

Electromagnetic Reactions in Nuclear Physics

Nir Barnea

The Racah institute for Physics The Hebrew University, Jerusalem, Israel

TRIUMF Workshop, 18-21 February 2014

▲ロト ▲ 同 ト ▲ 国 ト → 国 - の Q ()

Jerusalem, Israel D. Gazit, N. Nevo, B. Bazak

ORNL, Tennessee G. Hagen, T. Papenbrock

Trento, Italy G. Orlandini, W. Leidemann

TRIUMF, Canada S. Bacca, C. Ji, M. Miorelli, J. Hernandez

האוניברסיטה העברית בירושלים

The Hebrew University of Jerusalem

Introduction	Theory	Currents	FSI	Photoabsorption	Electron Scattering	Conclusions
			Ou	tline		
Introd	luction					
Theor	у					
Curre	nts					
FSI						
Photo	absorption					
Electro	on Scatterir	ıg				
Concl	usions					

◆□ ▶ ◆昼 ▶ ◆ 重 ▶ ◆ ● ▼ ● ●

C

FSI

Photoabsorpti

Electron

Conclusions

Motivation, what can we learn?

better put: What do we hope to learn?

1. Study the nuclear structure, the coupling constant $\ll 1$

With the electro-weak probe, we can immediately relate the cross section to the transition matrix element of the current operator, thus to the structure of the target itself

DeForest - Walecka, Ann. Phys. 1966

- 2. Few-body physics \Rightarrow Exact calculations \Rightarrow Test the nuclear theory.
- 3. And of course, extract some useful numbers for astrophysics.

Radiative capture cross-sections Inelastic neutrino scattering on nuclei electron capture on light nuclei

....

・ロット (雪) (日) (日)

Cur

FSI

Electron Scatter

▲ロト ▲ 同 ト ▲ 国 ト → 国 - の Q ()

Conclusions

Example - A tale of two potentials

Consider two potentials that reproduce the NN phase shifts in the range 0 - 300 MeV.

How can we put them apart?

AV18+UBIX - Argonne V18 + Urbana IX JISP16 - J-matrix Inverse Scattering Potential, Shirokov *et* al.

Binding Energies

	AV18+UBIX	JISP16	Nature
D	2.22	2.22	2.22
$^{3}\mathrm{H}$	8.43	8.35	8.48
³ He	7.67	7.65	7.72
⁴ He	28.37	28.30	28.30
⁶ He	29.4	28.9	29.27
⁶ Li	32.3	31.6	31.99

Cui

FSI

Photoabsorpt

Electron

Conc

Example - A tale of two potentials

How can we put them apart?

AV18+UBIX - Argonne V18 + Urbana IX JISP16 - J-matrix Inverse Scattering Potential, Shirokov *et* al.

Binding Energies

	AV18+UBIX	JISP16	Nature
D	2.22	2.22	2.22
$^{3}\mathrm{H}$	8.43	8.35	8.48
³ He	7.67	7.65	7.72
⁴ He	28.37	28.30	28.30
⁶ He	29.4	28.9	29.27
⁶ Li	32.3	31.6	31.99

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─のへで

C

FSI

Photoabsorpt

Electron Sca

Conclusions

The Experimental Verdict !

C

FSI

Photoabsorpti

Electron Scatt

Conclusions

The Experimental Verdict ?

SQ Q

Introduction	Theory	Currents	FSI	Photoabsorption	Electron Scattering

EM reactions with Nuclei - Theoretical considerations

The Wave Functions

- We solve the A-body non-realtivistic Schroedinger equation.
- The Hamiltonian

$$H = T + V_{NN} + V_{NNN}$$

High precision two-nucleon potentials, well constraint by NN phaseshifts Less established 3NF

- EFT provides a solid theoretical framework for construction of the potentials.

EM reactions with Nuclei - Theoretical considerations

The Wave Functions

- We solve the A-body non-realtivistic Schroedinger equation.
- The Hamiltonian

$$H = T + V_{NN} + V_{NNN}$$

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ・ う へ つ ・

High precision two-nucleon potentials, well constraint by NN phaseshifts Less established 3NF

- EFT provides a solid theoretical framework for construction of the potentials.
- Phenomenological potential models are not that bad either.

