Core Excitations and Transfer Reactions in Exotic Nuclei

Grégory Potel Aguilar (MSU/LLNL)
Andrea Idini (Darmstadt)
Francisco Barranco Paulano (Universidad de Sevilla) Enrico Vigezzi (INFN Milano)
Ricardo A. Broglia (Università degli Studi di Milano/ Niels Bohr Institute Copenhagen)

TRIUMF, February 18th, 2014

Introduction and Outline

Study of the interplay between nuclear elementary modes of excitation (single-particle motion, surface vibrations and pairing modes), probed with transfer reactions.

Outline:

- Structure: nuclear elementary modes of excitation.
- Reaction formalism: two-particle transfer in 2-step DWBA.
- Two-particle transfer in stable nuclei: a probe of pairing correlations.
- Coupling of pairing modes with surface modes in exotic nuclei: some results and perspectives.

interweaving of elementary modes of excitation: NFT

- Reaction $A+a(\equiv b+2) \longrightarrow a+B(\equiv A+2)$.
- Measure of the pairing correlations between the transferred nucleons.
- Need to correctly account for the correlated wavefunction.

Pair transfer reaction mechanism: coherence length

Example: ${ }^{112} \mathrm{Sn}(\mathrm{p}, \mathrm{t})^{110} \mathrm{Sn}$ in 2-step DWBA

Probing pairing with $2-$ transfer: ${ }^{112} \mathrm{Sn}(\mathrm{p}, \mathrm{t})^{110} \mathrm{Sn}$

enhancement factor with respect to the transfer of uncorrelated neutrons:
$\varepsilon=20.6$

Experimental data and shell model wavefunction from Guazzoni et al. PRC 74054605 (2006)
experiment very well reproduced with mean field (BCS) wavefunctions

Differential cross section worked out
 making use of two different structure calculations:

- Skyrme in $p-h$ channel (mean field)+collective vibrations+bare v_{14} Argonne interaction and particle-vibration coupling (induced interaction) in $p-p$ channel (black line),
- Skyrme in $p-h$ channel (mean field)+bare v_{14} Argonne in $p-p$ channel (red line),
compared with experimental data.
${ }^{122} \mathrm{Sn}(p, t){ }^{120} \mathrm{~S} n$ at 26 MeV . Data from Guazzoni et.al. (1999).

We will try to draw information about the halo structure of ${ }^{11} \mathrm{Li}$ from the reactions ${ }^{1} \mathrm{H}\left({ }^{11} \mathrm{Li},{ }^{9} \mathrm{Li}\right){ }^{3} \mathrm{H}$ and ${ }^{1} \mathrm{H}\left({ }^{11} \mathrm{Li}^{9}{ }^{9} \mathrm{Li}{ }^{*}(2.69 \mathrm{MeV})\right)^{3} \mathrm{H}$ (I. Tanihata et al., Phys. Rev. Lett. 100, 192502 (2008))

First excited state of ${ }^{9} \mathrm{Li}$

Beyond mean field: particle-vibration coupling

Structure of the ${ }^{11} \mathrm{Li}\left(3 / 2^{-}\right)$ground state

${ }^{11} \mathrm{Li}={ }^{9} \mathrm{Li}$ core $+2-$ neutron halo (single Cooper pair). According to Barranco et al. (2001), the two neutrons correlate by means of the bare interaction (accounting for $\approx 20 \%$ of the ${ }^{11} \mathrm{Li}$ binding energy) and by exchanging 1^{-}and 2^{+}phonons ($\approx 80 \%$ of the binding energy)

Within this model, the ${ }^{11} \mathrm{Li}$ wavefunction can be written as

$$
\begin{aligned}
|\tilde{0}\rangle & =0.45\left|s_{1 / 2}^{2}(0)\right\rangle+0.55\left|p_{1 / 2}^{2}(0)\right\rangle+0.04\left|d_{5 / 2}^{2}(0)\right\rangle \\
& +0.70\left|(p s)_{1^{-}} \otimes 1^{-} ; 0\right\rangle+0.10\left|(s d)_{2^{+}} \otimes 2^{+} ; 0\right\rangle
\end{aligned}
$$

highly renormalized single particle states coupled to excited states of the core

differential cross section calculated with three ${ }^{11} \mathrm{Li}$ ground state model wavefunctions:

