Ca, Sc and Ti
are respectively shifted by +5 MeV, 10 MeV, 15 MeV and 20 MeV
for display purposes. Isolated open symbols are AME2012 extrapo-
lations of experimental data [28].

0.72 MeV/A, respectively. It can be conjectured that such a
behaviour correlates with a predicted saturation point of sym-
metric nuclear matter that is too bound and located at too
high density compared to the empirical point. Recent calcu-
lations of homogeneous nuclear matter based on chiral inter-
actions [2, 3] predict a saturation point in the vicinity of the
empirical point with an uncertainty that is compatible with
the misplacement suggested by our analysis. However, such
calculations use a di↵erent 3NF cuto↵ ⇤3N=500 MeV and dif-
ferent values of cD and cE . Additional SCGF calculations as
in Ref. [3] but with the same NN+3N chiral interactions used
here would help in confirming this conjecture.

The systematic of S2n obtained with the NN plus full 3NF is
displayed in Fig. 4 along Ar, K, Ca, Sc and Ti isotopic chains,
up to N=32. When the neutron chemical potential lies within
the pf shell, predicted S2n reproduce experiment to good ac-
curacy without adjusting any parameter beyond A = 4 data.
Still, the quality slightly deteriorates as the proton chemical
potential moves down into the sd shell, i.e. going from Ca to
K and Ar elements. The increasing underestimation of the S2n

is consistent with a too large gap between proton sd and pf ma-
jor shells that prevents quadrupole neutron-proton correlations
to switch on. The too large jump of the S2n between N=20
and N=22 is visible for all elements and becomes particularly
pronounced as one moves away from the proton magic 40Ca
nucleus where the experimental jump is progressively washed
out. At N=18, the situation deteriorates when going from 38Ca
to 41Sc and 42Ti (but not going to 37K and 36Ar), i.e. when the
proton chemical potential moves up into the pf shell. This is
again consistent with an exaggerated shell gap between sd pf
shells that prevents neutron-proton correlations to switch on

➟ S2n well reproduced with chiral NN + 3N interactions

➟ Microscopic calculations extended to the whole Ca chain

➟ Neighbouring Z=18-22 chains computed within the same GGF framework

➟ Overestimation of N=20 gap traced back to spectrum too spread out

42Ar
pf
sd

protons neutrons



Two-neutron separation energies around Ca
4

38 40 42 44 46 48 50 52
5

10

15

20

25

30

35

40
Experiment
NN + 3N (full)
NN + 3N (ind.)
SM (NN + 3N)
CC

ACa

S 2
n [

M
eV

]

FIG. 3. (Color online) Two-nucleon separation energies, S2n , of Ca
isotopes. Results for second order Gorkov calculation for are shown
for the induced (crosses) and full (open squares) Hamiltonians and
are compared to the experiment (full squares) [28–30]. Results from
shell model calculations with chiral 3NFs (full line) [8, 30] and cou-
pled cluster (dashed line) [14] are also shown.

significantly too large (small) for N  20 (N > 20). Including
chiral 3NFs correct this behaviour to a large extent and pre-
dict S2n close to the experiment for isotopes above 42Ca. Fig-
ure 3 also shows results for microscopic shell model [8, 30]
and coupled cluster [14] calculations above 41Ca and 49Ca,
respectively, which are based on similar chiral forces. Our
calculations confirm and extend these results within a full-
fledged ab-initio approach for the first time. The results are
quite remarkable, considering that NN+3N chiral interactions
have been fitted solely to few-body data up to A = 4.

The S2n jump between N=20 and N=22 is largely over-
estimated with the NN plus induced 3NFs, which confirms
the findings of Refs. [13, 31] based on the original NN in-
teraction. The experimental Z=20 magic gap across 48Ca is
�⇡(48Ca) ⌘ 2E

48Ca
0 � E

49Sc
0 � E

47K
0 = 6.2 MeV, whereas it was

found to be 10.5 MeV in Ref. [31]. The magic gap is some-
what larger in the present calculations, i.e. it is equal to
16.5 MeV with the NN plus induced 3NF and is reduced to
12.4 MeV including the full 3NF, which still overestimates
experiment by about 6 MeV.

Performing the integral in the Koltun sum rule (3) expresses
the binding energy as a weighted sum of one-nucleon re-
moval energies. The systematic overbinding observed in the
present results thus relates to a spectrum in the A-1 system
(not shown here) that is too spread out. This has already been
seen in Ref. [13] and is reflected in the excessive distance be-
tween major nuclear shells, or e↵ective single-particle ener-
gies (ESPE) [19, 32]. In turn, the overestimated N=20 magic
gap and the jump of the S2n between N=20 and N=22 relate
to the exaggerated energy separation between sd and pf ma-
jor shells generated by presently employed chiral interactions.
Eventually, a too dilute ESPE spectrum translates into under-
estimated radii.

Presently, ADC(3)-corrected energies with the NN plus full
3NF (Fig. 2) overbind 40Ca, 48Ca and 52Ca by 0.90, 0.73, and
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FIG. 4. (Color online) Two-neutron separation energies, S2n , along
Ar, K, Ca, Sc and Ti isotopic chains. The experimental values (solid
symbols) [28–30] are compared to second order Gorkov calculations
with the NN plus full 3NF (full lines). Values for K, Ca, Sc and Ti
are respectively shifted by +5 MeV, 10 MeV, 15 MeV and 20 MeV
for display purposes. Isolated open symbols are AME2012 extrapo-
lations of experimental data [28].

0.72 MeV/A, respectively. It can be conjectured that such a
behaviour correlates with a predicted saturation point of sym-
metric nuclear matter that is too bound and located at too
high density compared to the empirical point. Recent calcu-
lations of homogeneous nuclear matter based on chiral inter-
actions [2, 3] predict a saturation point in the vicinity of the
empirical point with an uncertainty that is compatible with
the misplacement suggested by our analysis. However, such
calculations use a di↵erent 3NF cuto↵ ⇤3N=500 MeV and dif-
ferent values of cD and cE . Additional SCGF calculations as
in Ref. [3] but with the same NN+3N chiral interactions used
here would help in confirming this conjecture.