EM reactions with Nuclei - Theoretical considerations (II)

The Nuclear Current

• The EM current is a sum of convection and spin currents

$$J(\mathbf{x}) = J_c(\mathbf{x}) + J_s(\mathbf{x}) = J_c(\mathbf{x}) + \nabla \times \boldsymbol{\mu}(\mathbf{x})$$

• Classicaly, the convection current $J_c = \sum_i Z_i v_i$ is the flow of the charged particles.

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ・ う へ つ ・

- In nuclei $J_c(x)$ is mainly due to proton movement.
- Meson exchange between nucleons leads to 2, 3, . . . -body currents $J = J_1 + J_2 + ...$
- In EFT many body currents appear naturaly as contact terms.

~				

The nuclear current

- Already at the 70's it became clear that the *M*1 transition in the deutron poses a problem.
- It was also realized that current and potentials are not independent entities.
- For conserved current

$$\boldsymbol{\nabla} \cdot \boldsymbol{J}(\boldsymbol{x}) = -i[H, \rho(\boldsymbol{x})]$$

- Riska and Brown have proposed the meson exchange mechanism for solving this riddle.
- Arenhovel et al. pointed to the importance of the Δ .
- Leading to MEC including the π, ρ, \ldots mesons.
- MEC consistent with the NN potentials were derived in the 80's by Leidemann, Buchmann, Arenhovel and Riska

Currents

FSI

The nuclear current

- Already at the 70's it became clear that the *M*1 transition in the deutron poses a problem.
- It was also realized that current and potentials are not independent entities.
- For conserved current

$$\boldsymbol{\nabla} \cdot \boldsymbol{J}(\boldsymbol{x}) = -i[H, \rho(\boldsymbol{x})]$$

- Riska and Brown have proposed the meson exchange mechanism for solving this riddle.
- Arenhovel et al. pointed to the importance of the Δ .
- Leading to MEC including the π , ρ , ... mesons.
- MEC consistent with the NN potentials were derived in the 80's by Leidemann, Buchmann, Arenhovel and Riska

Theory

Currents

The nuclear current

- Already at the 70's it became clear that the *M*1 transition in the deutron poses a problem.
- It was also realized that current and potentials are not independent entities.
- For conserved current

$$\boldsymbol{\nabla} \cdot \boldsymbol{J}(\boldsymbol{x}) = -i[H, \rho(\boldsymbol{x})]$$

But for exchange force $V_{\tau} = V \boldsymbol{\tau}_1 \cdot \boldsymbol{\tau}_2$, and $[\tau_1 \cdot \boldsymbol{\tau}_2, \tau_{z,1}] \neq 0$

- Riska and Brown have proposed the meson exchange mechanism for solving this riddle.
- Arenhovel et al. pointed to the importance of the Δ .
- Leading to MEC including the π, ρ, \ldots mesons.
- MEC consistent with the NN potentials were derived in the 80's by Leidemann, Buchmann, Arenhovel and Riska

The nuclear current

- Already at the 70's it became clear that the *M*1 transition in the deutron poses a problem.
- It was also realized that current and potentials are not independent entities.
- For conserved current

$$\boldsymbol{\nabla} \cdot \boldsymbol{J}(\boldsymbol{x}) = -i[H, \rho(\boldsymbol{x})]$$

- Riska and Brown have proposed the meson exchange mechanism for solving this riddle.
- Arenhovel et al. pointed to the importance of the Δ .
- Leading to MEC including the π , ρ , . . . mesons.
- MEC consistent with the NN potentials were derived in the 80's by Leidemann, Buchmann, Arenhovel and Riska

The nuclear current

- Already at the 70's it became clear that the *M*1 transition in the deutron poses a problem.
- It was also realized that current and potentials are not independent entities.
- For conserved current

$$\boldsymbol{\nabla} \cdot \boldsymbol{J}(\boldsymbol{x}) = -i[H, \rho(\boldsymbol{x})]$$

- Riska and Brown have proposed the meson exchange mechanism for solving this riddle.
- Arenhovel et al. pointed to the importance of the Δ .
- Leading to MEC including the π , ρ , ... mesons.
- MEC consistent with the NN potentials were derived in the 80's by Leidemann, Buchmann, Arenhovel and Riska

The nuclear current

- Already at the 70's it became clear that the *M*1 transition in the deutron poses a problem.
- It was also realized that current and potentials are not independent entities.
- For conserved current

$$\boldsymbol{\nabla} \cdot \boldsymbol{J}(\boldsymbol{x}) = -i[H, \rho(\boldsymbol{x})]$$

