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Introduction

• The nucleus-nucleus bremsstrahlung is a specific bremsstrahlung where the
photon emission is induced by a collision between two nuclei or a nucleus and a
neutron.

A part of the kinetic energy between the nuclei is converted to a photon.



Introduction

The study of the nucleus-nucleus bremsstrahlung should enable us

• to describe the radiative transitions between unstable states (cf. recent
measurements of "4+-to-2+" gamma transitions in 8Be from the α(α, ααγ)
bremsstrahlung)
[V. M. Datar et al., Phys. Rev. Lett. 94, (2005) 122502]

[V. M. Datar et al., Phys. Rev. Lett. 111 (2013) 062502]

• to describe the t(d ,nγ)α radiative transfer reaction (perspective to diagnose
plasmas in fusion experiments from this reaction)
[T. J. Murphy et al., Rev. Sci. Instrum. 72 (2001) 773]

• to provide the cluster wave functions (phase-equivalent potentials can lead to
different bremsstrahlung cross sections)
[D. Baye, P. Descouvemont, and M. Kruglanski, Nucl. Phys. A 550 (1992) 250]



Introduction

• Since the electromagnetic forces are much weaker than the nuclear ones, the
electromagnetic emission process can be seen as a small perturbation of the
elastic scattering.

⇒ necessity to have a fair description of the elastic scattering
⇒ necessity to follow ab initio and effective approaches



Outline

• Describing the elastic scattering by a microscopic approach
− effective and realistic internucleon interactions
− resonating-group method (RGM) and the no-core shell model/RGM
− Application to the α+ N scattering and comparison with the experiment

• Describing the bremsstrahlung by a microscopic approach
− Electric transition multipole operators from the nuclear current
− Siegert approach: electric transition multipole operators from the charge

density
− Comments about the calculation of the matrix elements
− Application to the α+ N bremsstrahlung (in the effective approach)
− (Very) preliminary results for the α+ p bremsstrahlung with the NCSM/RGM



Microscopic approach

For an A-nucleon system, in non-relativistic microscopic model, all physical quantities
are derived from the internal many-body Schrödinger equation

HΨ =

 A∑
i=1

p2
i

2mN
+

A∑
i>j=1

vij +
A∑

i>j>k=1

vijk − Tc.m.

Ψ = ET Ψ,

where

• p2
i /2mN is the kinetic energy of nucleon i

• vij is a two-body interaction between nucleons i and j

• vijk is a three-body interaction between nucleons i , j , and k

• Tc.m. is the kinetic energy of the center of mass



Internucleon interaction

Two types of internucleon interaction are considered:
• an effective NN interaction (Minnesota potential)

− central and spin-orbit part
− soft potential adapted to simple cluster wave function
− one or two parameters fitted to reproduce the elastic phase shifts of the considered

collision

• a realistic NN(+NNN) interactions (chiral NN+NNN interaction renormalized by
SRG)
− reproduces very well the NN phase shifts
− "no free parameter"
− requires a quite large model space to converge



Resonating-group method

In the RGM, the wave function is expanded as a sum of cluster functions,

AΦ1(ξ(1))Φ2(ξ(2))g(ρ)



Resonating-group method

In the RGM, the wave function is expanded as a sum of cluster functions,

ΨJMπ;TMT =
∑
ν

AΦ
JMπ;TMT
ν

(
ξ(1), ξ(2),Ωρ

) gJπ;TMT
ν (ρ)

ρ

where

Φ
JMπ;TMT
ν

(
ξ(1), ξ(2),Ωρ

)
=

[[
Φ

Iν1πν1 ;Tν1
ν1

(
ξ(1)
)

Φ
Iν2πν2 ;Tν2
ν2

(
ξ(2)
)]I;TMT

Y`(Ωρ)

]JMπ

and ν = ν1ν2I`. Two types of internal wave functions of the clusters are considered

• Φ
Iν1πν1 ;Tν1
ν1 and Φ

Iν2πν2 ;Tν2
ν2 are the goundstate waves functions in the

harmonic-oscillator shell model (Ex: α described by a (0s)4 state)

• Φ
Iν1πν1 ;Tν1
ν1 and Φ

Iν2πν2 ;Tν2
ν2 are the NCSM eigenstates of the clusters for the

considered nuclear interaction (→ NCSM/RGM).