The systematic of S2n obtained with the NN plus full 3NF is
displayed in Fig. 4 along Ar, K, Ca, Sc and Ti isotopic chains,
up to N=32. When the neutron chemical potential lies within
the pf shell, predicted S2n reproduce experiment to good ac-
curacy without adjusting any parameter beyond A = 4 data.
Still, the quality slightly deteriorates as the proton chemical
potential moves down into the sd shell, i.e. going from Ca to
K and Ar elements. The increasing underestimation of the S2n

is consistent with a too large gap between proton sd and pf ma-
jor shells that prevents quadrupole neutron-proton correlations
to switch on. The too large jump of the S2n between N=20
and N=22 is visible for all elements and becomes particularly
pronounced as one moves away from the proton magic 40Ca
nucleus where the experimental jump is progressively washed
out. At N=18, the situation deteriorates when going from 38Ca
to 41Sc and 42Ti (but not going to 37K and 36Ar), i.e. when the
proton chemical potential moves up into the pf shell. This is
again consistent with an exaggerated shell gap between sd pf
shells that prevents neutron-proton correlations to switch on

➟ S2n well reproduced with chiral NN + 3N interactions

➟ Microscopic calculations extended to the whole Ca chain

➟ Neighbouring Z=18-22 chains computed within the same GGF framework

➟ Overestimation of N=20 gap traced back to spectrum too spread out
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FIG. 3. (Color online) Two-nucleon separation energies, S2n , of Ca
isotopes. Results for second order Gorkov calculation for are shown
for the induced (crosses) and full (open squares) Hamiltonians and
are compared to the experiment (full squares) [28–30]. Results from
shell model calculations with chiral 3NFs (full line) [8, 30] and cou-
pled cluster (dashed line) [14] are also shown.

significantly too large (small) for N  20 (N > 20). Including
chiral 3NFs correct this behaviour to a large extent and pre-
dict S2n close to the experiment for isotopes above 42Ca. Fig-
ure 3 also shows results for microscopic shell model [8, 30]
and coupled cluster [14] calculations above 41Ca and 49Ca,
respectively, which are based on similar chiral forces. Our
calculations confirm and extend these results within a full-
fledged ab-initio approach for the first time. The results are
quite remarkable, considering that NN+3N chiral interactions
have been fitted solely to few-body data up to A = 4.

The S2n jump between N=20 and N=22 is largely over-
estimated with the NN plus induced 3NFs, which confirms
the findings of Refs. [13, 31] based on the original NN in-
teraction. The experimental Z=20 magic gap across 48Ca is
�⇡(48Ca) ⌘ 2E

48Ca
0 � E

49Sc
0 � E

47K
0 = 6.2 MeV, whereas it was

found to be 10.5 MeV in Ref. [31]. The magic gap is some-
what larger in the present calculations, i.e. it is equal to
16.5 MeV with the NN plus induced 3NF and is reduced to
12.4 MeV including the full 3NF, which still overestimates
experiment by about 6 MeV.

Performing the integral in the Koltun sum rule (3) expresses
the binding energy as a weighted sum of one-nucleon re-
moval energies. The systematic overbinding observed in the
present results thus relates to a spectrum in the A-1 system
(not shown here) that is too spread out. This has already been
seen in Ref. [13] and is reflected in the excessive distance be-
tween major nuclear shells, or e↵ective single-particle ener-
gies (ESPE) [19, 32]. In turn, the overestimated N=20 magic
gap and the jump of the S2n between N=20 and N=22 relate
to the exaggerated energy separation between sd and pf ma-
jor shells generated by presently employed chiral interactions.
Eventually, a too dilute ESPE spectrum translates into under-
estimated radii.

Presently, ADC(3)-corrected energies with the NN plus full
3NF (Fig. 2) overbind 40Ca, 48Ca and 52Ca by 0.90, 0.73, and
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FIG. 4. (Color online) Two-neutron separation energies, S2n , along
Ar, K, Ca, Sc and Ti isotopic chains. The experimental values (solid
symbols) [28–30] are compared to second order Gorkov calculations
with the NN plus full 3NF (full lines). Values for K, Ca, Sc and Ti
are respectively shifted by +5 MeV, 10 MeV, 15 MeV and 20 MeV
for display purposes. Isolated open symbols are AME2012 extrapo-
lations of experimental data [28].

0.72 MeV/A, respectively. It can be conjectured that such a
behaviour correlates with a predicted saturation point of sym-
metric nuclear matter that is too bound and located at too
high density compared to the empirical point. Recent calcu-
lations of homogeneous nuclear matter based on chiral inter-
actions [2, 3] predict a saturation point in the vicinity of the
empirical point with an uncertainty that is compatible with
the misplacement suggested by our analysis. However, such
calculations use a di↵erent 3NF cuto↵ ⇤3N=500 MeV and dif-
ferent values of cD and cE . Additional SCGF calculations as
in Ref. [3] but with the same NN+3N chiral interactions used
here would help in confirming this conjecture.

The systematic of S2n obtained with the NN plus full 3NF is
displayed in Fig. 4 along Ar, K, Ca, Sc and Ti isotopic chains,
up to N=32. When the neutron chemical potential lies within
the pf shell, predicted S2n reproduce experiment to good ac-
curacy without adjusting any parameter beyond A = 4 data.
Still, the quality slightly deteriorates as the proton chemical
potential moves down into the sd shell, i.e. going from Ca to
K and Ar elements. The increasing underestimation of the S2n

is consistent with a too large gap between proton sd and pf ma-
jor shells that prevents quadrupole neutron-proton correlations
to switch on. The too large jump of the S2n between N=20
and N=22 is visible for all elements and becomes particularly
pronounced as one moves away from the proton magic 40Ca
nucleus where the experimental jump is progressively washed
out. At N=18, the situation deteriorates when going from 38Ca
to 41Sc and 42Ti (but not going to 37K and 36Ar), i.e. when the
proton chemical potential moves up into the pf shell. This is
again consistent with an exaggerated shell gap between sd pf
shells that prevents neutron-proton correlations to switch on

Extrapolation to infinite model space [Coon et al., Furnstahl et al.]
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agreement for the 3=2þ state in 51K is even better than
0:1 !N for all of them. The lowest positive parity states
(5=2þ, 7=2þ) appear around 2 MeV and have magnetic
moments that deviate significantly more from the experi-
mental values (Table II). Negative parity 3=2", 5=2",
7=2" states, due to a proton excited in the pf shell, all
have a magnetic moment that is larger than þ3:3 !N,
incompatible with the observed small value around
þ0:5 !N. All arguments together consistently confirm
that the ground-state spin-parity of 51K is 3=2þ. The mag-
netic moment of the 1=2þ ground state in 47K is also
reproduced very well, while the experimental moment of
the I ¼ 1=2þ ground state of 49K is somewhat overesti-
mated by all calculations, suggesting that some particular
mixing in the wave function is not well taken into account.
A simple two-level mixing calculation shows that 25%
mixing of a ½"d"1

3=2ð#fpÞ2þ'1=2þ allows us to reproduce

the ground-state spins observed 1=2þ moment [38].
By establishing the ground-state spins of 49K and 51K,

we have demonstrated that the gradual reduction of the
energy gap between the proton "2s1=2 " "1d3=2 orbits
reaches a minimum around N ¼ 29 and again increases
towards the more neutron rich isotopes. It is the first time
that such a ‘‘reinversion’’ of single-particle levels is
observed and it illustrates how the residual monopole
interaction dominates their evolution.