- pure $\left(s_{1 / 2}\right)^{2}$ configuration
- pure $\left(p_{1 / 2}\right)^{2}$ configuration
- $20 \%\left(s_{1 / 2}\right)^{2}+30 \%\left(p_{1 / 2}\right)^{2}$ configuration (Barranco et al. (2001)).
compared with experimental data.
${ }^{1} \mathrm{H}\left({ }^{11} \mathrm{Li},{ }^{9} \mathrm{Li}\right){ }^{3} \mathrm{H}$ at 33 MeV . Data from Tanihata et.al. (2008).

differential cross section calculated with the Barranco et. al. (2001) ${ }^{11} \mathrm{Li}$ ground state wavefunction, compared with experimental data. According to this model, the ${ }^{9} \mathrm{Li}$ excited state is found after the transfer reaction because it is already present in the ${ }^{11} \mathrm{Li}$ ground state.
${ }^{1} \mathrm{H}\left({ }^{11} \mathrm{Li}^{9}{ }^{9} \mathrm{Li}^{*}(2.69 \mathrm{MeV})\right)^{3} \mathrm{H}$ at 33 MeV . Data from Tanihata et.al. (2008).

- X. Mougeot et al. PLB 718, $441(2012){ }^{8} \mathrm{He}(\mathrm{p}, \mathrm{t})^{6} \mathrm{He}(\mathrm{gs}),{ }^{8} \mathrm{He}\left(2^{+}\right)$ with SPIRAL and MUST2;
- Coupled Reaction Channels (CRC) analysis by N . Keeley.

- Sensitive to ${ }^{8} \mathrm{He}$ structure.
- Nuclear Fied Theory calculations for ${ }^{8} \mathrm{He}(\mathrm{g} . \mathrm{s}),.{ }^{6} \mathrm{He}\left(\mathrm{g} . \mathrm{s}, 2^{+}\right)\left({ }^{6} \mathrm{He}\right.$ as a pair removal mode of ${ }^{8} \mathrm{He}$?).
- Consistent description of elastic and one-neutron transfer channels and the overlap ${ }^{8} \mathrm{He}$ (g.s.) $/{ }^{6} \mathrm{He}\left(2^{+}\right)$is essential.

Coupling of pairing vibrations with phonons

Population of excited 2^{+}state with (t, p) reaction
Diagrams contributing

${ }^{132} \mathrm{Sn}$

- Atomic nuclei can be consistently described as interacting elementary modes of excitation (NFT).
- The interweaving of these modes can be studied at profit with transfer reactions.
- We have presented examples of the study of coupling between pairing and collective modes with the help of two-nucleon transfer reaction within a 2-step DWBA formalism.
- Good agreement with experiment is obtained essentially without adjustable parameters.

Thank You!

2-transfer in well bound nuclei ${ }^{A} S n(p, t)^{A-2} S n$

Comparison with the experimental data available so far for superfluid tin isotopes
Potel et al., PRL 107, 092501 (2011)

Core Excitations and Transfer Reactions in Exotic Nuclei

Grégory Potel Aguilar (MSU/LLNL)
Andrea Idini (Darmstadt)
Francisco Barranco Paulano (Universidad de Sevilla) Enrico Vigezzi (INFN Milano)
Ricardo A. Broglia (Università degli Studi di Milano/ Niels Bohr Institute Copenhagen)

TRIUMF, February 18th, 2014

Reaction formalism, between structure and experiment

Reaction mechanism:

2-step DWBA

Transition amplitude

Matrix element of interaction potential between initial (i) and final (f) states

$$
\left\langle\chi_{f}(R) \phi_{f}(\xi)\right| V(\xi)\left|\chi_{i}(R) \phi_{i}(\xi)\right\rangle
$$

can be applied to $\mathbf{1 -}$ and 2 -nucleon transfer and knock-out

Elements of the calculation

$\Psi_{a}\left(\vec{r}_{1}, \overrightarrow{r_{2}}\right), \Psi_{B}\left(\vec{r}_{1}, \overrightarrow{r_{2}}\right)$: internal wave functions of the transferred nucleons in each nucleus
$\chi(R)$: distorted wave describing the relative motion in the optical potential $U(R)=V(R)+i W(R)\left(\frac{P_{R}^{2}}{2 \mu}+U(R)\right) \chi(R)=E_{C M \chi}(R)$