- Riska and Brown have proposed the meson exchange mechanism for solving this riddle.
- Arenhovel et al. pointed to the importance of the Δ .
- Leading to MEC including the π, ρ, \ldots mesons.
- MEC consistent with the NN potentials were derived in the 80's by Leidemann, Buchmann, Arenhovel and Riska

The nuclear current

- Already at the 70's it became clear that the *M*1 transition in the deutron poses a problem.
- It was also realized that current and potentials are not independent entities.
- For conserved current

$$\boldsymbol{\nabla} \cdot \boldsymbol{J}(\boldsymbol{x}) = -i[H, \rho(\boldsymbol{x})]$$

But for exchange force $V_{\tau} = V \boldsymbol{\tau}_1 \cdot \boldsymbol{\tau}_2$, and $[\tau_1 \cdot \boldsymbol{\tau}_2, \tau_{z,1}] \neq 0$

- Riska and Brown have proposed the meson exchange mechanism for solving this riddle.
- Arenhovel et al. pointed to the importance of the Δ .
- Leading to MEC including the π, ρ, \ldots mesons.
- MEC consistent with the NN potentials were derived in the 80's by Leidemann, Buchmann, Arenhovel and Riska

The nuclear current (II)

Currents

- In the 90's Park, Min, and Rho derived the nuclear current using the Heavy Baryon Farmalism of ChPT.
- ChPT concludes that vector meson contributions are suppressed by Q².
- Pastore et. al., and Koelling et al. derived the EM currents in EFT including loop corrections.
- In EFT a direct connection V_{NNN} ↔ A through the LEC c_D (Gardestik and Phillips 2006).

▲ロト ▲ 同 ト ▲ 国 ト → 国 - の Q ()

Currents

F

▲ロト ▲ 同 ト ▲ 国 ト → 国 - の Q ()

The nuclear current (II)

- In the 90's Park, Min, and Rho derived the nuclear current using the Heavy Baryon Farmalism of ChPT.
- ChPT concludes that vector meson contributions are suppressed by Q².
- Pastore et. al., and Koelling et al. derived the EM currents in EFT including loop corrections.
- In EFT a direct connection $V_{NNN} \leftrightarrow A$ through the LEC c_D (Gardestik and Phillips 2006).

ory

Currents

FSI

▲ロト ▲ 同 ト ▲ 国 ト → 国 - の Q ()

The nuclear current (II)

- In the 90's Park, Min, and Rho derived the nuclear current using the Heavy Baryon Farmalism of ChPT.
- ChPT concludes that vector meson contributions are suppressed by Q².
- Pastore et. al., and Koelling et al. derived the EM currents in EFT including loop corrections.
- In EFT a direct connection $V_{NNN} \leftrightarrow A$ through the LEC c_D (Gardestik and Phillips 2006).

Currents

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○ ○

The nuclear current (II)

- In the 90's Park, Min, and Rho derived the nuclear current using the Heavy Baryon Farmalism of ChPT.
- ChPT concludes that vector meson contributions are suppressed by Q².
- Pastore et. al., and Koelling et al. derived the EM currents in EFT including loop corrections.
- In EFT a direct connection $V_{NNN} \leftrightarrow A$ through the LEC c_D (Gardestik and Phillips 2006).

1-Body, and 2-Body contributions to the nuclear current

Contributions to the nuclear current at q = 0

Park et. al. PRC 67, 055206 (2003)

Jμ	LO	NLO	N ² LO	N ³ LO	N ⁴ LO
A	1B	-	1B-RC	2B	1B-RC, 2B-1L, and 3B
A_0	-	1B	2B	1B-RC	1B-RC, 2B-1L
V	-	1B	2B	1B-RC	1B-RC, 2B-1L
V_0	1B	-	-	2B	1B-RC, 2B-1L, and 3B

Conclusions

- Reactions involving A, V_0 such as β -decay, photoabsorption, or (e, e') longitudinal response $R_L(q, \omega)$ are least sensitive to MEC \Rightarrow better test for the Hamiltonian.
- Reactions involving V, A_0 such as (e, e') trensverse response $R_T(q, \omega)$ are the place to look for MEC effects.

