Spin-orbit decomposition of *ab initio* wavefunctions a preliminary report

Calvin Johnson, San Diego State University Supported by a grant from the U.S. Department of Energy

THE **BIGSTICK** CODE

Uses "factorization" algorithm: Johnson, Ormand, and Krastev, Comp. Phys. Comm. **184**, 2761(2013)

Arbitrary single-particle radial waveforms Allows local or nonlocal two-body interaction **Three-body forces implemented and validated** Applies to both nuclear and atomic cases

Runs on both desktop and parallel machines --can run at least dimension 100M+ on desktop (20 Lanczos iterations in 300 CPU minutes)

20-30k lines of codes Fortran 90 + MPI + OpenMP

Atoms :	
	L=0,1,2
	L=0,1

L=0

Atoms :

Spin is minor in atomic physics...

(Niels Bohr) (E. Schrodinger)

(Niels Bohr) (E. Schrodinger)

...but crucial in nuclear physics...

(Maria Goeppert-Mayer)

Johnson - TRIUMF 2014

<u>j-j versus L-S</u>

How good is j-j coupling? How can we tell?

Well, let's see how much a configuration-mixing calculation is approximated by a filled shell

(Maria Goeppert-Mayer)

Let's start with phenomenological forces

(Calculations are standard configurationmixing: diagonalization of Hamiltonian in *m*-scheme Slater determinants, in single major harmonic oscillator shell)

(Maria Goeppert-Mayer)

Johnson - TRIUMF 2014

Let's start with phenomenological forces

(Calculations are standard configurationmixing: diagonalization of Hamiltonian in *m*-scheme Slater determinants, in single major harmonic oscillator shell)

(Maria Goeppert-Mayer)

Johnson - TRIUMF 2014

It gets worse!

Nuclide	Model space	Interaction	g.s. =
³² S	sd	USDB	29 % (Od $_{5/2}$) ¹² (1s $_{\frac{1}{2}}$) ⁴
²⁸ Si	sd	USDB	21% (0d _{5/2}) ¹²
¹² C	р	Cohen- Kurath	37% (0p _{3/2}) ⁸

Oh no! I guess there *is* a lot of configuration mixing!

(Maria Goeppert-Mayer)

Let's see if there is a simpler picture, such as L-S coupling.

Let's see if there is a simpler picture, such as L-S coupling.

Nuclide	Model space	Interaction	g.s. =	g.s. =
⁴⁸ Ca	pf	KB3G	90 % (Of _{7/2}) ⁸	20% L = 0
²⁴ O	sd	USDB	91% (0d _{5/2}) ⁶ (1s _½) ²	34% L = 0
²² O	sd	USDB	75% (0d _{5/2}) ⁶	38% L = 0
⁸ He	р	Cohen-Kurath	53 % (0p _{3/2}) ⁴	96% L = 0
³² S	sd	USDB	29 % (0d _{5/2}) ¹² (1s _½) ⁴	34% L = 0
²⁸ Si	sd	USDB	21% (0d _{5/2}) ¹²	36% L = 0
¹² C	р	Cohen-Kurath	37% (0p _{3/2}) ⁸	82% L = 0

This illustrates a (once) well-known fact: that L-S coupling is a better approximation in the *p*-shell than *j*-*j* coupling.

Let's now do L-S decomposition of *ab initio p*-shell wavefunctions

Why?

-- To see if this pattern holds for *ab initio* interactions-- How well do phenomenological interactions match *ab initio*?

-- Crucially, we know the 3-body forces strongly affects the spin-orbit force. Can we see this happen directly? *Note:* In this talk I only give 2-body results. Need 3-body forces...

^{12}C

Phenomenological Cohen-Kurath force (1965) in 0p shell m-scheme dimension: 51

NCSM: N3LO chiral 2-body force SRG evolved^{*} to $\lambda = 2.0$ fm⁻¹, N_{max} = 6, $\hbar\omega$ =22 MeV *m*-scheme dimension: 35 million

(Calculations carried out using BIGSTICK shell-model code: Johnson, Ormand, and Krastev, Comp. Phys. Comm. 184, 2761 (2013).)

*code courtesy of P. Navratil, any mistakes in using it are mine!

How are those decompositions calculated?

Naïve method: Solve eigenpair problems, e.g.