V_{A}, V_{a} : mean field potentials of the two nuclei

Elements of the calculation

$\Psi_{a}\left(\vec{r}_{1}, \vec{r}_{2}\right), \Psi_{B}\left(\vec{r}_{1}, \overrightarrow{r_{2}}\right)$: internal wave functions of the transferred nucleons in each nucleus
$\chi(R)$: distorted wave describing the relative motion in the optical potential $U(R)=V(R)+i W(R)\left(\frac{P_{R}^{2}}{2 \mu}+U(R)\right) \chi(R)=E_{C M \chi}(R)$

V_{A}, V_{a} : mean field potentials of the two nuclei
$V_{A}\left(V_{a}\right)$ is the interaction potential that transfers the nucleons from one nucleus to the other in the prior (post) representation

Elements of the calculation

$\Psi_{a}\left(\vec{r}_{1}, \vec{r}_{2}\right), \Psi_{B}\left(\vec{r}_{1}, \overrightarrow{r_{2}}\right)$: internal wave functions of the transferred nucleons in each nucleus
$\chi(R)$: distorted wave describing the relative motion in the optical potential $U(R)=V(R)+i W(R)\left(\frac{P_{R}^{2}}{2 \mu}+U(R)\right) \chi(R)=E_{C M \chi}(R)$

V_{A}, V_{a} : mean field potentials of the two nuclei
$V_{A}\left(V_{a}\right)$ is the interaction potential that transfers the nucleons from one nucleus to the other in the prior (post) representation

it is a single particle potential!!

simultaneous and successive contributions

$$
\begin{aligned}
& |\alpha\rangle=\phi_{a}\left(\xi_{b}, \mathbf{r}_{1}, \mathbf{r}_{2}\right) \times \\
& \phi_{A}\left(\xi_{A}\right) \chi_{a A}\left(\mathbf{r}_{a A}\right) \\
& |\beta\rangle=\phi_{b}\left(\xi_{b}\right) \phi_{B}\left(\xi_{A}, \mathbf{r}_{1}, \mathbf{r}_{2}\right) \times \\
& \chi_{b B}\left(\mathbf{r}_{b B}\right)
\end{aligned}
$$

Corfelation lenght of Cooper pair $=30 \mathrm{fm}$

simultaneous and successive contributions

simultaneous and successive contributions

simultaneous
$A+a \underset{\text { successive }}{\longrightarrow} \mathrm{f}+\mathrm{F}+\mathrm{B}$
simultaneous transfer

$$
\begin{aligned}
& |\alpha\rangle=\phi_{a}\left(\xi_{b}, \mathbf{r}_{1}, \mathbf{r}_{2}\right) \times \\
& \phi_{A}\left(\xi_{A}\right) \chi_{a A}\left(\mathbf{r}_{a A}\right) \\
& |\beta\rangle=\phi_{b}\left(\xi_{b}\right) \phi_{B}\left(\xi_{A}, \mathbf{r}_{1}, \mathbf{r}_{2}\right) \times
\end{aligned}
$$

$$
\chi_{b B}\left(r_{b B}\right)
$$

simultaneous and successive contributions

simultaneous and successive contributions

successive transfer

$$
\begin{aligned}
& |\alpha\rangle=\phi_{a}\left(\xi_{b}, \mathbf{r}_{1}, \mathbf{r}_{2}\right) \times \\
& \phi_{A}\left(\xi_{A}\right) \chi_{a A}\left(\mathbf{r}_{a}\right) \\
& |\beta\rangle=\phi_{b}\left(\xi_{b}\right) \phi_{B}\left(\xi_{A}, \mathbf{r}_{1}, \mathbf{r}_{2}\right) \times \\
& \quad \chi_{b B}\left(\mathbf{r}_{b B}\right)
\end{aligned}
$$

simultaneous and successive contributions

successive transfer

$$
\begin{aligned}
& |\alpha\rangle=\phi_{a}\left(\xi_{b}, \mathbf{r}_{1}, \mathbf{r}_{2}\right) \times \\
& \phi_{A}\left(\xi_{A}\right) \chi_{a A}\left(\mathbf{r}_{a A}\right) \\
& |\beta\rangle=\phi_{b}\left(\xi_{b}\right) \phi_{B}\left(\xi_{A}, \mathbf{r}_{1}, \mathbf{r}_{2}\right) \times \\
& \quad \chi_{b B}\left(\mathbf{r}_{b B}\right)
\end{aligned}
$$