1-Body, and 2-Body contributions to the nuclear current

Contributions to the nuclear current at q = 0

Park et. al. PRC 67, 055206 (2003)

Jμ	LO	NLO	N ² LO	N ³ LO	N ⁴ LO
A	1B	-	1B-RC	2B	1B-RC, 2B-1L, and 3B
A_0	-	1B	2B	1B-RC	1B-RC, 2B-1L
V	-	1B	2B	1B-RC	1B-RC, 2B-1L
V_0	1B	-	-	2B	1B-RC, 2B-1L, and 3B

Conclusions

- Reactions involving A, V_0 such as β -decay, photoabsorption, or (e, e') longitudinal response $R_L(q, \omega)$ are least sensitive to MEC \Rightarrow better test for the Hamiltonian.
- Reactions involving V, A₀ such as (e, e') trensverse response R_T(q, ω) are the place to look for MEC effects.

× .		

Currents

FSI

Photoabsorptic

Electron Scatt

Conclusions

Many Body Currents - a small comment a system of neutral particles with frozen spins

$$\boldsymbol{\mu}(\boldsymbol{x}) = \mu_1 \sum_i e^{-i\boldsymbol{q}\cdot\boldsymbol{r}_i} \boldsymbol{\sigma}_i$$

- Naively, 1-body current $\sim \left(\frac{Q}{\Lambda}\right)^3$ while 2-body current $\sim \left(\frac{Q}{\Lambda}\right)^6$, therefore can be neglected.
- In the long wavelength limit the 1-body current may be suppressed by a factor of $(kR)^{\ell}$!
- One should compare $\left(\frac{Q}{\Lambda}\right)^3$ to $(kR)^\ell \approx \left(\frac{Q}{M}\right)^\ell$

Normal hierarchy case

 $Q \ll \Lambda \approx M$

1-body current dominated

Strong hierarchy case

 $Q \ll \Lambda \ll M$

2-body current dominated

- Naively, 1-body current $\sim \left(\frac{Q}{\Lambda}\right)^3$ while 2-body current $\sim \left(\frac{Q}{\Lambda}\right)^6$, therefore can be neglected.
- In the long wavelength limit the 1-body current may be suppressed by a factor of $(kR)^{\ell}$!
- One should compare $\left(\frac{Q}{\Lambda}\right)^3$ to $(kR)^\ell \approx \left(\frac{Q}{M}\right)$

 $Q \ll \Lambda \approx M$

1-body current dominated

Strong hierarchy case

 $Q \ll \Lambda \ll M$

2-body current dominated

・ コ ト ・ 雪 ト ・ 雪 ト ・ 日 ト

- Naively, 1-body current $\sim \left(\frac{Q}{\Lambda}\right)^3$ while 2-body current $\sim \left(\frac{Q}{\Lambda}\right)^6$, therefore can be neglected.
- In the long wavelength limit the 1-body current may be suppressed by a factor of $(kR)^{\ell}$!
- One should compare $\left(\frac{Q}{\Lambda}\right)^3$ to $(kR)^\ell \approx \left(\frac{Q}{M}\right)^\ell$

 $Q \ll \Lambda \approx M$

1-body current dominated

Strong hierarchy case

 $Q \ll \Lambda \ll M$

2-body current dominated

イロト イポト イヨト イヨト 三日

- Naively, 1-body current $\sim \left(\frac{Q}{\Lambda}\right)^3$ while 2-body current $\sim \left(\frac{Q}{\Lambda}\right)^6$, therefore can be neglected.
- In the long wavelength limit the 1-body current may be suppressed by a factor of $(kR)^{\ell}$!
- One should compare $\left(\frac{Q}{\Lambda}\right)^3$ to $(kR)^{\ell} \approx \left(\frac{Q}{M}\right)^2$

 $Q \ll \Lambda \approx M$

1-body current dominated

Strong hierarchy case

 $Q\ll\Lambda\ll M$

2-body current dominated

- Naively, 1-body current $\sim \left(\frac{Q}{\Lambda}\right)^3$ while 2-body current $\sim \left(\frac{Q}{\Lambda}\right)^6$, therefore can be neglected.
- In the long wavelength limit the 1-body current may be suppressed by a factor of $(kR)^{\ell}$!
- One should compare $\left(\frac{Q}{\Lambda}\right)^3$ to $(kR)^\ell \approx \left(\frac{Q}{M}\right)^\ell$