In Fig. 3 we compare the experimental 3=2þ and 1=2þ

levels to those calculated with the different shell-model
effective interactions. The SDPF-NR and SDPF-U inter-
actions show the best overall agreement, which is not
surprising because their monopole matrix elements were
tuned by fitting to experimental spectra, including that of
47K [14]. With the recently developed SDPF-MU interac-
tion [37] a reasonable agreement with the data is found,
considering that its cross-shell interaction is described
in a functional form using the simple tensor-subtracted
monopole evolution as described in Ref. [12], with only
six parameters.

In conclusion, the hyperfine structures of atomic 49;51K
isotopes were measured for the first time. The data

establish a ground-state spin I ¼ 1=2 for 49K and
I ¼ 3=2 for 51K. The magnetic moments !ð49KÞ ¼
þ1:3386ð8Þ½40'!N and !ð51KÞ ¼ þ0:5129ð22Þ½15'!N

reveal a mixed configuration for 49K and a rather pure
"1d"1

3=2 configuration for 51K. Comparison with shell-

model calculations shows good agreement for 51K, but
none of the interactions reproduce the low experimental
value of 49K. The best overall agreement with the ground-
state moment and energy levels in 49K is observed for the
SDPF-NR interaction, which predicts the highest mixing
with "1d3=2 components in its wave function. The experi-
mentally observed evolution of the 1=2þ and 3=2þ levels is
now established up to 51K. Different effective interactions
predict very different energy gaps between the 3=2þ and
the first exited 1=2þ level in 51K. Along with the current
results, spectroscopy of the excited states in 51K is required
to further improve the effective interactions in this region.
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Knockout & transfer experiments

tected in the High-Resolution Array (HiRA) [22] in coin-
cidence with the recoil residues detected in the S800 focal
plane [23]. An array of 16 HiRA telescopes [22] was
placed at 35 cm from the target where they subtended polar
angles of 6! " !lab " 45!. Each telescope contained
65 "m thick !E and 1500 "m thick E silicon strip de-
tectors, backed by 3.9 cm thick CsI(Tl) crystals. The strips
in these telescopes effectively subdivided each telescope
into 1024 pixels of 2 mm# 2 mm area. Detailed descrip-
tions of experimental setup can be found in Ref. [20].

Deuterons were identified in HiRAwith standard energy
loss techniques using the energy deposited in the!E and E
Silicon strip and CsI detectors. Reaction residues were
identified in the S800 spectrometer using the energy loss
and the time-of-flight (TOF) information of the focal plane
detectors [23]. Figures 1(a)–1(c) show the Q value spectra
for deuterons that stop in the thick Si detector for
pð34;36;46Ar; dÞ33;35;45Ar. The observed resolutions of 500,
470, and 410 keV FWHM for the transitions to the ground
states of 33;35;45Ar, respectively, agree with the expectation
from GEANT4 [24] simulations taking into account the finite
beam spot size, the energy resolution of the Si detectors,
energy loss, and angular straggling in the target.
Measurements using a 1:7 mg=cm2 carbon target reveal
that the background from reactions on carbon is negligible
when both deuteron and the heavy recoil are detected. The
absolute normalization of the cross section was achieved to
within 10% by directly counting the beam particles with a
microchannel plate detector [25] placed&10 cm upstream
of the target. This also provided the start TOF signal for
particles detected by the S800 spectrometer.

Figures 1(d)–1(f) show the differential cross sections for
the ground state transition of pð34Ar; dÞ33Ar,
pð36Ar; dÞ35Ar, and pð46Ar; dÞ45Ar, respectively. The solid
circles in the lower panels denote the data from present
measurements, and the open squares in Fig. 1(e) denote
previous 36Ar ðp; dÞ35Ar data in normal kinematics at
33:6 MeV=nucleon [21]. The agreement between the mea-
sured cross sections from the present work and Ref. [21]
for the first excited state is also very good [20]. For
pð46Ar; dÞ45Ar reaction, the ground state (f7=2) and the
first excited state (542 keV, p3=2) were not resolved for
center-of-mass angles larger than 8!. Fortunately, the l
values for the ground state (l ¼ 3) and first excited state
(l ¼ 1) are different, resulting in very different angular
distributions. Specifically, the angular distribution for the
excited state exhibits a deep minimum near !c:m: ¼

20!–27!, close to a factor of 100 smaller than that of
ground state; therefore, the cross sections for the ground
state could be unambiguously extracted [20].
The dashed curves in Figs. 1(d)–1(f) show the ADWA

calculations using the CH89 potential with the conven-
tional neutron bound-state Woods Saxon potential. The
solid lines in Figs. 1(d)–1(f) show the ADWA calculations
using the JLM microscopic potential and the bound-state
neutron potential, which have been constrained by Hartree-
Fock calculations. Both calculations reproduce the shape
of experimental angular distributions. Normalizing the
ADWA model calculations to the data results in the SF
values listed in Table I. Similar to previous analyses,
SFðJLMþ HFÞ values are about 30% smaller than the SF
(CH89) values. The ground state neutron SF’s for 34Ar and
36Ar were calculated in the sd-shell model space using
USDB effective interaction [26]. The ground state neutron
SF for 46Ar was calculated in the sd-pf model space using
the interaction of Nummela et al. [27].

TABLE I. Experimental and theoretical neutron spectroscopic factors (SF) and reduction factors (Rs) for ground state 34Ar, 36Ar and
46Ar.