Resonating-group method

Inserting the RGM expansion in the variational form of the Schrödinger equation

〈δΨJMπ;TMT |H − ET |ΨJMπ;TMT 〉 = 0,

leads to the RGM equations

∑
ν

∫
r2[H

JMπ;TMT
ν′ν (r ′, r)− ETN

JMπ;TMT
ν′ν (r ′, r)]

gJπ;TMT
ν (r)

r
dr = 0,

where

H
JMπ;TMT
ν′ν (r ′, r) = 〈ΦJMπ;TMT

ν′
δ(ρ− r ′)
ρr ′

|A†HA|ΦJMπ;TMT
ν

δ(ρ− r)

ρr
〉

N
JMπ;TMT
ν′ν (r ′, r) = 〈ΦJMπ;TMT

ν′
δ(ρ− r ′)
ρr ′

|A†A|ΦJMπ;TMT
ν

δ(ρ− r)

ρr
〉

Comment
By expanding g

Jπ;TMT
ν as a sum of projected Gaussians, RGM⇒Generator-coordinate method (GCM)⇒ Kernels

are matrix elements between Slater determinants (cf. Daniel Baye’s talk)
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Microscopic R-matrix method (MRM)

0 a ρ

Internal region External region

Microscopic description -Antisymmetrization between
clusters neglected

-Only Coulomb interaction
between clusters

[D. Baye, P.-H. Heenen, and M. Libert-Heinemann, Nucl. Phys. A 291 (1977) 230]

[P. Descouvemont and D. Baye, Rep. Prog. Phys. 73 (2010) 036301]



α + p phase shifts (effective potential)
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Experimental data from [Satchler, Owen, Elwyn, Morgan and Walter, Nucl. Phys. A 112 (1968) 1]



α + n phase shifts (effective potential)
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Experimental data from [Morgan and Walter, Phys. Rev. 168 (1968) 1114]



Bremsstrahlung cross sections

The calculation of bremsstrahlung cross sections is based on the matrix elements

〈Ψ−f (Ωf )|Mσ
λµ|Ψ

+
i 〉,

where

• Ψ+
i is the initial incoming state in the z direction

• Ψ−f (Ωf ) is the final outgoing state

• Mσ
λµ are the electromagnetic transition multipole operators, which are defined by

Mσ
λµ = (−i)σ

√
λ

λ+ 1
(2λ+ 1)!!

kλγ c

∫
J(r) · Aσλµ(r)dr ,

where J is the intrinsic nuclear current density and Aσλµ are the electromagnetic
multipole operators.

• Since the electric transitions dominate at low photon energies, the magnetic
transitions are not considered here.



Electric transitions

ME
λµ = (−i)σ

√
λ

λ+ 1
(2λ+ 1)!!

kλγ c

∫
J(r) · AE

λµ(r)dr ,

• The nuclear current is caused by the motion of the nucleons and also by the
motion of the mesons which are responsible for the nucleon-nucleon (NN)
interaction

Difficulties

• J depends on the considered NN potential (More complex is the NN potential,
more complex is the current)

• J is not defined unequivocally.

These difficulties can be bypassed at low-photon energies by using an extended
Siegert theorem, which enables us to reduce the nuclear current dependence.

References
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Extended Siegert theorem

ME
λµ =

√
λ

λ+ 1
(2λ+ 1)!!

kλγ c

∫
J(r) · AE

λµ(r)dr ,

where

AE
λµ(r) =

i

kγ
√
λ(λ+ 1)

(
k2
γr + ∇

∂

∂r
r
)

jλ(kγ r)Yλµ(Ω)

• The deletion of the current dependence of the electric transition at low photon
energies relies on the fact that AE

λµ is reduced to a gradient term at the
long-wavelength approximation,

AE
λµ(r) −→

kγ→0

i
√
λ+ 1kλ−1

γ√
λ(2λ+ 1)!!

∇rλYµλ (Ω).

• BUT the long-wavelength approximation cannot be done. Since the initial and final
states are in the continuum, the wave functions are not square-integrable and the
long-wavelength approximation leads to divergent integrals.



Extended Siegert theorem

• To reduce the current dependence without applying the long-wavelength
approximation, the idea is to introduce an approximate electric transition multipole
operator, denoted by M̃E

λµ, in which AE
λµ is approximate only by a gradient term

M̃E
λµ =

√
λ

λ+ 1
(2λ+ 1)!!

kλγ c

∫
J(r) ·∇Φλµ(r)dr ,

where
||∇Φλµ||
||AE

λµ||
−→

kγ→0
1.

Possible choice:

Φλµ(r) =
i
√
λ+ 1

kγ
√
λ

jλ(kγ r)Yλµ(Ω).