 $Q \ll \Lambda \approx M$

1-body current dominated

Strong hierarchy case

 $Q \ll \Lambda \lll M$

2-body current dominated

- Naively, 1-body current $\sim \left(\frac{Q}{\Lambda}\right)^3$ while 2-body current $\sim \left(\frac{Q}{\Lambda}\right)^6$, therefore can be neglected.
- In the long wavelength limit the 1-body current may be suppressed by a factor of $(kR)^{\ell}$!
- One should compare $\left(\frac{Q}{\Lambda}\right)^3$ to $(kR)^\ell \approx \left(\frac{Q}{M}\right)^\ell$

 $Q \ll \Lambda \approx M$

1-body current dominated

Strong hierarchy case

2-body current dominated

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Introduction	Theor
--------------	-------

Cu

FSI

Photoabsory

Electron

Co

Final State Interaction

Problem:

Exact evaluation of the final state wave function in the continuum is limited in E and A.

Solution:

The Lorentz Integral Transform (LIT), Complex Rotation, ...

ヘロト 人間 ト 人 ヨト 人 ヨトー

æ

Introducti	on		
------------	----	--	--

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ ―臣 – 釣��

Conclusions

Electromagentic Reactions

- Static moments
- Radiative capture
- Radiative transitions
- Compton scattering
- Photoabsorption
- Electron scattering

Introduction	Theory	Currents	FSI	Photoabsorption	Electron Scattering	Conclusions

Electromagentic Reactions

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

- Static moments
- Radiative capture
- Radiative transitions
- Compton scattering
- Photoabsorption
- Electron scattering

Photoabsorption of Nuclei

Where

 $T_{\lambda}(q) = (-)^{\lambda} \sqrt{2\pi} \sum_{J} \sqrt{2J+1} \left[E_{J\lambda}(q) + \lambda M_{J\lambda}(q) \right]$

▲□▶▲□▶▲□▶▲□▶ ▲□▶ ● □ ● ● ●

Photoabsorption of Nuclei

Where

 $T_{\lambda}(q) = (-)^{\lambda} \sqrt{2\pi} \sum_{J} \sqrt{2J+1} \left[E_{J\lambda}(q) + \lambda M_{J\lambda}(q) \right]$

¥	

Photoabsorption of Nuclei

Where

$$T_{\lambda}(q) = (-)^{\lambda} \sqrt{2\pi} \sum_{J} \sqrt{2J+1} \left[E_{J\lambda}(q) + \lambda M_{J\lambda}(q) \right]$$

$$\begin{split} E_{J\lambda}(q) &= \frac{i}{4\pi} \int d\hat{q} \left(\hat{q} \times Y_{JJ1}^{\lambda}(\hat{q}) \right) \cdot J(q) \\ M_{J\lambda}(q) &= \frac{1}{4\pi} \int d\hat{q} Y_{JJ1}^{\lambda}(\hat{q}) \cdot J(q) \end{split}$$

	1.	-	

Photoabsorption of Nuclei

Where

$$T_{\lambda}(q) = (-)^{\lambda} \sqrt{2\pi} \sum_{J} \sqrt{2J+1} \left[E_{J\lambda}(q) + \lambda M_{J\lambda}(q) \right]$$

$$E_{J\lambda}(q) = \frac{i}{4\pi} \int d\hat{q} \left(\hat{q} \times Y_{JJ1}^{\lambda}(\hat{q})\right) \cdot J(q)$$

$$M_{J\lambda}(q) = \frac{1}{4\pi} \int d\hat{q} Y_{JJ1}^{\lambda}(\hat{q}) \cdot J(q)$$

C

FSI

Conclusions

Photoabsorption of Nuclei (II)

At low photon energy

 $qR \ll 1$

The Response function is dominated by the dipole response

$$\sigma\left(\omega\right)=4\pi^{2}\alpha\omega R^{E1}\left(\omega\right)$$

$$R^{E1}(\omega) = \frac{1}{2} \sum_{f,\lambda} \left| \langle \Psi_f | E1 | \Psi_0 \rangle \right|^2 \delta(E_f - E_0 - \omega)$$

Via Siegert theorem MEC are implicitly included in the dipole response

イロト イ理ト イヨト イヨト

э.

