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Deuteron-nucleus reaction: motivations

i Availability of exotic nuclei beams in RIB
— facilities:

- Structure of exotic nuclei (ex. "'Be(d,p)'*Be at
ISAC - TRIUMF)

- Nucleosynthesis and nuclear fusion
applications (ex. ®*H(d,n)*He reaction)

(d,p) reaction in
inverse kinematics

Surrogate for (p/n) capture reactions
g
(**¢(d,p)'°C as surrogate of C(n, gamma)'C)

Benchmark for ab initio theory:
> Microscopic Hamiltonian (test for chiral effective nuclear forces)

> Comparison with different approaches as DWBA, CDCC, etc
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ab initio description of nuclear reactions

* |nter-nucleon realistic force:

-  SRG-evolved chiral NN potential
- Chiral and SRG-induced NNN forces not included yet

* Detailed nuclear structure description (all nucleons in the system
are active degrees of freedom):

- Nuclear target wavefunction obtained within ab initio method

HA 20 (r1, 7, oy 7 a—2) = EA7200(r1, 12, 00y T 42)

- Expansion in A-body harmonic oscillator basis

- Pauli principle and translational invariance preserved

* Full antisymmetrization of the total wavefunction

Aa,ﬁ% (7’1, T2y ey TA—2)¢[3 (TA—1, TA)
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No Core Shell Model with Resonating

group method (NCSM-RGM formalism)

 Ansatz for the wavefunction:
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* (A-2,2) binary cluster: ¥
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|A—2 ()41[1M1T1MT1>SD

. 1 , 1
Nalajamm;, 5 Mt nylyJem, 5t

~ T

' ' us
Target' nucle Deuteron



R TRIUMF

NCSM-RGM Formalism |l

* Many-body Schrodinger equation:

J°T
Z/dr r? {/Hi:TVT(T/,T) —EN,;]/ZT(T,,T)] 9 ) _ 0
’ =

T
J"T| 1 1 J'T T A A T
ozlanafer (o7 o
Hamiltonian kernel Norm kernel

* Potential part of the Hamiltonian kernel:

. 1/
Vj,VT(T’ NE ; <<DZ,;

A

A(A—l,l)v[l(A—Q,Q)Vrel T VrelA(A—l,l)A(A—Z,Q)

(DJWT>

1-body and 2-body partition intercluster antisymmetrizers enforce
Pauli principle via permutation operators
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Three-body density Hamiltonian kernel

JWT - A J7TT | (@)
<‘I)k;b | (VA,A—4PA—2,A_1PA_3, A) |q>kab > 8/'
f

dgA_4d:[Ldbdb/dﬁ;1_3dﬁ;x_4 | A-20)spa{Ba-4, @' Vi a-a|B4_4Bs_3)e

) <A—20/

Three-body density matrix Two-body potential

Number of three-body density matrix elements increases fast with
basis size (separated calculations of them is not efficient)
*Optimized numerical algorithm: On-fly calculation of the needed
three-body matrix elements for a given target nucleus (see
Langhammer talk)



R TRIUMF

Coupling Hamiltonian kernel

& T 2 J*T
3 (d=1) <®k, (VA—B,A—QPA—Q,A) ¢kab > [M

A—a)

/ d;A_gdzda&%_ﬂm_g ‘A—2&>8Da<ﬁA—37 GIWA—3,A—2WA—35/A—2>CL

“Not-diagonal” density matrix Two-body potential

(A-2,2) mass partition in the entrance channel
(A-1,1) mass partition in the exit channel

Inclusion of coupling kernel describing the dominant
channel in a (d,p/n) transfer reaction
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Benchmark and tests

P. Navratil, S. Quaglioni
PRL 108, 042503 (2012)

20

—
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T T

d+ He — p+4He

Parallel projects:
« Explicit treatment of deuteron

breakup (three-cluster formalism)
* Inclusion of the NCSMC coupling
 Inclusion of the NNN forces
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* Benchmark of the new implementation with previous
calculation on A=5,6 system

- Diagonal kernels tested in (d,*He) channel
- Coupling kernels under test in *He(d,p)*He reaction

* Next step: study of the transfer reaction for p-shell target
nuclei (*C(d,p)"™C, "Li(d,p)°Li)
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Conclusions & Perspectives

Extension of the capabilities of the NCSM-RGM for

deuteron-projectile reaction:

Inclusion of the coupling channel in the description of transfer
reactions with deuteron projectile

Implement the capability of calculation of scattering observables
for p-shell nuclei (under test)

Possible perspectives:
*Extend the applications of the novel computational algorithm to
other Hamiltonian kernels for heavier clusters
Inclusion of NNN force
*Explicit treatment of three-body breakup
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Nuclear Energy Density Functional

Blp(x)) = 5 [drr(e) + ™ [pf)] = A [dr p)