simultaneous and successive contributions

successive transfer

$$
\begin{aligned}
& |\alpha\rangle=\phi_{a}\left(\xi_{b}, \mathbf{r}_{1}, \mathbf{r}_{2}\right) \times \\
& \phi_{A}\left(\xi_{A}\right) \chi_{a A}\left(\mathbf{r}_{a}\right) \\
& |\beta\rangle=\phi_{b}\left(\xi_{b}\right) \phi_{B}\left(\xi_{A}, \mathbf{r}_{1}, \mathbf{r}_{2}\right) \times \\
& \quad \chi_{b B}\left(\mathbf{r}_{b B}\right)
\end{aligned}
$$

simultaneous and successive contributions

Two particle transfer in second order DWBA

Some details of the calculation of the differential cross section for two-nucleon transfer reactions

$$
T_{2 N T}=\sum_{j_{f} j_{i}} B_{j_{f}} B_{j_{i}}\left(T^{(1)}\left(j_{i}, j_{f}\right)+T_{\text {succ }}^{(2)}\left(j_{i}, j_{f}\right)-T_{N O}^{(2)}\left(j_{i}, j_{f}\right)\right)
$$

$$
\frac{d \sigma}{d \Omega}=\frac{\mu_{i} \mu_{f}}{\left(4 \pi \hbar^{2}\right)^{2}} \frac{k_{f}}{k_{i}}\left|T_{2 N T}\right|^{2}
$$

Simultaneous transfer

$$
\begin{aligned}
T^{(1)}\left(j_{i}, j_{f}\right) & =2 \sum_{\sigma_{1} \sigma_{2}} \int d \mathbf{r}_{f F} d \mathbf{r}_{b 1} d \mathbf{r}_{A 2}\left[\Psi^{j_{f}}\left(\mathbf{r}_{A 1}, \sigma_{1}\right) \Psi^{j_{f}}\left(\mathbf{r}_{A 2}, \sigma_{2}\right)\right]_{0}^{0 *} \chi_{b B}^{(-) *}\left(\mathbf{r}_{b B}\right) \\
& \times v\left(\mathbf{r}_{b 1}\right)\left[\Psi^{j_{i}}\left(\mathbf{r}_{b 1}, \sigma_{1}\right) \Psi^{j_{i}}\left(\mathbf{r}_{b 2}, \sigma_{2}\right)\right]_{\mu}^{\Lambda} \chi_{a A}^{(+)}\left(\mathbf{r}_{a A}\right)
\end{aligned}
$$

Two particle transfer in second order DWBA

Some details of the calculation of the differential cross section for two-nucleon transfer reactions

$$
\begin{gathered}
T_{2 N T}=\sum_{j_{f} j_{i}} B_{j_{f}} B_{j_{i}}\left(T^{(1)}\left(j_{i}, j_{f}\right)+T_{\text {succ }}^{(2)}\left(j_{i}, j_{f}\right)-T_{N O}^{(2)}\left(j_{i}, j_{f}\right)\right) \\
\text { Successive transfer }
\end{gathered}
$$

$$
\begin{aligned}
T_{s u c c}^{(2)}\left(j_{i}, j_{f}\right) & =2 \sum_{K, M} \sum_{\sigma_{1} \sigma_{2}} \int d \mathbf{r}_{f F} d \mathbf{r}_{b 1} d \mathbf{r}_{A 2}\left[\psi^{j_{f}^{\prime}}\left(\mathbf{r}_{A 1}, \sigma_{1}\right) \Psi^{j_{f}}\left(\mathbf{r}_{A 2}, \sigma_{2}\right)\right]_{0}^{0 *} \\
& \times \chi_{b B}^{(-) *}\left(\mathbf{r}_{b B}\right) v\left(\mathbf{r}_{b 1}\right)\left[\Psi^{j_{f}}\left(\mathbf{r}_{A 2}, \sigma_{2}\right) \psi^{j_{i}}\left(\mathbf{r}_{b 1}, \sigma_{1}\right)\right]_{M}^{K} \\
& \times \int d \mathbf{r}_{f F}^{\prime} d \mathbf{r}_{b 1}^{\prime} d \mathbf{r}_{A 2}^{\prime} G\left(\mathbf{r}_{f F}, \mathbf{r}_{f F}^{\prime}\right)\left[\Psi^{j_{f}}\left(\mathbf{r}_{A 2}^{\prime}, \sigma_{2}^{\prime}\right) \Psi^{j_{i}}\left(\mathbf{r}_{b 1}^{\prime}, \sigma_{1}^{\prime}\right)\right]_{M}^{K} \\
& \times \frac{2 \mu_{f F}}{\hbar^{2}} v\left(\mathbf{r}_{f 2}^{\prime}\right)\left[\Psi^{j_{i}}\left(\mathbf{r}_{b 2}^{\prime}, \sigma_{2}^{\prime}\right) \psi^{j_{i}}\left(\mathbf{r}_{b 1}^{\prime}, \sigma_{1}^{\prime}\right)\right]_{\mu}^{\wedge} \chi_{a A}^{(+)}\left(\mathbf{r}_{a A}^{\prime}\right)
\end{aligned}
$$