(theo.) (expt.) (expt.)
Isotopes lj# Sn(MeV) !S (MeV) SF(LB-SM) SFðJLMþ HFÞ RsðJLMþ HFÞ SF(CH89) RsðCH89Þ

34Ar s1=2þ 17.07 12.41 1.31 0:85) 0:09 0:65) 0:07 1:10) 0:11 0:84) 0:08
36Ar d3=2þ 15.25 6.75 2.10 1:60) 0:16 0:76) 0:08 2:29) 0:23 1:09) 0:11
46Ar f7=2* 8.07 *10:03 5.16 3:93) 0:39 0:76) 0:08 5:29) 0:53 1:02) 0:10

FIG. 2 (color online). Reduction factors Rs ¼
SFðexptÞ=SFðLB-SMÞ as a function of the difference between
neutron and proton separation energies, !S. The solid and open
circles represent Rs deduced in JLMþ HF and CH89 approach
using the present transfer reaction data, respectively. The open
triangles denote the Rs from knockout reactions [11]. The
dashed line is the best fit of Rs of 32;34;46Ar from knockout
reactions. The use of different !S values from the present work
and knockout reactions in Ref. [11] is explained in Ref. [28].
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Sn (MeV) ΔS (MeV) SF

ΔS = Sn - Sp
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✪ Neutron removal from proton- and neutron-rich Ar isotopes @ NSCL



Knockout & transfer experiments

clei with 3 ! Z ! 28 [13,14]. For most excited states of
stable nuclei with 3 ! Z ! 24, the agreement is slightly
worse, but within 30% [14]. If one uses a different optical
model potential, developed by Jeukenne, Lejeune, and
Mahaux (JLM) [16] with conventional scale factors of
!V ¼ 1:0 and !W ¼ 0:8 for the real and imaginary parts,
and constrains the geometry of these potentials and that of
the transferred-neutron bound state by Hartee-Fock calcu-
lations [17], one observes an overall reduction #30% in
the measured ground state spectroscopic factors [18]. This
implies reduction factors Rs $ ðexperimentalSFÞ=ðLB'
SM SFÞ of 30% in the latter approach, similar to the
reductions in proton SF’s extracted from (e, e0p) measure-
ments [19].

Regardless of the choice of optical model potential or
the geometry of the mean-field potential for the transferred
neutron, systematic analyses of neutron transfer reactions
display no strong dependence of the reduction factor Rs on
the neutron-proton asymmetry of the nuclei [13,14,18].
However, systematic uncertainties inherent in comparing
SF’s from different experiments published over a period of
more than 40 years reduce the sensitivity of such studies.

The available transfer reaction data include very few
neutron-rich or neutron-deficient nuclei. To explore more

extreme asymmetries, we extracted the ground state neu-
tron SF’s for 34Ar and 46Ar from (p, d) reactions using
proton-rich 34Ar and neutron-rich 46Ar beams in inverse
kinematics. SF’s from knockout reactions on these nuclei
have been published, and a significant reduction of the
neutron SF for 34Ar has been reported [11]. The difference
between the neutron and proton separation energy (!S),
which characterizes the relative shift of neutron and proton
Fermi energies in these nuclei, is 12.41 and '10:03 MeV
for 34Ar and 46Ar, respectively. In previous studies of
transfer reactions, there were no nuclei with j!Sj (
7 MeV [13,18].
In the present experiments, the deuteron angular distri-

butions from pð34Ar; dÞ 33Ar and pð46Ar; dÞ45Ar transfer
reactions were measured using radioactive secondary
beams of 34Ar and 46Ar at 33 MeV=nucleon at the
National Superconducting Cyclotron Laboratory at
Michigan State University [20]. The pð36Ar; dÞ35Ar reac-
tion was also measured using a degraded 36Ar primary
beam at 33 MeV=nucleon to compare with data previously
measured in normal kinematics [21]. These beams were
transported and focused on polyethylene targets ðCH2Þn
targets with areal densities of 7:10 mg=cm2 for 34;36Ar
and 2:29 mg=cm2 for 46Ar reactions. Deuterons were de-

FIG. 1 (color online). Q-value spectrum [(a)–(c), top panels] and ground state deuteron angular distributions [(d)–(f), bottom panels]
of pð34;36;46Ar; dÞ33;35;46Ar. The open squares in panel (e) are data from previous normal kinematics experiments [21]. The solid and
dashed lines represent the calculations using JLMþ HF and CH89 approach, respectively.
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✪ Agreement between different many-body methods

✪ Gorkov-Green’s functions

Summary & outlook

➟ Model independent calculations challenge chiral interactions

➟ Novel path to extend first-principle calculations to open-shells

➟ GGF(2) provides good reproduction of S2n around Ca

➟ Separation spectra at a qualitative level

➟ Work in progress: GGF(3)
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FIG. 3. (Color online) Two-nucleon separation energies, S2n , of Ca
isotopes. Results for second order Gorkov calculation for are shown
for the induced (crosses) and full (open squares) Hamiltonians and
are compared to the experiment (full squares) [28–30]. Results from
shell model calculations with chiral 3NFs (full line) [8, 30] and cou-
pled cluster (dashed line) [14] are also shown.

significantly too large (small) for N  20 (N > 20). Including
chiral 3NFs correct this behaviour to a large extent and pre-
dict S2n close to the experiment for isotopes above 42Ca. Fig-
ure 3 also shows results for microscopic shell model [8, 30]
and coupled cluster [14] calculations above 41Ca and 49Ca,
respectively, which are based on similar chiral forces. Our
calculations confirm and extend these results within a full-
fledged ab-initio approach for the first time. The results are
quite remarkable, considering that NN+3N chiral interactions
have been fitted solely to few-body data up to A = 4.

The S2n jump between N=20 and N=22 is largely over-
estimated with the NN plus induced 3NFs, which confirms
the findings of Refs. [13, 31] based on the original NN in-
teraction. The experimental Z=20 magic gap across 48Ca is
�⇡(48Ca) ⌘ 2E

48Ca
0 � E

49Sc
0 � E

47K
0 = 6.2 MeV, whereas it was

found to be 10.5 MeV in Ref. [31]. The magic gap is some-
what larger in the present calculations, i.e. it is equal to
16.5 MeV with the NN plus induced 3NF and is reduced to
12.4 MeV including the full 3NF, which still overestimates
experiment by about 6 MeV.

Performing the integral in the Koltun sum rule (3) expresses
the binding energy as a weighted sum of one-nucleon re-
moval energies. The systematic overbinding observed in the
present results thus relates to a spectrum in the A-1 system
(not shown here) that is too spread out. This has already been
seen in Ref. [13] and is reflected in the excessive distance be-
tween major nuclear shells, or e↵ective single-particle ener-
gies (ESPE) [19, 32]. In turn, the overestimated N=20 magic
gap and the jump of the S2n between N=20 and N=22 relate
to the exaggerated energy separation between sd and pf ma-
jor shells generated by presently employed chiral interactions.
Eventually, a too dilute ESPE spectrum translates into under-
estimated radii.