 $\mathbf{H} \mid \Psi_n > = \mathbf{E}_n \mid \Psi_n >$

and

L² | 1; α > = 1(1+1) | 1; α >

...and then take overlaps, $| < l; \alpha | \Psi_n > |^2$

PROBLEM: the spectrum of L^2 is highly degenerate (labeled by α); Need to sum over all α not orthogonal to $| \Psi_n > !$

There is another way

(Cornelius Lanczos)

(Cornelius Lanczos)

There is another way

The Lanczos Algorithm!

(Cornelius Lanczos)

There is another way

$$\begin{aligned} \mathbf{A}\vec{v}_1 &= \alpha_1\vec{v}_1 + \beta_1\vec{v}_2 \\ \mathbf{A}\vec{v}_2 &= \beta_1\vec{v}_1 + \alpha_2\vec{v}_2 + \beta_2\vec{v}_3 \\ \mathbf{A}\vec{v}_3 &= \beta_2\vec{v}_2 + \alpha_3\vec{v}_3 + \beta_3\vec{v}_4 \\ \mathbf{A}\vec{v}_4 &= \beta_3\vec{v}_3 + \alpha_4\vec{v}_4 + \beta_4\vec{v}_5 \end{aligned}$$

Starting from some initial vector (the "pivot") v_1 , the Lanczos algorithm iteratively creates a new basis (a "Krylov space") in which to diagonalize the matrix **A**.

Eigenvectors are then expressed as a linear combination of the "Lanczos vectors": $|\psi\rangle = c_1 |v_1\rangle + c_2 |v_2\rangle + c_3 |v_3\rangle + ...$

(Cornelius Lanczos)

There is another way

Eigenvectors are expressed as a linear combination of the "Lanczos vectors":

$$\Psi > = c_1 |v_1> + c_2 |v_2> + c_3 |v_3> + ...$$

It is easy to read off the overlap of an eigenstate with the "pivot" :

 $| < v_1 | \psi > |^2 = c_1^2$

Furthermore, the only eigenvectors (of **A**) that are contained in the Krylov space are those with nonzero overlap with the pivot $|v_1>$.

If **A** is say L^2 then we can efficiently expand any state $|v_1\rangle$ into its components with good L.

(Cornelius Lanczos)

There is another way

This trick has been applied before

Computing strength functions

Caurier, Poves, and Zuker, Phys. Lett. B252, 13 (1990); PRL 74, 1517 (1995) Caurier *et al*, PRC 59, 2033 (1999) Haxton, Nollett, and Zurek, PRC 72, 065501 (2005)

Decomposition of wavefunction into SU(3) components, looking at effect of spin-orbit force: V. Gueorguiev, J. P Draayer, and C. W. J., PRC 63, 014318 (2000).

Present calculations carried out using BIGSTICK shell-model code: Johnson, Ormand, and Krastev, Comp. Phys. Comm. 184, 2761 (2013).

$^{10}\mathbf{B}$

Phenomenological Cohen-Kurath m-scheme dimension: 84

NCSM: N3LO chiral 2-body force SRG evolved to $\lambda = 2.0 \text{ fm}^{-1}$, $N_{\text{max}} = 6$, $\hbar\omega=22 \text{ MeV}$ *m*-scheme dimension: 12 million

$^{11}\mathbf{B}$

Phenomenological Cohen-Kurath *m*-scheme dimension: 62

NCSM: N3LO chiral 2-body force SRG evolved to $\lambda = 2.0$ fm⁻¹, N_{max} = 6, $\hbar\omega$ =22 MeV *m*-scheme dimension: 20 million

⁹Be

Phenomenological Cohen-Kurath *m*-scheme dimension: 62

NCSM: N3LO chiral 2-body force SRG evolved to $\lambda = 2.0$ fm⁻¹, N_{max} = 6, $\hbar\omega$ =22 MeV *m*-scheme dimension: 5.2 million

I can further decompose each component of good L into components of good S.... I just choose a few cases from ¹¹B.

I can further decompose each component of good L into components of good S.... I just choose a few cases from ¹¹B.

 11 B, 5/2_1

Summary and future work:

*We can decompose shell-model wavefunctions into L-S components (in particular using the Lanczos trick)

* Both phenomenological interactions in the *p*-shell (Cohen-Kurath, 1965) and *ab initio* forces yield very similar results, especially in L-components. Full LS-decomposition may show more differences.

* The next step is to add in 3-body forces and see(a) what states change the most and(b) if they bring any states closer to phenomenology

contact me at cjohnson @ mail.sdsu.edu