C

FSI

Conclusion

Photoabsorption of Nuclei (II)

At low photon energy

 $qR \ll 1$

The Response function is dominated by the dipole response

$$\sigma\left(\omega\right)=4\pi^{2}\alpha\omega R^{E1}\left(\omega\right)$$

$$R^{E1}(\omega) = \frac{1}{2} \sum_{f,\lambda} \left| \langle \Psi_f | E1 | \Psi_0 \rangle \right|^2 \delta(E_f - E_0 - \omega)$$

Via Siegert theorem MEC are implicitly included in the dipole response

イロト イポト イヨト イヨト

Theory and Experiment, Where do we stand?

- T,³He Most experiments are in agreement. Theory in good shape.
 - ⁴He The experimental data is all over the place. Realistic nuclear models lead to almost identical results.
- ⁶He,⁶Li For ⁶He only low energy data. For ⁶Li not enough data. High quality calculations with low quality force models.
 - ⁷Li A single inclusive experiment, in good agreement with semi-realistic theory. New exclusive measurments, no theory.
 - ¹⁶O The new frontier of ab-initio calculations - see talk by M. Miorelli.

C

FSI

Photoabsorption

Electron S

Conclusions

Theory and Experiment, Where do we stand?

- D In Good shape. Existing experimental data is in very good agreement, also with theory.
- T,³He Most experiments are in agreement. Theory in good shape.
 - ⁴He The experimental data is all over the place. Realistic nuclear models lead to almost identical results.
- ⁶He,⁶Li For ⁶He only low energy data. For ⁶Li not enough data. High quality calculations with low quality force models.
 - ⁷Li A single inclusive experiment, in good agreement with semi-realistic theory. New exclusive measurments, no theory.
 - ¹⁶O The new frontier of ab-initio calculations - see talk by M. Miorelli.

$(\mathbf{E}_{\mathbf{f}}, \mathbf{P}_{\mathbf{f}})$

	de	1 of	

у

Theory and Experiment, Where do we stand?

- D In Good shape. Existing experimental data is in very good agreement, also with theory.
- T,³He Most experiments are in agreement. Theory in good shape.
 - ⁴He The experimental data is all over the place. Realistic nuclear models lead to almost identical results.
- ⁶He,⁶Li For ⁶He only low energy data. For ⁶Li not enough data. High quality calculations with low quality force models.
 - ⁷Li A single inclusive experiment, in good agreement with semi-realistic theory. New exclusive measurments, no theory.
 - ¹⁶O The new frontier of ab-initio calculations - see talk by M. Miorelli.

C

FSI

Photoabsorption

Theory and Experiment, Where do we stand?

- D In Good shape. Existing experimental data is in very good agreement, also with theory.
- T,³He Most experiments are in agreement. Theory in good shape.
 - ⁴He The experimental data is all over the place. Realistic nuclear models lead to almost identical results.
- ⁶He,⁶Li For ⁶He only low energy data. For ⁶Li not enough data. High quality calculations with low quality force models.
 - ⁷Li A single inclusive experiment, in good agreement with semi-realistic theory. New exclusive measurments, no theory.
 - ¹⁶O The new frontier of ab-initio calculations - see talk by M. Miorelli.

ntroduction

Cı

FSI

Photoabsorption

Theory and Experiment, Where do we stand?

- D In Good shape. Existing experimental data is in very good agreement, also with theory.
- T,³He Most experiments are in agreement. Theory in good shape.
 - ⁴He The experimental data is all over the place. Realistic nuclear models lead to almost identical results.
- ⁶He,⁶Li For ⁶He only low energy data. For ⁶Li not enough data. High quality calculations with low quality force models.
 - ⁷Li A single inclusive experiment, in good agreement with semi-realistic theory. New exclusive measurments, no theory.
 - ¹⁶O The new frontier of ab-initio calculations - see talk by M. Miorelli.

(日) (日) (日) (日) (日) (日) (日) (日)

tior	troduction
------	------------

Cu

FSI

Photoabsorption

Theory and Experiment, Where do we stand?

- D In Good shape. Existing experimental data is in very good agreement, also with theory.
- T,³He Most experiments are in agreement. Theory in good shape.
 - ⁴He The experimental data is all over the place. Realistic nuclear models lead to almost identical results.
- ⁶He,⁶Li For ⁶He only low energy data. For ⁶Li not enough data. High quality calculations with low quality force models.
 - ⁷Li A single inclusive experiment, in good agreement with semi-realistic theory. New exclusive measurments, no theory.
 - ¹⁶O The new frontier of ab-initio calculations - see talk by M. Miorelli.