Presently, ADC(3)-corrected energies with the NN plus full
3NF (Fig. 2) overbind 40Ca, 48Ca and 52Ca by 0.90, 0.73, and
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FIG. 4. (Color online) Two-neutron separation energies, S2n , along
Ar, K, Ca, Sc and Ti isotopic chains. The experimental values (solid
symbols) [28–30] are compared to second order Gorkov calculations
with the NN plus full 3NF (full lines). Values for K, Ca, Sc and Ti
are respectively shifted by +5 MeV, 10 MeV, 15 MeV and 20 MeV
for display purposes. Isolated open symbols are AME2012 extrapo-
lations of experimental data [28].

0.72 MeV/A, respectively. It can be conjectured that such a
behaviour correlates with a predicted saturation point of sym-
metric nuclear matter that is too bound and located at too
high density compared to the empirical point. Recent calcu-
lations of homogeneous nuclear matter based on chiral inter-
actions [2, 3] predict a saturation point in the vicinity of the
empirical point with an uncertainty that is compatible with
the misplacement suggested by our analysis. However, such
calculations use a di↵erent 3NF cuto↵ ⇤3N=500 MeV and dif-
ferent values of cD and cE . Additional SCGF calculations as
in Ref. [3] but with the same NN+3N chiral interactions used
here would help in confirming this conjecture.

The systematic of S2n obtained with the NN plus full 3NF is
displayed in Fig. 4 along Ar, K, Ca, Sc and Ti isotopic chains,
up to N=32. When the neutron chemical potential lies within
the pf shell, predicted S2n reproduce experiment to good ac-
curacy without adjusting any parameter beyond A = 4 data.
Still, the quality slightly deteriorates as the proton chemical
potential moves down into the sd shell, i.e. going from Ca to
K and Ar elements. The increasing underestimation of the S2n

is consistent with a too large gap between proton sd and pf ma-
jor shells that prevents quadrupole neutron-proton correlations
to switch on. The too large jump of the S2n between N=20
and N=22 is visible for all elements and becomes particularly
pronounced as one moves away from the proton magic 40Ca
nucleus where the experimental jump is progressively washed
out. At N=18, the situation deteriorates when going from 38Ca
to 41Sc and 42Ti (but not going to 37K and 36Ar), i.e. when the
proton chemical potential moves up into the pf shell. This is
again consistent with an exaggerated shell gap between sd pf
shells that prevents neutron-proton correlations to switch on
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1) Hamiltonian                             ✘

2) Many-body expansion         ✘/✔
3) Model space truncation         ✔
4) Numerical algorithms            ✔

✪ Estimation of theoretical errors in ab initio methods

⇐  GGF

18 20 22 24 26 28 30 32

-1260
-1240

-1220
-1200
-1180
-1160
-1140

Nmax=5
Nmax=7
Nmax=9
Nmax=11
Nmax=13E 

[M
eV

]

ħω [MeV]

74Ni
λ=2.0 fm-1

20 22 24 26 28 30
-1270
-1268
-1266
-1264

5 7 9 11 13

0

1

2

3

4

Nmax

lo
g 

(C
PU

 ti
m

e)
 [h

ou
rs

] Nl = 50
Nl = 100

Nl = 10

Scaling Convergence

Scaling, convergence & theoretical errors

✪ Scaling and convergence thoroughly assessed



Not only oxygen...
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FIG. 3. (Color online) Top. Evolution of single-particle energies for
neutron addition and removal around sub-shell closures of oxygen
isotopes. Bottom. Binding energies obtained from the Koltun SR and
the poles of propagator (1), compared to experiment (bars) [32, 33].
All points are corrected for the kinetic energy of the c.o.m. motion.
For all lines, red squares (blue dots) refer to induced (full) 3NFs.

the full Hamiltonian—is to raise this last orbit above the con-
tinuum threshold and confirms the increasing repulsive ef-
fects of the two-pion exchange Fujita-Miyazawa interaction
on this orbits, as the neutron sd shell is filled [34]. Instead,
the d5/2 quasiparticle states are lowered by about 1 MeV on
average, providing extra binding through the Koltun SR for-
mula (7). The consequences of this trends are demonstrated
by the calculated ground state energies shown in the bottom
panel: the induced hamiltonian systematically under binds the
whole isotopic chain, and confirms earlier predictions based
solely on the original 2N-N3LO interaction [35]. The dripline
is also erroneously placed at 28O because of the lack of re-
pulsion in the d3/2 orbit. On the other hand, contributions
from pre-existing 3NFs are substantial and increase with the
mass number up to 24O, when the unbound d3/2 orbit starts be-
ing filled. As a result, the full Hamiltonian nicely reproduces
both the experimental ground state energies and the observed
dripline at 24O [36]. Our result suggest a ground state reso-
nance for 28O unbound by 5.2 MeV with respect to 24O. How-
ever this estimate is likely to be affected the presence of the
continuum which is important for this nucleus but neglected
in the present work.
The same effects are demonstrated in Fig. 4 for the semi-

magic odd-even isotopes of nitrogen and fluorine. Induced
3NF forces consistently under bind these isotopes and even
predict a 27N close in energy to 23N. This is fully corrected by
full 3NFs that strongly binds 23N with respect to 27N, in accor-
dance with the experimentally observed dripline. The repul-
sive effects of filling the d3/2 is also observed in 29F. However,
the inclusion of an extra proton provides enough extra binding
to keep the latter isotope bound by about 700 keV with respect
to 25F, in much better agreement with the experimental value
of 1.47 MeV. The induced interaction alone would overesti-
mate this binding and pre-existing 3NFs are fundamental in
achieving the correct balancing between the attraction gener-
ated by the extra proton and the repulsion due to the filling of
the neutron sd shell.
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FIG. 4. (Color online) Binding energies of odd-even nitrogen and
fluorine isotopes calculated for induced (red squares) and full (green
dots) interactions. Experimental data are from [33].

