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Deuteron-nucleus reaction: motivations

(d,p) reaction in 
inverse kinematics

Availability of exotic nuclei beams in RIB 
facilities:

– Structure of exotic nuclei (ex. 11Be(d,p)12Be at 
ISAC - TRIUMF)

–   Nucleosynthesis and nuclear fusion 
applications (ex. 3H(d,n)4He reaction)

–   Surrogate for (p/n) capture reactions 
(14C(d,p)15C as surrogate of 14C(n, gamma)15C)

Benchmark for ab initio theory:  

➢ Microscopic Hamiltonian (test for chiral effective nuclear forces) 
➢ Comparison with different approaches as DWBA, CDCC, etc 



ab initio description of nuclear reactions  
● Inter-nucleon realistic force:

– SRG-evolved chiral NN potential 

– Chiral and SRG-induced NNN forces not included yet 

● Detailed nuclear structure description (all nucleons in the system 
are active degrees of freedom):

– Nuclear target wavefunction obtained within ab initio method

– Expansion in A-body harmonic oscillator basis

– Pauli principle and translational invariance preserved

● Full antisymmetrization of the total wavefunction 



● Ansatz for the wavefunction:

● (A-2,2) binary cluster:

● Uncoupled SD channel states:

No Core Shell Model with Resonating 
group method (NCSM-RGM formalism)

'Target' nucleus Deuteron



● Many-body Schrödinger equation:

● Potential part of the Hamiltonian kernel:

NCSM-RGM Formalism II

Hamiltonian kernel Norm kernel

1-body and 2-body partition intercluster antisymmetrizers enforce
Pauli principle via permutation operators



 Three-body density Hamiltonian kernel

 

●Number of three-body density matrix elements increases fast with 
basis size (separated calculations of them is not efficient)
●Optimized numerical algorithm: On-fly calculation of the needed 
three-body matrix elements for a given target nucleus (see 
Langhammer talk)

Three-body density matrix Two-body potential



 Coupling Hamiltonian kernel

 

(A-2,2) mass partition in the entrance channel
(A-1,1) mass partition in the exit channel

●Inclusion of coupling kernel describing the dominant 
channel in a (d,p/n) transfer reaction  

“Not-diagonal” density matrix Two-body potential



Benchmark and tests

● Benchmark of the new implementation with previous 
calculation on A=5,6 system

– Diagonal kernels tested in (d,4He) channel

– Coupling kernels under test in 3He(d,p)4He reaction
● Next step: study of the transfer reaction for p-shell target 

nuclei (12C(d,p)13C, 7Li(d,p)8Li)    

P. Navrátil, S. Quaglioni 
PRL 108, 042503 (2012)

Parallel projects:
● Explicit treatment of deuteron 

breakup (three-cluster formalism)
● Inclusion of the NCSMC coupling
● Inclusion of the NNN forces
 



Conclusions & Perspectives

Extension of the capabilities of the NCSM-RGM for 
deuteron-projectile reaction:
●Inclusion of the coupling channel in the description of transfer 
reactions with deuteron projectile
●Implement the capability of calculation of scattering observables 
for p-shell nuclei (under test)

Possible perspectives:
●Extend the applications of the novel computational algorithm to  
other Hamiltonian kernels for heavier clusters
●Inclusion of NNN force
●Explicit treatment of three-body breakup



Nuclear Energy Density Functional

● EDF depends on the matter distribution of the nucleus
● Powerful tool in reproducing GS properties of the nuclear systems
● The existence of the EDF is predicted by a theorem (Hohenberg-Kohn theorem)

 but we do not know the exact form of it
● EDF is the only low-energy theory that can be applied across

the entire table of nuclei
● Ground-state energy obtained through variational principle

Phenomenological nuclear EDF

● Only nucleonic degrees of freedom are explicitly included
● The connection to the strong interaction is limited to the role of symmetries

 in building the relevant terms of the EDF
● Coupling constants are fitted to the experimental data



Skyrme force at higher order

● Bilinear terms composed by local densities (equipped with coupling constants)
● Order of each term given by the number of derivatives (up to NLO)

Skyrme force as generator of quasi-local nuclear EDF

● Expansion in relative momenta of a finite-range interaction (low-momentum range)
● Consistent with the symmetries of the nucleon-nucleon interaction
● Contact force (easier calculation) fitted to experimental data

Skyrme force as generator of quasi-local nuclear EDF

The two-body term of the Skyrme interaction 



Extended Skyrme interaction: 
higher-order pseudopotential

 strength parameter corresponding to the 
term of the pseudopotential

● Locality and zero-range character ensured by the Dirac delta function
● Exchange term explicitely embedded in the pseudopotential
● Terms up to next-to-next-to-next-to-leading order (N3LO)
●  (Skyrme interaction corresponds to a NLO expansion)



Derivation of EDF from the 
pseudopotential

The EDF is obtained by averaging the pseudopotential over the Slater determinant

Main results:

● Reduction of the free coupling constants of the functional 
(useful in view of the optimization procedure)

● Solution of the self-interaction problem for the functional
● Link between the validity of continuity equation 

and the gauge invariance of the functional



Regularized pseudopotential

The expansion scale a is introduced

Local central two-body regularized pseudopotential

Skyrme-like
interaction

Gogny-like
interaction

Central two-body regularized pseudopotential



Self-consistent mean field calculation

Eight doubly magic nuclei: 16O, 40Ca, 48Ca, 56Ni, 78Ni, 100Sn, 132Sn and 208Pb

Deviations of binding energies and radii relative to Gogny interaction results

● Convergence very rapid: decreasing by about a factor of four at each order
● Deviations below 1% at N3LO



Independence of the regularization scale

Deviations of binding energies and radii relative to 208Pb

● The flatness of lines shows a good degree of independence 
of the regularization scale



Convergence of the expansion (208Pb)

● At N2LO the independence 
    with respect to the scale is reached
● At N3LO the convergence of the energy

 and radius are reached

Same properties of convergence
and independence from scale for
all nuclei calculated



 
Higher-order finite-range pseudopotential

 strength parameter corresponding to the 
term of the pseudopotential

● 100 terms up to N3LO of central, spin-orbit, tensor parts of the pseudopotential
● At second order, 14 pseudopotential terms derived in both cartesian and 

spherical tensor formalism
● 1272 (for each isospin channel...) terms of the  N3LO nonlocal EDF 

derived from the finite-range pseudopotential
● At second order, 36 EDF terms derived in both cartesian and spherical 

tensor formalism



Conclusions & Perspectives

Study of both local and nonlocal higher-order EDFs:
● Relation of the functional to the N3LO pseudopotential and 
reduction of the free coupling constants of the functional (useful in 
view of the optimization procedure)
● Solution of the self-interaction problem for the functional
●Application of the effective-theory principles to low-energy
nuclear theory

● EOS in nuclear matter with preliminary parametrization
(not covered in this talk)

Perspectives:
●Fitting of the higher-order EDFs
●Inclusion of finite-range NNN (at LO) phenomenological 
pseudopotential
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