(日) (日) (日) (日) (日) (日) (日) (日)

ntroduction

Cı

FSI

Photoabsorption

Theory and Experiment, Where do we stand?

- D In Good shape. Existing experimental data is in very good agreement, also with theory.
- T,³He Most experiments are in agreement. Theory in good shape.
 - ⁴He The experimental data is all over the place. Realistic nuclear models lead to almost identical results.
- ⁶He,⁶Li For ⁶He only low energy data. For ⁶Li not enough data. High quality calculations with low quality force models.
 - ⁷Li A single inclusive experiment, in good agreement with semi-realistic theory. New exclusive measurments, no theory.
 - ¹⁶O The new frontier of ab-initio calculations see talk by M. Miorelli.

ry

FSI

Photoabsorption

Electron Scatter

(日)

ъ

Conclusions

Six-body Photoabsorption

Bacca, Marchisio, Barnea, Leidemann, Orlandini, PRL 89 (2002)S. Bacca, N. Barnea, W. Leidemann, and G. Orlandini, PRC 69, 057001 (2004)

(

FSI

・ロト ・ 何 ト ・ ヨ ト ・ ヨ ト

Conclusions

Six-body Photoabsorption

Bacca, Marchisio, Barnea, Leidemann, Orlandini, PRL 89 (2002)S. Bacca, N. Barnea, W. Leidemann, and G. Orlandini, PRC 69, 057001 (2004)

Introduction	Theory	Currents	FSI	Photoabsorption	Electron Scattering	Conclusions
--------------	--------	----------	-----	-----------------	---------------------	-------------

Seven-body Photoabsorption - Comparison with experiment

S. Bacca, H. Arenhövel, N. Barnea, W. Leidemann, and G. Orlandini, PLB 603 (2004)

イロト 不得 トイヨト イヨト

-

$$R_{L}(\omega,\boldsymbol{q}) = \sum_{f} \left| \langle \Psi_{f} | \boldsymbol{\rho}(\boldsymbol{q}) | \Psi_{0} \rangle \right|^{2} \delta \left(E_{f} - E_{0} - \omega + \frac{\boldsymbol{q}^{2}}{2M} \right)$$

$$R_{T}(\omega,\boldsymbol{q}) = \sum_{f} \left| \langle \Psi_{f} | J_{T}(\boldsymbol{q}) | \Psi_{0} \rangle \right|^{2} \delta \left(E_{f} - E_{0} - \omega + \frac{\boldsymbol{q}^{2}}{2M} \right)$$

.

FSI

Photoabsorptic

Electron Scattering

Conclusions

Theory and Experiment, Where do we stand?

D In Good shape.

F,³He Most experiments are in agreement. Theory by various groups in good shape.

^{*}He Data from Bates and Saclaey. Realistic calculations available for R_L . No realistic theory for R_T !

(日)

FSI

Photoabsorpti

Electron Scattering

(日)

Conclusions

Theory and Experiment, Where do we stand?

D In Good shape.

 ³He Most experiments are in agreement. Theory by various groups in good shape.
⁴He Data from Bates and Saclaey. Realistic calculations available for R_L. No realistic theory for R_T !

.

FSI

Photoabsorpti

Electron Scattering

Conclusions

Theory and Experiment, Where do we stand?

D In Good shape.

T,³He Most experiments are in agreement. Theory by various groups in good shape.

⁴He Data from Bates and Saclaey. Realistic calculations available for R_L . No realistic theory for R_T !

(日)

(

FSI

Photoabsorpti

Electron Scattering

Conclusions

Theory and Experiment, Where do we stand?

D In Good shape.

- T,³He Most experiments are in agreement. Theory by various groups in good shape.
 - ⁴He Data from Bates and Saclaey. Realistic calculations available for R_L . No realistic theory for R_T !

・ロット (雪) (日) (日)

Bacca et al. PRL 102, 162501 (2009)

Red - Full FSI, Black - PWIA Nuclear potential model AV18+UIX FSI included via the LIT method

A strong FSI effect: Already known from Carlson and Schiavilla (PRL 1992, PRC 1994)

イロト イ理ト イヨト イヨト

Bacca et al. PRC (2010)

Blue - AV18, Red - AV18+UIX, Purple - AV18+TM' B.E./MeV - AV18: 24.27 AV18+UIX: 28.40

AV18+TM': 28.46

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ・ う へ つ ・

- Large sensitivity to 3NF at low q.
- The sensitivity in A = 3 nuclei is much smaller.
- NOT a binding energy effect.
- Quest for measurements, data taken in Mainz.