Two particle transfer in second order DWBA

Some details of the calculation of the differential cross section for two-nucleon transfer reactions

$$
\begin{gathered}
T_{2 N T}=\sum_{j_{f} j_{i}} B_{j_{f}} B_{j_{i}}\left(T^{(1)}\left(j_{i}, j_{f}\right)+T_{\text {succ }}^{(2)}\left(j_{i}, j_{f}\right)-T_{N O}^{(2)}\left(j_{i}, j_{f}\right)\right) \\
\text { Non-orthogonality term }
\end{gathered}
$$

$$
\begin{aligned}
T_{N O}^{(2)}\left(j_{i}, j_{f}\right) & =2 \sum_{K, M} \sum_{\sigma_{1} \sigma_{2}} \int d \mathbf{r}_{f f} d \mathbf{r}_{b 1} d \mathbf{r}_{A 2}\left[\psi^{\sigma_{f}}\left(\mathbf{r}_{A 1}, \sigma_{1}\right) \psi^{j_{f}}\left(\mathbf{r}_{A 2}, \sigma_{2}\right)\right]_{0}^{0 *} \\
& \times \chi_{b B}^{(-) *}\left(\mathbf{r}_{b B}\right) v\left(\mathbf{r}_{b 1}\right)\left[\psi^{j_{f}}\left(\mathbf{r}_{A 2}, \sigma_{2}\right) \psi^{j_{i}}\left(\mathbf{r}_{b 1}, \sigma_{1}\right)\right]_{M}^{K} \\
& \times \int d \mathbf{r}_{b 1}^{\prime} d \mathbf{r}_{A 2}^{\prime}\left[\Psi^{j_{f}}\left(\mathbf{r}_{A 2}^{\prime}, \sigma_{2}^{\prime}\right) \psi^{j_{i}}\left(\mathbf{r}_{b 1}^{\prime}, \sigma_{1}^{\prime}\right)\right]_{M}^{K} \\
& \times\left[\Psi^{j_{i}}\left(\mathbf{r}_{b 2}^{\prime}, \sigma_{2}^{\prime}\right) \psi^{j_{i}}\left(\mathbf{r}_{b 1}^{\prime}, \sigma_{1}^{\prime}\right)\right]_{\mu}^{\wedge} \chi_{a A}^{(+)}\left(\mathbf{r}_{a A}^{\prime}\right)
\end{aligned}
$$

Cancellation of simultaneous and non-orthogonal contributions

very schematically, the first order (simultaneous) contribution is

$$
T^{(1)}=\langle\beta| V|\alpha\rangle,
$$

while the second order contribution can be separated in a successive and a non-orthogonality term

$$
\begin{aligned}
T^{(2)} & =T_{\text {succ }}^{(2)}+T_{N O}^{(2)} \\
& =\sum_{\gamma}\langle\beta| V|\gamma\rangle G\langle\gamma| V|\alpha\rangle-\sum_{\gamma}\langle\beta \mid \gamma\rangle\langle\gamma| V|\alpha\rangle .
\end{aligned}
$$

If we sum over a complete basis of intermediate states γ, we can apply the closure condition and $T_{N O}^{(2)}$ exactly cancels $T^{(1)}$
the transition potential being single particle, two-nucleon transfer is a second order process.