After integrating by parts and by using the continuity equation

∇ · J(r) +
i
~

[H, ρ(r)] = 0,

where ρ is the charge density, the operator M̃E
λµ can be written as

M̃E
λµ = i

√
λ

λ+ 1
(2λ+ 1)!!

kλγ ~c

∫
[H, ρ(r)]Φλµ(r)dr .



Extended Siegert theorem

M̃E
λµ = i

√
λ

λ+ 1
(2λ+ 1)!!

kλγ ~c

∫
[H, ρ(r)]Φλµ(r)dr .

In the calculation of the matrix elements between Ψ−f and Ψ+
i , M̃E

λµ is equivalent to

M̃
E(S)
λµ = −i

√
λ

λ+ 1
(2λ+ 1)!!

kλ−1
γ

∫
ρ(r)Φλµ(r)dr .

• M̃E
λµ and M̃

E(S)
λµ lead to the same results if consistent current and charge densities

and exact eigenstates of the Hamiltonian are used.

• M̃
E(S)
λµ depends on the charge density but not on the current density.



Extended Siegert theorem

Back to the "exact" electric transition multipole operator. It can be written as

ME
λµ = M̃E

λµ + (ME
λµ − M̃E

λµ).

By analogy, the Siegert form can be defined as

M
E(S)
λµ = M̃

E(S)
λµ + (ME

λµ − M̃E
λµ).

• ME
λµ and M

E(S)
λµ lead exactly to the same results if consistent current and charge

densities are considered and the exact eigenstates of the Hamiltonian are used.

• At low photon energies, the contribution of M̃E(S)
λµ dominates

• The operator ME(S)
λµ should be preferred in microscopic calculations because

1. it leads to easier calculations than ME
λµ

2. the charge density is better known than the current density
3. to avoid derivatives of the wave functions which are known less accurately than the wave

function itself



Charge and current densities

• Charge and current densities for free nucleons are considered

ρ(r) = e
A∑

j=1

(
1
2
− tj3)δ(r j − Rc.m. − r),

J(r) =
e

2mN

A∑
j=1

(
1
2
− tj3)

[
pj − A−1Pc.m., δ(r j − Rc.m. − r)

]
+

+
e

2mN

A∑
j=1

gsj∇× δ(r j − Rc.m. − r)sj ,

where [a,b]+ is a shorthand notation for a · b + b · a and gsj is the gyromagnetic
factor.



Electric transition multipole operators

• The non-Siegert electric transition multipole operators are given explicitly by

ME
λµ =

ie(2λ+ 1)!!

mNc(λ+ 1)kλ+1
γ

A∑
j=1

[(
1
2
− tj3

)
χλµ(kγ , r) ·

(
pj − A−1Pc.m.

)
−

1
2

k2
γgsj (r ×∇)φλµ(kγr) · sj

]
r=r j−Rc.m.

,

where

χλµ(kγ , r) =

(
k2
γr + ∇

∂

∂r
r
)
φλµ(kγr),

φλµ(kγr) = jλ(kγ r)Yλµ(Ω).



Electric transition multipole operators

• The Siegert electric transition multipole operators are given explicitly by

M
E(S)
λµ =

e(2λ+ 1)!!

kλγ

A∑
j=1

(
1
2
− tj3

)
φλµ

[
kγ
(
r j − Rc.m.

)]

+
ie(2λ+ 1)!!

2mNc(λ+ 1)kλ+1
γ

A∑
j=1

{(
1
2
− tj3

)
[
χλµ(kγ , r)− (λ+ 1)∇φλµ(kγr),pj − A−1Pc.m.

]
+

−k2
γgsj (r ×∇)φλµ(kγr) · sj

}
r=r j−Rc.m.

.



Calculation of the matrix elements

The reduced matrix element of Mλ (ME
λ or ME(S)

λ ) is approximated with a good
accuracy by

〈ΨJfπf ;Tf ||Mλ||ΨJiπi ;Ti 〉 = 〈ΨJfπf ;Tf
int ||Mλ||Ψ

Jiπi ;Ti
int 〉int + 〈ΨJfπf ;Tf

ext ||Mλ||Ψ
Jiπi ;Ti
ext 〉ext

≈ 〈ΨJfπf ;Tf
int ||M̂λ||Ψ

Jiπi ;Ti
int 〉int + 〈ΨJfπf ;Tf

ext ||Mas
λ ||Ψ

Jiπi ;Ti
ext 〉ext

where M̂λ is the long-wavelength approximation of Mλ and the superscript as
designates the asymptotic form of the multipole operator.