In conclusion, we have considered the extension of the
SCGF method to include three-body hamiltonians. By prop-
erly defining system dependent effective one- and two-body
interactions that include the relevant contribution form 3NFs,
calculations can be performed with formalisms already ex-
isting for two-body Hamiltonians. This approach, however,
goes beyond usual truncations based on normal ordering of
the Hamiltonian and employs fully correlated densities instead
of unperturbed reference states. We applied this approach for
the first time to study SRG-evolved chiral 2N and 3N inter-
actions on the isotopic chains of nitrogen, oxygen and fluo-
rine. We find that chiral 3NF at N2LO are crucial in predicting
the binding energies of these isotopes and they reproduce the
correct behaviour at the neutron driplines for all three cases.
Within the estimated errors due to the many-body techniques
and the dependence on the SRG evolutions, we find a remark-
able agreement between our calculations and the experimental
energies along all three isotopic chains.
Recent results [11] clearly show that state of the art SCGF

methods can be straightforwardly extended to the correspond-
ing Gorkov formalism for open shells, which is now under-
way. This would not only allows direct calculations of semi-
magic even-even isotopes with analogous quality as above but
would also allow extracting a wealth of information on neigh-

✪ Consistent description of Z = 7, 8, 9 isotopic chains with GF method

➟ 3NF crucial for reproducing driplines

3BF beyond the EoS

Shear viscosity with CBF

Benhar & Valli, PRL 99, 232501 (2007)
Benhar & Carbone, arxiv:0912.0129

PNS dynamical evolution with BHF

Burgio et al., arxiv:1106.2736

• Many-body modelers are aiming at complete descriptions!
• Consistent description of transport coefficients
• Response of nuclear & neutron matter
• Transport coefficients & dynamical evolution of NS 27 / 30

Results

Three-body forces

! Realistic microscopic calculations cannot avoid the use of NNN forces

    ° Binding energies, saturation properties and radii

    ° Shell evolution

    ° Spin-orbit splitting

    ° Three-nucleon scattering
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FIG. 2: Single-particle energies of the neutron d5/2, s1/2 and
d3/2 orbitals measured from the energy of 16O as a function of
neutron number N . (a) SPE calculated from a G matrix and
from low-momentum interactions Vlow k. (b) SPE obtained
from the phenomenological forces SDPF-M [14] and USD-
B [15]. (c,d) SPE including contributions from 3N forces due
to∆ excitations and chiral EFT 3N interactions at N2LO [26].
The changes due to 3N forces based on ∆ excitations are
highlighted by the shaded areas.

sures N = 8, 14, 16, and 20. The evolution of the SPE
is due to interactions as neutrons are added. For the
SPE based on NN forces in Fig. 2 (a), the d3/2 orbital
decreases rapidly as neutrons occupy the d5/2 orbital,
and remains well-bound from N = 14 on. This leads
to bound oxygen isotopes out to N = 20 and puts the
neutron drip-line incorrectly at 28O. This result appears
to depend only weakly on the renormalization method
or the NN interaction used. We demonstrate this by
showing SPE calculated in the G matrix formalism [11],
which sums particle-particle ladders, and based on low-
momentum interactions Vlow k [12] obtained from chiral
NN interactions at next-to-next-to-next-to-leading order
(N3LO) [13] using the renormalization group. Both cal-
culations include core polarization effects perturbatively
(including diagram Fig. 3 (d) with the ∆ replaced by a
nucleon and all other second-order diagrams) and start
from empirical SPE [14] in 17O. The empirical SPEs con-
tain effects from the core and its excitations, including
effects due to 3N forces.
We next show in Fig. 2 (b) the SPE obtained from the

phenomenological forces SDPF-M [14] and USD-B [15]
that have been fit to reproduce experimental binding en-

ergies and spectra. This shows a striking difference com-
pared to Fig. 2 (a): As neutrons occupy the d5/2 orbital,
with N evolving from 8 to 14, the d3/2 orbital remains
almost at the same energy and is not well-bound out to
N = 20. The dominant differences between Figs. 2 (a)
and (b) can be traced to the two-body monopole compo-
nents, which determine the average interaction between
two orbitals. The monopole components of a general two-
body interaction V are given by an angular average over
all possible orientations of the two nucleons in orbitals lj
and l′j′ [16],

V mono
j,j′ =

∑

m,m′

〈jm j′m′|V |jm j′m′〉
/

∑

m,m′

1 , (1)

where the sum over magnetic quantum numbers m and
m′ can be restricted by antisymmetry (see [17, 18] for
details). The SPE of the orbital j is effectively shifted by
V mono
j,j′ multiplied by the occupation number of the orbital

j′. This leads to the change in the SPE and determines
shell structure and the location of the drip-line [17–20].
The comparison of Figs. 2 (a) and (b) suggests that the

monopole interaction between the d3/2 and d5/2 orbitals
obtained from NN theories is too attractive, and that the
oxygen anomaly can be solved by additional repulsive
contributions to the two-neutron monopole components,
which approximately cancel the average NN attraction
on the d3/2 orbital. With extensive studies based on NN
forces, it is unlikely that such a distinct property would
have been missed, and it has been argued that 3N forces
may be important for the monopole components [21].
Next, we show that 3N forces among two valence neu-

trons and one nucleon in the 16O core give rise to repul-
sive monopole interactions between the valence neutrons.
While the contributions of the FM 3N force to other
quantities can be different, the shell-model configurations
composed of valence neutrons probe the long-range parts
of 3N forces. The repulsive nature of this 3N mechanism
can be understood based on the Pauli exclusion princi-
ple. Figure 3 (a) depicts the leading contribution to NN
forces due to the excitation of a ∆, induced by the ex-
change of pions with another nucleon. Because this is
a second-order perturbation, its contribution to the en-
ergy and to the two-neutron monopole components has
to be attractive. This is part of the attractive d3/2-d5/2
monopole component obtained from NN forces.
In nuclei, the process of Fig. 3 (a) leads to a change of

the SPE of the j,m orbital due to the excitation of a core
nucleon to a ∆, as illustrated in Fig. 3 (b) where the ini-
tial valence neutron is virtually excited to another j′,m′

orbital. As discussed, this lowers the energy of the j,m
orbital and thus increases its binding. However, in nuclei
this process is forbidden by the Pauli exclusion princi-
ple, if another neutron occupies the same orbital j′,m′,
as shown in Fig. 3 (c). The corresponding contribution
must then be subtracted from the SPE change due to
Fig. 3 (b). This is taken into account by the inclusion

[Otsuka et al. 2010]
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Single-nucleon transfer in the oxygen chain

fair agreement obtained for the calculation of the 16O rms
radii performed with the SLy4 interaction [31] compared to
the values deduced from 16Oðe; e0pÞ15Ngs and 15N3=2#
analyses [5], both states with large SFs. We thus adopted
the HFB radii calculated for the 0p wave functions for 14O
and 18O and deduced the corresponding values of r0. The
same calculation was done with other Skyrme interactions,
always in fair agreement with the 16Oðe; e0pÞ results, from
which we deduced a variance for r0.

The calculated angular distributions were normalized to
the data by a factor C2Sexp, which defines a so-called
experimental SF. C2Sexp are mainly sensitive to the most
forward angles, and so little sensitive to the details of the
nuclear potentials. C2Sexp strongly depend on radii with
!SF=SF $ 6!rrms=rrms in the 14Oðd; tÞ analysis.