Reaction and structure models

Structure:

$$
\begin{aligned}
& \Phi_{i}\left(\mathbf{r}_{1}, \sigma_{1}, \mathbf{r}_{2}, \sigma_{2}\right)=\sum_{j_{i}} B_{j_{i}}\left[\psi^{j_{i}}\left(\mathbf{r}_{1}, \sigma_{1}\right) \psi^{j_{i}}\left(\mathbf{r}_{2}, \sigma_{2}\right)\right]_{\mu}^{\wedge} \\
& \Phi_{f}\left(\mathbf{r}_{1}, \sigma_{1}, \mathbf{r}_{2}, \sigma_{2}\right)=\sum_{j_{f}} B_{j_{f}}\left[\psi^{j_{f}}\left(\mathbf{r}_{1}, \sigma_{1}\right) \psi^{j_{f}}\left(\mathbf{r}_{2}, \sigma_{2}\right)\right]_{0}^{0}
\end{aligned}
$$

Reaction:

$$
\begin{aligned}
T_{2 N T} & =\sum_{j_{f} j_{i}} B_{j_{f}} B_{j_{i}}\left(T^{(1)}\left(j_{i}, j_{f}\right)+T_{\text {succ }}^{(2)}\left(j_{i}, j_{f}\right)-T_{N O}^{(2)}\left(j_{i}, j_{f}\right)\right) \\
\frac{d \sigma}{d \Omega} & =\frac{\mu_{i} \mu_{f}}{\left(4 \pi \hbar^{2}\right)^{2}} \frac{k_{f}}{k_{i}}\left|T_{2 N T}\right|^{2}
\end{aligned}
$$

with:

$$
\begin{aligned}
T^{(1)}\left(j_{i}, j_{f}\right) & =2 \sum_{\sigma_{1} \sigma_{2}} \int d \mathbf{r}_{f F} d \mathbf{r}_{b 1} d \mathbf{r}_{A 2}\left[\psi^{j_{f}}\left(\mathbf{r}_{A 1}, \sigma_{1}\right) \psi^{j_{f}}\left(\mathbf{r}_{A 2}, \sigma_{2}\right)\right]_{0}^{0 *} \chi_{b B}^{(-) *}\left(\mathbf{r}_{b B}\right) \\
& \times v\left(\mathbf{r}_{b 1}\right)\left[\psi^{j_{i}}\left(\mathbf{r}_{b 1}, \sigma_{1}\right) \psi^{j_{i}}\left(\mathbf{r}_{b 2}, \sigma_{2}\right)\right]_{\mu}^{\wedge} \chi_{a A}^{(+)}\left(\mathbf{r}_{a A}\right)
\end{aligned}
$$

etc...

Ingredients of the calculation

Structure input for, e.g., the ${ }^{112} \operatorname{Sn}(\mathrm{p}, \mathrm{t})^{110} \mathrm{Sn}$ reaction:

 wavefunction:

$$
\Phi\left(\mathbf{r}_{1}, \sigma_{1}, \mathbf{r}_{2}, \sigma_{2}\right)=\sum_{j} B_{j}\left[\psi^{j}\left(\mathbf{r}_{1}, \sigma_{1}\right) \psi^{j}\left(\mathbf{r}_{2}, \sigma_{2}\right)\right]_{0}^{0}
$$

good results obtained for halo nuclei, population of excited states, superfluid nuclei, normal nuclei (pairing vibrations), heavy ion reactions...
Potel et al., arXiv:0906.4298.

- Recent $t\left({ }^{32} \mathrm{Mg}, p\right)^{30} \mathrm{Mg} @ 1.8 \mathrm{MeV} . A$ at ISOLDE (Wimmer et.al.) reaction.
- Shape coexistence (low-lying 0^{+}excited state).
- Ground state and first excited 0^{+}populated with 2 -neutron transfer

${ }^{A} S n(p, t)^{A-2} S n$, superfluid isotopic chain

Elements of the calculation

$\Psi_{a}\left(\vec{r}_{1}, \overrightarrow{r_{2}}\right), \Psi_{B}\left(\vec{r}_{1}, \overrightarrow{r_{2}}\right)$: internal wave functions of the transferred nucleons in each nucleus
$\chi(R)$: distorted wave describing the relative motion in the optical potential $U(R)=V(R)+i W(R)\left(\frac{P_{R}^{2}}{2 \mu}+U(R)\right) \chi(R)=E_{C M \chi}(R)$

V_{A}, V_{a} : mean field potentials of the two nuclei

Elements of the calculation

$\Psi_{a}\left(\vec{r}_{1}, \vec{r}_{2}\right), \Psi_{B}\left(\vec{r}_{1}, \overrightarrow{r_{2}}\right)$: internal wave functions of the transferred nucleons in each nucleus
$\chi(R)$: distorted wave describing the relative motion in the optical potential $U(R)=V(R)+i W(R)\left(\frac{P_{R}^{2}}{2 \mu}+U(R)\right) \chi(R)=E_{C M \chi}(R)$