- 2m

« EDF depends on the matter distribution of the nucleus

« Powerful tool in reproducing GS properties of the nuclear systems

* The existence of the EDF is predicted by a theorem (Hohenberg-Kohn theorem)
but we do not know the exact form of it

 EDF is the only low-energy theory that can be applied across
the entire table of nuclei

» Ground-state energy obtained through variational principle

Egs =Min, E [p(r)
Phenomenological nuclear EDF

* Only nucleonic degrees of freedom are explicitly included

« The connection to the strong interaction is limited to the role of symmetries
in building the relevant terms of the EDF

« Coupling constants are fitted to the experimental data
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Skyrme force at higher order

Skyrme force as generator of quasi-local nuclear EDF
Elpe). ) o)+ = [de COplef+ C"plerte) + CPjef +

 Bilinear terms composed by local densities (equipped with coupling constants)
» Order of each term given by the number of derivatives (up to NLO)

The two-body term of the Skyrme interaction
t(k', k) = to(14+xo P7) 43, (142, P7) (k"2 4k?)
+ ty[142, (P"—3) ]k’ - k
+ 3T{o, - ko, - k—30, - 0,k*<-conj.]
+ 3U[0, - k'0, - k—30, - 0,k - k+conj.]
+ V[i(o,+0,) - k' XK],

« Expansion in relative momenta of a finite-range interaction (low-momentum range)
» Consistent with the symmetries of the nucleon-nucleon interaction
» Contact force (easier calculation) fitted to experimental data
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Extended Skyrme interaction:

higher-order pseudopotential

V _ Z Cﬁlil Vﬁlil

nINJ,'UmS ﬁf/,UlQS

ﬁg,m;s \> strength parameter corresponding to the
term of the pseudopotential

n n

ANTFT ]'"U v
Vitmas = 51 (G 1 K plsSupslo + (<1 K G 5 Sumas )
« (1 _ pMpapT) O12(rirh; rira)

Locality and zero-range character ensured by the Dirac delta function
Exchange term explicitely embedded in the pseudopotential

Terms up to next-to-next-to-next-to-leading order (N°LO)

(Skyrme interaction corresponds to a NLO expansion)



LI Derivation of EDF from the

pseudopotential

The EDF is obtained by averaging the pseudopotential over the Slater determinant
7' L ¢ fFL’ § :
<CnL ’0128 ’FLL ’0128 C T o / drH [p(r)]

Main results:

* Reduction of the free coupling constants of the functional
(useful in view of the optimization procedure)
« Solution of the self-interaction problem for the functional
e Link between the validity of continuity equation
and the gauge invariance of the functional
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Regularized pseudopotential

r2

w2 The expansion scale a is introduced

) = i lr) = iy

Central two-body regularized pseudopotential

4
V(ry,rhiry,m) = ZPzOz(ka KNo(ry —rq)o(rg — Tg)fa(ﬁ — o)

i

Skyrme-like
interaction

Gogny-like
interaction

Local central two-body regularized pseudopotential

nmax

V(r) Z k)ga(r) = ZP Z )A”ga(r)
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Self-consistent mean field calculation

Eight doubly magic nuclei: "°O, “°Ca, **Ca, *°Ni, ®Ni, '°Sn, **Sn and ***Pb
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Deviations of binding energies and radii relative to Gogny interaction results

« Convergence very rapid: decreasing by about a factor of four at each order
« Deviations below 1% at N°LO
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Independence of the regqularization scale
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* The flatness of lines shows a good degree of independence
of the regularization scale
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Convergence of the expansion (*°°Pb)
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« At N°LO the independence
with respect to the scale is reached

At N°LO the convergence of the energy
and radius are reached
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Higher—order finite-range pseudopotential

term of the pseudopotential

= 5K g K )sSaslo + (1) K] K s Sivosh)

(P) (1 PMP"PT>5( r1)3(ra—r2)ga(r)

« 100 terms up to N°LO of central, spin-orbit, tensor parts of the pseudopotential
» At second order, 14 pseudopotential terms derived in both cartesian and

spherical tensor formalism
« 1272 (for each isospin channel...) terms of the N°LO nonlocal EDF

derived from the finite-range pseudopotential
» At second order, 36 EDF terms derived in both cartesian and spherical

tensor formalism
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Conclusions & Perspectives

Study of both local and nonlocal higher-order EDFs:
* Relation of the functional to the N°LO pseudopotential and
reduction of the free coupling constants of the functional (useful in
view of the optimization procedure)
 Solution of the self-interaction problem for the functional
*Application of the effective-theory principles to low-energy
nuclear theory
* EOS in nuclear matter with preliminary parametrization
(not covered in this talk)

Perspectives:
*Fitting of the higher-order EDFs
Inclusion of finite-range NNN (at LO) phenomenological
pseudopotential
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