Lattice Simulations: ¹⁶O Structure and New Methods

Nuclear Lattice EFT Collaboration

Evgeny Epelbaum (Bochum) Hermann Krebs (Bochum) Timo Lähde (Jülich) Dean Lee (NC State) Thomas Luu (Jülich/Bonn) Ulf-G. Meißner (Bonn/Jülich) Gautam Rupak (MS State)

> **TRIUMF** February 19, 2014

Outline

What is lattice effective field theory?

Overview of methods

Oxygen-16 structure and spectrum

Symmetry Sign Interpolation Method

Beryllium-10 ground state

Summary and future directions

Lattice quantum chromodynamics

Lattice effective field theory

Low energy nucleons: Chiral effective field theory

Construct the effective potential order by order

Leading order on the lattice

Next-to-leading order on the lattice

Physical scattering data

Unknown operator coefficients

Spherical wall method

Borasoy, Epelbaum, Krebs, D.L., Meißner, EPJA 34 (2007) 185

Spherical wall imposed in the center of mass frame

Representation	J_z	Example
A_1	$0 \operatorname{mod} 4$	$Y_{0,0}$
T_1	$0, 1, 3 \operatorname{mod} 4$	$\{Y_{1,0},Y_{1,1},Y_{1,-1}\}$
E	$0,2 \operatorname{mod} 4$	$\left\{Y_{2,0}, \frac{Y_{2,-2}+Y_{2,2}}{\sqrt{2}}\right\}$
T_2	$1,2,3 \operatorname{mod} 4$	$\left\{Y_{2,1}, \frac{Y_{2,-2} - Y_{2,2}}{\sqrt{2}}, Y_{2,-1}\right\}$
A_2	$2 \operatorname{mod} 4$	$\frac{Y_{3,2} - Y_{3,-2}}{\sqrt{2}}$

a = 1.97 fm

Three nucleon forces

Two unknown coefficients at NNLO from three-nucleon forces. Determine c_D and c_E using ³H binding energy and the weak axial current at low cutoff momentum.

Neutrons and protons: Isospin breaking and Coulomb

Isospin-breaking and power counting [*Friar*, *van Kolck*, *PRC* 60 (1999) 034006; Walzl, Meißner, Epelbaum NPA 693 (2001) 663; Friar, van Kolck, Payne, Coon, PRC 68 (2003) 024003; Epelbaum, Meißner, PRC72 (2005) 044001...]

Pion mass difference

Coulomb potential

Euclidean time projection

Auxiliary field method

We can write exponentials of the interaction using a Gaussian integral identity

We remove the interaction between nucleons and replace it with the interactions of each nucleon with a background field.

Schematic of lattice Monte Carlo calculation

$$= M_{\rm LO} = M_{\rm approx} = O_{\rm observable}$$
$$= M_{\rm NLO} = M_{\rm NNLO}$$

$$\langle O \rangle_{0,\text{NLO}} = \lim_{n_t \to \infty} Z_{n_t,\text{NLO}}^{\langle O \rangle} / Z_{n_t}$$

Particle clustering included automatically

Oxygen-16 ground state

LO

NLO

EM & IB

3NF

Lähde, Epelbaum, Krebs, D.L, Meißner, arXiv:1311.0477

Oxygen-16 spectrum and structure

Epelbaum, Krebs, Lähde, D.L, Meißner, arXiv:1312.7703, PRL in press

0_{2}^{+}

A - Tetrahedral structure

B,C - Square-like structure

Epelbaum, Krebs, Lähde, D.L, Meißner, arXiv:1312.7703, PRL in press

	LO	NNLO $(2N)$	NNLO $(3N)$	$+ 4N_{eff}$	Exp.
0^+_1	-147.3(5)	-121.4(5)	-138.8(5)	-131.3(5)	-127.62
0^+_2	-145(2)	-116(2)	-136(2)	-123(2)	-121.57
2^+_1	-145(2)	-116(2)	-136(2)	-123(2)	-120.70

	LO	rescaled	Exp.
$r(0_1^+)[\text{fm}]$	2.3(1)		2.710(15)
$r(0_2^+)[{ m fm}]$	2.3(1)		
$r(2_1^+)[\text{fm}]$	2.3(1)		
$Q(2_1^+)[efm^2]$	10(2)	15(3)	
$B(E2, 2_1^+ \to 0_2^+)[e^2 \text{fm}^4]$	22(4)	46(8)	65(7)
$B(E2, 2_1^+ \to 0_1^+)[e^2 \text{fm}^4]$	3.0(7)	6.2(1.6)	7.4(2)
$M(E0, 0_2^+ \to 0_1^+)[e^2 \text{fm}^4]$	2.1(7)	3.0(1.4)	3.6(2)

Epelbaum, Krebs, Lähde, D.L, Meißner, arXiv:1312.7703, PRL in press

Sign oscillations

$$1 = (2 - 1)^{1000}$$

= $2^{1000} - 1000 \cdot 2^{999} + \frac{1000 \cdot 999}{2} \cdot 2^{998} - \cdots$

There are different types of sign oscillation problems. In explicit fermion simulations such as diffusion or Green's function Monte Carlo, the sign problem is due to Fermi statistics. In implicit fermion simulations such as auxiliary-field Monte Carlo, the sign problem is predominantly due to repulsive interactions. *Theorem:* Any fermionic theory with SU(2N) symmetry and two-body potential with negative semi-definite Fourier transform obeys SU(2N) convexity bounds.

Corollary: System can be simulated without sign oscillations

SU(4) convexity bounds

Symmetry Sign Interpolation Method

Start with a physical Hamiltonian of interest that has a sign oscillation problem

 $H_{\rm phys}$

Suppose there exists some SU(2N)-invariant Hamiltonian that can be tuned to reproduce the overall size, binding, and other relevant observables for the system of interest

 $H_{\mathrm{SU}(2N)}$

Construct a one-parameter family interpolating between the two Hamiltonians

$$H_d = (1 - d) \cdot H_{\mathrm{SU}(2N)} + d \cdot H_{\mathrm{phys}}$$

 $\log \left< \mathrm{sign} \right> \sim -t \cdot d^2$

 $\langle \operatorname{sign}(H_{\mathrm{phys}}) \rangle \sim 0.01 \Rightarrow \langle \operatorname{sign}(H_{0.7}) \rangle \sim 0.1$ $\langle \operatorname{sign}(H_{\mathrm{phys}}) \rangle \sim 0.0001 \Rightarrow \langle \operatorname{sign}(H_{0.5}) \rangle \sim 0.1$ $\langle \operatorname{sign}(H_{\mathrm{phys}}) \rangle \sim 0.00000001 \Rightarrow \langle \operatorname{sign}(H_{0.35}) \rangle \sim 0.1$

We now demonstrate the Symmetry Sign Interpolation Method in lattice simulations of the ground state of Beryllium-10. For each energy observable we parameterize the asymptotic dependence of the projected energy as

$$E^{i}(d,t) \rightarrow E^{i}_{\infty}(d) + c^{i}(d) \cdot \exp[-\delta E^{i}(d)t]$$

Beryllium-10

Preliminary results for ground state energy:

Summary

A golden age for nuclear theory from first principles. Big science discoveries being made and many more around the corner.

Lattice effective field theory is a relatively new and promising tool that combines the framework of effective field theory and computational lattice methods. May play a significant role in the future of *ab initio* nuclear theory.

Topics being addressed now and in the near future...

Different lattice spacings, decoupling lattice spacing from ultraviolet regulator, $N \neq Z$ nuclei, elastic and inelastic reactions, neutron matter equation of state and superfluid transition from S-wave to P-wave, etc.