V_{A}, V_{a} : mean field potentials of the two nuclei
$V_{A}\left(V_{a}\right)$ is the interaction potential that transfers the nucleons from one nucleus to the other in the prior (post) representation

Elements of the calculation

$\Psi_{a}\left(\vec{r}_{1}, \vec{r}_{2}\right), \Psi_{B}\left(\vec{r}_{1}, \overrightarrow{r_{2}}\right)$: internal wave functions of the transferred nucleons in each nucleus
$\chi(R)$: distorted wave describing the relative motion in the optical potential $U(R)=V(R)+i W(R)\left(\frac{P_{R}^{2}}{2 \mu}+U(R)\right) \chi(R)=E_{C M \chi}(R)$

V_{A}, V_{a} : mean field potentials of the two nuclei
$V_{A}\left(V_{a}\right)$ is the interaction potential that transfers the nucleons from one nucleus to the other in the prior (post) representation

it is a single particle potential!!

Contributions to the ${ }^{112} \mathrm{Sn}(\mathrm{p}, \mathrm{t})^{110}$ total cross section

Contributions to the ${ }^{112} \mathrm{Sn}(\mathrm{p}, \mathrm{t})^{110}$ total cross section

Contributions to the ${ }^{112} \mathrm{Sn}(\mathrm{p}, \mathrm{t})^{110}$ total cross section

Contributions to the ${ }^{112} \mathrm{Sn}(\mathrm{p}, \mathrm{t})^{110}$ total cross section

Contributions to the ${ }^{112} \mathrm{Sn}(\mathrm{p}, \mathrm{t})^{110}$ total cross section

Essentially a successive process!
${ }^{206} \mathrm{~Pb}(t, p)^{208} \mathrm{~Pb}$ at 12 MeV . Data from Bjerregaard et.al. (1966)

	$B_{n l j}$	
state $n l j$	$p p R P A$	(TDA)
$1 h_{9 / 2}$	0.15	(0.14)
$2 f_{7 / 2}$	0.21	(0.26)
$1 i_{13 / 2}$	0.29	(0.28)
$3 p_{3 / 2}$	0.23	(0.22)
$2 f_{5 / 2}$	0.32	(0.31)
$3 p_{1 / 2}$	0.89	(0.85)
$2 g_{9 / 2}$	0.18	
$1 i_{11 / 2}$	0.15	
$1 j_{15 / 2}$	0.13	
$3 d_{5 / 2}$	0.06	$(-)$
$4 s_{1 / 2}$	0.06	
$2 g_{7 / 2}$	0.10	
$3 d_{3 / 2}$	0.05	

Simultaneous transfer

$$
\begin{aligned}
T^{(1)}\left(j_{i}, j_{f}\right) & =2 \sum_{\sigma_{1} \sigma_{2}} \int d \mathbf{r}_{f F} d \mathbf{r}_{b 1} d \mathbf{r}_{A 2}\left[\psi^{j_{f}}\left(\mathbf{r}_{A 1}, \sigma_{1}\right) \Psi^{j_{f}}\left(\mathbf{r}_{A 2}, \sigma_{2}\right)\right]_{0}^{0 *} \chi_{b B}^{(-) *}\left(\mathbf{r}_{b B}\right) \\
& \times v\left(\mathbf{r}_{b 1}\right)\left[\Psi^{j_{i}}\left(\mathbf{r}_{b 1}, \sigma_{1}\right) \Psi^{j_{i}}\left(\mathbf{r}_{b 2}, \sigma_{2}\right)\right]_{\mu}^{\wedge} \chi_{a A}^{(+)}\left(\mathbf{r}_{a A}\right)
\end{aligned}
$$