Transverse Response $R_T(\omega, q)$ - ³A(e,e')X The MEC effects

Leidemann et al. (2009)

Solid - 1-body + MEC, Dotted - 1-body AV18+UIX

Della Monaca et al. PRC 77 (2008)

Dashed - 1-body+rel., Solid - 1-body+rel+MEC, Dotted - 1-body+MEC

- Also calculations by Deltuva, Golak, Viviani, ...
- MEC play a desicive rule at threshold.

・ロット (雪) (日) (日)

э

• A moderate rule at higher energies.

Direct comparison between realistic theory and experiment for $R_T(\omega, q)$ is NOT available.

An indirect comparison was made through the Euclidean response

$$E_T(\tau, \boldsymbol{q}) = \int_{\omega_{th}}^{\infty} d\omega \exp(-\omega \tau) R_T(\omega, \boldsymbol{q})$$

The results indicate for a strong MEC effect in the ⁴He response.

Carlson et al PRC 65 (2002)

ory

Current

FSI

Photoabsorptio

Electron Scattering

Conclusions

Longitudinal Response $R_L(\omega, q)$ - The Isoscalar Monopole The transition form factor $0^+_1 \longrightarrow 0^+_2$ in ⁴He

The isoscalar monopole operator

$$\mathcal{M}(q) = \frac{G_E^s(q)}{2} \sum_i^A j_0(qr_i)$$

Leads to the $\ell = 0$ isoscalar longitudinal response

イロト 不得 トイヨト イヨト

$$R_{\mathcal{M}}(q,\omega) = \sum |\langle \Psi_f | \mathcal{M}(q) | \Psi_0 \rangle|^2 \delta(E_f - E_0 - \omega + \frac{q^2}{2M})$$

For a narrow resonance we separate

$$R_{\mathcal{M}}(q,\omega) = R_{\mathcal{M}}^{\mathrm{res}}(q,\omega) + R_{\mathcal{M}}^{\mathrm{bg}}(q,\omega) \,.$$

The resonance transition form factor

$$|F_{\mathcal{M}}(q)|^2 = \frac{1}{Z^2} \int d\omega R_{\mathcal{M}}^{\text{res}}(q,\omega) \,.$$

The elastic form factor

The inelastic transition form factor

The elastic form factor

The inelastic transition form factor

Cu

FSI

Photoabsorpti

Electron Scattering

Conclusions

The ⁴He 0⁺₂ state - A short summary

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Summary and Conclusions

- Due to EFT, at this point in the development of nuclear theory we have **self-consistent** potentials and currents.
- Applying this theory to **electro-weak** reactions provide an important tool for its verification and for its calibration.
- On the theoretical side there is a reasonable agreement between different methods and potentials.
- Much theoretical work was done with phenomenological potentials \Rightarrow remade with EFT models !!!
- On the experimental side there is a large scatter in photoabsorption on light nuclei, and reasonable agreement on (e, e').
- Specifically, in ³He, ⁴He photoabsorption there is an old controversy and a new dispute.
- R_L is a sensitive probe of the nuclear theory at low q(e, e') experiments.
- The $0^+_1 \longrightarrow 0^+_2$ transition form factor poses a problem to our contemporary understanding.
- Realistic ab-initio calculations for large nuclei is an exciting new development.

Summary and Conclusions

- Due to EFT, at this point in the development of nuclear theory we have **self-consistent** potentials and currents.
- Applying this theory to **electro-weak** reactions provide an important tool for its verification and for its calibration.
- On the theoretical side there is a reasonable agreement between different methods and potentials.
- Much theoretical work was done with phenomenological potentials \Rightarrow remade with EFT models !!!
- On the experimental side there is a large scatter in photoabsorption on light nuclei, and reasonable agreement on (e, e').
- Specifically, in ³He, ⁴He photoabsorption there is an old controversy and a new dispute.
- R_L is a sensitive probe of the nuclear theory at low q(e, e') experiments.
- The $0^+_1 \longrightarrow 0^+_2$ transition form factor poses a problem to our contemporary understanding.
- Realistic ab-initio calculations for large nuclei is an exciting new development.