We first reanalyzed published data for single nucleon
pickup reactions at about the same incident energy in direct
kinematics [19–21] on 16O and 18O targets. The angular
distributions were well reproduced in all cases by CRC
calculations. For 16Oðd; 3HeÞ at 14 and 26 MeV=nucleon,
we obtained same C2Sexp, which confirms the energy in-
dependence of the analysis. For the 14O (d, 3He) and
14O (d; t) transfers, the shape of the angular distributions

is nicely reproduced (Fig. 2) by the CRC calculations
assuming a !l ¼ 1 transferred angular momentum, as
expected from the transfer of a 0p nucleon.
In the second approach, we employed ab initio SFs and

OFs obtained from the single-particle Green’s function in
the third order algebraic diagrammatic construction
method [ADC(3)] [14,32]. Calculations were based on
chiral two-body next-to-next-to-next-to leading order
(N3LO) [33] plus three-body next-to-next-to leading order
(N2LO) [34] interactions evolved to a cutoff ! ¼
1:88 fm#1, as introduced in Ref. [35]. All microscopic
OFs were further rescaled in coordinate space by the
same factor (i.e., introducing only one phenomenological
correction) to account for differences of predicted [30] and
experimental rms radius of 16O. The OFs corresponding to
the removal of main peaks at large and small nucleon
separation energies are shown in Figs. 3(a) and 3(b),
respectively, and compared to the Wood-Saxon prescrip-
tion. We note very little radial difference in the removal of
the strongly bound neutron in 14O.
We give in Table I the normalizations C2Sexp for the two

kinds of OFs. From theoretical SFs inputs, either micro-
scopic ab initio SFs [30] or shell-model SFs, we obtain a
theoretical value "thð#Þ and the reduction factor Rs ¼
"expð#Þ="thð#Þ. For shell-model SFs, we performed two
calculations with different valence space and interaction:
(i) in the 0pþ 2@! valence space with Oxbash [36] and
the WBT interaction [37] shown in Table I (here the active
orbitals are 0p3=2 and 0p1=2 and only 2p2h excitations
toward the sd orbitals are allowed), and (ii) in the
0p1s0d valence space with Nushellx [38] and a new inter-
action [39]. With the WBT interaction, we find good
agreement for the energies of the listed states, while with
the new interaction the energies of excited states in 13N and
15N disagree by several MeV. Finally, we show the reduc-
tion factor Rs, also plotted in Figs. 4(a) and 4(b), for WS
and microscopic OFs, respectively. In the total uncertainty,
we set apart in a box the uncertainties originating from the
analysis: (i) imperfect knowledge of entrance and exit
potentials, and (ii) the variance in the calculation of rms
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FIG. 3 (color online). Radial dependence of (a), (b) the OFs for
WS and microscopic (SCGF) [30] form factors normalized to 1;
(c), (d) the OF difference $ (SCGF#WS).

TABLE I. The normalization C2Sexp for two OFs, phenomenological (WS) and microscopic (SCGF) [30]. For the WS OF, the
r0 values were chosen to reproduce RHFB

rms , except for
16O for which Rrms was taken from (e, e0p) data (see text). The SFs C2Sth are

obtained from shell-model calculations with the WBT interaction. In the second part, the analysis was performed with microscopic
OFs and SFs. The two errors for C2Sexp and Rs are the experimental and analysis errors.

RHFB
rms r0 C2Sexp C2Sth Rs C2Sexp C2Sth Rs

Reaction E' (MeV) J% (fm) (fm) (WS) 0pþ 2@! (WS) (SCGF) (SCGF) (SCGF)

14O (d, t) 13O 0.00 3=2# 2.69 1.40 1.69 (17)(20) 3.15 0.54(5)(6) 1.89(19)(22) 3.17 0.60(6)(7)
14O (d, 3He) 13N 0.00 1=2# 3.03 1.23 1.14(16)(15) 1.55 0.73(10)(10) 1.58(22)(2) 1.58 1.00(14)(1)

3.50 3=2# 2.77 1.12 0.94(19)(7) 1.90 0.49(10)(4) 1.00(20)(1) 1.90 0.53(10)(1)
16O (d, t) 15O 0.00 1=2# 2.91 1.46 0.91(9)(8) 1.54 0.59(6)(5) 0.96(10)(7) 1.73 0.55(6)(4)
16O (d, 3He) 15N [19,20] 0.00 1=2# 2.95 1.46 0.93(9)(9) 1.54 0.60(6)(6) 1.25(12)(5) 1.74 0.72(7)(3)

6.32 3=2# 2.80 1.31 1.83(18)(24) 3.07 0.60(6)(8) 2.24(22)(10) 3.45 0.65(6)(3)
18O (d, 3He) 17N [21] 0.00 1=2# 2.91 1.46 0.92(9)(12) 1.58 0.58(6)(10)
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radii (and consequently of r0) due to different Skyrme
interactions, provided the rms radii of 15N extracted from
(e, e0p) [5] are reproduced. All the other experimental
uncertainties are accounted for by the error bars displayed
on Fig. 4. A rather flat trend is found without the need
for the large asymmetry dependence suggested by inter-
mediate energy knockout data analyzed with the eikonal
formalism [10]. For a quantitative evaluation, we fitted
the reduction factor with a linear dependence Rs¼
!"!Sþ". We obtained mean values for ! and " with
associated errors from a minimization over the 48 data sets,
considering (i) eight combinations of optical potentials for
the entrance and exit channels, (ii) three Skyrme interac-
tions to calculate the rms radii, and (iii) the two above-
mentioned shell-model calculations.

For the WS OF, the reduction factor Rs ¼ 0:538ð28Þð18Þ
(for !S ¼ 0 nuclei) is in agreement with Ref. [9] and the
slope parameter ! ¼ 0:0004ð24Þð12Þ MeV&1, therefore
consistent with zero. The first standard error obtained
over one data set depends on the experimental uncertain-
ties; the second one comes from the distribution over the 48
data sets. Within the error bars, the data do not contradict
the weak dependence found by ab initio calculations, with
!0 ¼ &0:0039 MeV&1 between the two 14O points in
Ref. [7], although the calculated !S is much reduced
compared to the experimental value.