Successive transfer

$$
\begin{aligned}
T_{s u c c}^{(2)}\left(j_{j}, j_{f}\right) & =2 \sum_{K, M} \sum_{\substack{\sigma_{1} \sigma_{2} \\
\sigma_{1}^{\prime} \sigma_{2}^{\prime}}} \int d \mathbf{r}_{f f} d \mathbf{r}_{b 1} d \mathbf{r}_{A 2}\left[\psi^{j_{f}}\left(\mathbf{r}_{A 1}, \sigma_{1}\right) \psi^{j_{f}}\left(\mathbf{r}_{A 2}, \sigma_{2}\right)\right]_{0}^{0 *} \\
& \times \chi_{b B}^{(-) *}\left(\mathbf{r}_{b B}\right) v\left(\mathbf{r}_{b 1}\right)\left[\psi^{j_{f}}\left(\mathbf{r}_{A 2}, \sigma_{2}\right) \psi^{j_{i}}\left(\mathbf{r}_{b 1}, \sigma_{1}\right)\right]_{M}^{K} \\
& \times \int d \mathbf{r}_{f F}^{\prime} d \mathbf{r}_{b 1}^{\prime} d \mathbf{r}_{A 2}^{\prime} G\left(\mathbf{r}_{f F}, \mathbf{r}_{f F}^{\prime}\right)\left[\psi^{j_{f}}\left(\mathbf{r}_{A 2}^{\prime}, \sigma_{2}^{\prime}\right) \psi^{j_{i}}\left(\mathbf{r}_{b 1}^{\prime}, \sigma_{1}^{\prime}\right)\right]_{M}^{K} \\
& \times \frac{2 \mu_{f F}}{\hbar^{2}} v\left(\mathbf{r}_{f 2}^{\prime}\right)\left[\psi^{j_{i}}\left(\mathbf{r}_{b 2}^{\prime}, \sigma_{2}^{\prime}\right) \psi^{j_{i}}\left(\mathbf{r}_{b 1}^{\prime}, \sigma_{1}^{\prime}\right)\right]_{\mu}^{\wedge} \chi_{a A}^{(+)}\left(\mathbf{r}_{a A}^{\prime}\right)
\end{aligned}
$$

Non-orthogonality term

$$
\begin{aligned}
& T_{N O}^{(2)}\left(j_{i}, j_{f}\right)=2 \sum_{K, M} \sum_{\substack{\sigma_{1} \sigma_{2} \\
\sigma_{1}^{\prime} \sigma_{2}^{\prime}}} \int d \mathbf{r}_{f F} d \mathbf{r}_{b 1} d \mathbf{r}_{A 2}\left[\psi^{j_{f}}\left(\mathbf{r}_{A 1}, \sigma_{1}\right) \psi^{j_{f}}\left(\mathbf{r}_{A 2}, \sigma_{2}\right)\right]_{0}^{0 *} \\
& \times \chi_{b B}^{(-) *}\left(\boldsymbol{r}_{b B}\right) v\left(\mathbf{r}_{b 1}\right)\left[\psi^{j_{f}}\left(\mathbf{r}_{A 2}, \sigma_{2}\right) \psi^{j_{i}}\left(\mathbf{r}_{b 1}, \sigma_{1}\right)\right]_{M}^{K} \\
& \times \int d \mathbf{r}_{b 1}^{\prime} d \mathbf{r}_{A 2}^{\prime}\left[\psi^{j_{f}}\left(\mathbf{r}_{A 2}^{\prime}, \sigma_{2}^{\prime}\right) \psi^{j_{i}}\left(\mathbf{r}_{b 1}^{\prime}, \sigma_{1}^{\prime}\right)\right]_{M}^{K} \\
& \times\left[\psi^{j_{i}}\left(\mathbf{r}_{b 2}^{\prime}, \sigma_{2}^{\prime}\right) \psi^{j_{i}}\left(\mathbf{r}_{b 1}^{\prime}, \sigma_{1}^{\prime}\right)\right]_{\mu}^{\wedge} \chi_{a A}^{(+)}\left(\mathbf{r}_{a A}^{\prime}\right)
\end{aligned}
$$

Non-local, correlated form factor

Ingredients of the calculation

Structure input for, e.g., the ${ }^{112} \mathrm{Sn}(\mathrm{p}, \mathrm{t})^{110} \mathrm{Sn}$ reaction:

plus the B_{j} spectroscopic amplitudes needed to define the two-neutron wavefunction:

$$
\Phi\left(\mathbf{r}_{1}, \sigma_{1}, \mathbf{r}_{2}, \sigma_{2}\right)=\sum_{j} B_{j}\left[\psi^{j}\left(\mathbf{r}_{1}, \sigma_{1}\right) \psi^{j}\left(\mathbf{r}_{2}, \sigma_{2}\right)\right]_{0}^{0}
$$