Despite different OFs and SFs, the analysis
performed with the ab initio OF [30] provides very
similar results with Rsð!S¼0Þ¼0:636ð34Þð42Þ and !¼
&0:0042ð28Þð36ÞMeV&1, with calculated !S¼17:6MeV
[Fig. 4(b)].
In summary, we measured exclusive differential cross

sections at 18 MeV=nucleon for the 14Oðd; tÞ13O and
14Oðd; 3HeÞ13N transfer reactions and elastic scattering.
WS OFs with a constraint on HF radii and microscopic
OFs (obtained from SCFG theory) have been compared for
the first time for symmetric and very asymmetric nuclei
and gave similar results. We extracted the reduction factors
Rs over a high asymmetry range, !S ¼ '18:5 MeV, for
oxygen isotopes. From the good agreement between the
CRC calculations and the set of transfer data highlighted in
our work, the asymmetry dependence is found to be non-
existent (or weak), within the error bars. This result is in
agreement with ab initio Green’s function and coupled-
cluster calculations [7,14], but contradicts the trend
observed in nucleon knockout data obtained at incident
energies below 100 MeV=nucleon and analyzed with the
sudden-eikonal formalism. The disagreement of the two
systematic trends from knockout and transfer calls for a
better description of so-called direct reaction mechanisms
in order that a consistent picture of nuclear structure
emerges from measurements at different incident energies.
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fair agreement obtained for the calculation of the 16O rms
radii performed with the SLy4 interaction [31] compared to
the values deduced from 16Oðe; e0pÞ15Ngs and 15N3=2#
analyses [5], both states with large SFs. We thus adopted
the HFB radii calculated for the 0p wave functions for 14O
and 18O and deduced the corresponding values of r0. The
same calculation was done with other Skyrme interactions,
always in fair agreement with the 16Oðe; e0pÞ results, from
which we deduced a variance for r0.

The calculated angular distributions were normalized to
the data by a factor C2Sexp, which defines a so-called
experimental SF. C2Sexp are mainly sensitive to the most
forward angles, and so little sensitive to the details of the
nuclear potentials. C2Sexp strongly depend on radii with
!SF=SF $ 6!rrms=rrms in the 14Oðd; tÞ analysis.

We first reanalyzed published data for single nucleon
pickup reactions at about the same incident energy in direct
kinematics [19–21] on 16O and 18O targets. The angular
distributions were well reproduced in all cases by CRC
calculations. For 16Oðd; 3HeÞ at 14 and 26 MeV=nucleon,
we obtained same C2Sexp, which confirms the energy in-
dependence of the analysis. For the 14O (d, 3He) and
14O (d; t) transfers, the shape of the angular distributions

is nicely reproduced (Fig. 2) by the CRC calculations
assuming a !l ¼ 1 transferred angular momentum, as
expected from the transfer of a 0p nucleon.
In the second approach, we employed ab initio SFs and

OFs obtained from the single-particle Green’s function in
the third order algebraic diagrammatic construction
method [ADC(3)] [14,32]. Calculations were based on
chiral two-body next-to-next-to-next-to leading order
(N3LO) [33] plus three-body next-to-next-to leading order
(N2LO) [34] interactions evolved to a cutoff ! ¼
1:88 fm#1, as introduced in Ref. [35]. All microscopic
OFs were further rescaled in coordinate space by the
same factor (i.e., introducing only one phenomenological
correction) to account for differences of predicted [30] and
experimental rms radius of 16O. The OFs corresponding to
the removal of main peaks at large and small nucleon
separation energies are shown in Figs. 3(a) and 3(b),
respectively, and compared to the Wood-Saxon prescrip-
tion. We note very little radial difference in the removal of
the strongly bound neutron in 14O.
We give in Table I the normalizations C2Sexp for the two

kinds of OFs. From theoretical SFs inputs, either micro-
scopic ab initio SFs [30] or shell-model SFs, we obtain a
theoretical value "thð#Þ and the reduction factor Rs ¼
"expð#Þ="thð#Þ. For shell-model SFs, we performed two
calculations with different valence space and interaction:
(i) in the 0pþ 2@! valence space with Oxbash [36] and
the WBT interaction [37] shown in Table I (here the active
orbitals are 0p3=2 and 0p1=2 and only 2p2h excitations
toward the sd orbitals are allowed), and (ii) in the
0p1s0d valence space with Nushellx [38] and a new inter-
action [39]. With the WBT interaction, we find good
agreement for the energies of the listed states, while with
the new interaction the energies of excited states in 13N and
15N disagree by several MeV. Finally, we show the reduc-
tion factor Rs, also plotted in Figs. 4(a) and 4(b), for WS
and microscopic OFs, respectively. In the total uncertainty,
we set apart in a box the uncertainties originating from the
analysis: (i) imperfect knowledge of entrance and exit
potentials, and (ii) the variance in the calculation of rms
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FIG. 3 (color online). Radial dependence of (a), (b) the OFs for
WS and microscopic (SCGF) [30] form factors normalized to 1;
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TABLE I. The normalization C2Sexp for two OFs, phenomenological (WS) and microscopic (SCGF) [30]. For the WS OF, the
r0 values were chosen to reproduce RHFB

rms , except for
16O for which Rrms was taken from (e, e0p) data (see text). The SFs C2Sth are

obtained from shell-model calculations with the WBT interaction. In the second part, the analysis was performed with microscopic
OFs and SFs. The two errors for C2Sexp and Rs are the experimental and analysis errors.

RHFB
rms r0 C2Sexp C2Sth Rs C2Sexp C2Sth Rs

Reaction E' (MeV) J% (fm) (fm) (WS) 0pþ 2@! (WS) (SCGF) (SCGF) (SCGF)

14O (d, t) 13O 0.00 3=2# 2.69 1.40 1.69 (17)(20) 3.15 0.54(5)(6) 1.89(19)(22) 3.17 0.60(6)(7)
14O (d, 3He) 13N 0.00 1=2# 3.03 1.23 1.14(16)(15) 1.55 0.73(10)(10) 1.58(22)(2) 1.58 1.00(14)(1)

3.50 3=2# 2.77 1.12 0.94(19)(7) 1.90 0.49(10)(4) 1.00(20)(1) 1.90 0.53(10)(1)
16O (d, t) 15O 0.00 1=2# 2.91 1.46 0.91(9)(8) 1.54 0.59(6)(5) 0.96(10)(7) 1.73 0.55(6)(4)
16O (d, 3He) 15N [19,20] 0.00 1=2# 2.95 1.46 0.93(9)(9) 1.54 0.60(6)(6) 1.25(12)(5) 1.74 0.72(7)(3)

6.32 3=2# 2.80 1.31 1.83(18)(24) 3.07 0.60(6)(8) 2.24(22)(10) 3.45 0.65(6)(3)
18O (d, 3He) 17N [21] 0.00 1=2# 2.91 1.46 0.92(9)(12) 1.58 0.58(6)(10)
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✪ Analysis of 14O(d, t) 13O and 14O(d, 3He) 13N transfer reactions @ SPIRAL

➟ Overlaps functions and cross sections from GF
➟ Rs independent of asymmetry