• Over the external region, the antisymmetrization between clusters can be
neglected.

• The long-wavelength approximation can be done for the matrix elements between
the internal parts of the wave functions because they are square-integrable

M̂E
λµ =

ie
mNckγ

A∑
j=1

(
1
2
− tj3

)[
∇rλYµλ (Ω)

]
r j−Rc.m.

·
(

pj − A−1Pc.m.

)

M̂
E(S)
λµ = e

A∑
j=1

(
1
2
− tj3

)[
rλYµλ (Ω)

]
r j−Rc.m.



Eλ operator in the RGM/GCM

• In the GCM, the calculation of the matrix elements of the electric multipole can be
done by using the single-nucleon coordinates

• The evaluation of the Eλ matrix elements requires the calculation of matrix
elements of the one-body operator

M̂E
λµ =

ie
mNckγ

A∑
j=1

(
1
2
− tj3

)[
∇rλj Yµλ (Ωj )

]
· pj

in the non-Siegert approach and

M̂
E(S)
λµ = e

A∑
j=1

(
1
2
− tj3

)[
rλj Yµλ (Ωj )

]
in the Siegert approach evaluated between Slater determinants.

• ⇒ systematic calculation

References
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E1 operator in the NCSM/RGM

E1 operator in the Siegert approach can be written in vector notation as

E1 = e
A∑

j=1

(
1
2
− tj3

)(
r j − Rc.m.

)

= e
A1∑
j=1

(
1
2
− tj3

)(
r j − R(1)

c.m.

)
+ e

A∑
j=A1+1

(
1
2
− tj3

)(
r j − R(2)

c.m.

)
+ eZ (1)

eff ρ

= E1(1) + E1(2) + eZ (1)
eff ρ

where

Z (λ)
eff = Z1

(
A2

A

)λ
+ Z2

(
−A1

A

)λ



E1 operator in the NCSM/RGM

For α+ p,

E1 = E1(1) + E1(2) + eZ (1)
eff ρ

= −e
A−1∑
i=1

r i ti3 + eZ (1)
eff ρ

• matrix element of eZ (1)
eff ρ calculated from the norm kernels (already required for

the scattering calculation)

• matrix element of −e
∑A−1

i=1 r i ti3 calculated from the one-body and two-body
density matrix elements of the α (already required for the scattering calculation)

• Required some method for eliminating the center-of-mass motion for an operator
which modifies parity, angular momentum, and isospin.

• Required to apply the SRG transform to obtain very accurate results (cf. Sofia
Quaglioni’s talk).



α + N bremsstrahlung

0

2

4

6

8

10

12

0 4 8 12 16

dσ
/d

E
γ

(µ
b/

M
eV

)

Ei (MeV)

1

5
9

(a)α + p (E1)

0

2

4

6

8

10

12

0 4 8 12 16
dσ
/d

E
γ

(µ
b/

M
eV

)

Ei (MeV)

1 5

9 (b)α + n (E1)

JDE, Phys. Rev. C, in press



α + N bremsstrahlung
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Effective charge

• The ratio of the orders of magnitude of the electric transition contributions can be
explained by comparing the effective charges defined by

Z (λ)
eff = Z1

(
A2

A

)λ
+ Z2

(
−A1

A

)λ
• In first approximation, the ratio between the contributions of a given electric

transition for the α+ p and α+ n bremsstrahlung cross sections is given by the
square of the ratio between the effective charges

dσ(αp,Eλ)

dσ(αn,Eλ)
≈

Z (λ)
eff,αp

Z (λ)
eff,αn

2



NCSM/RGM

0

2

4

6

8

10

12

0 4 8 12 16

dσ
/d

E
γ

(µ
b/

M
eV

)

Ei (MeV)

1

5
9

(a)α + p (E1)

0

2

4

6

8

10

12

0 4 8 12 16
dσ
/d

E
γ

(µ
b/

M
eV

)

Ei (MeV)

1

5

α + p (E1) Preliminary



Coplanar configuration
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In the so-called Harvard geometry, the photon is undetected.



α(N, αN)γ bremsstrahlung
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Experimental data from [W. Wölfli, J. Hall, and R. Müller, Phys. Rev. Lett. 27 (1971) 271]



Summary

• A microscopic approach of the nucleus-nucleus bremsstrahlung is presented,
which is based on elastic wave functions deduced from an internucleon
interaction.

• The microscopic model based on an effective NN interaction (the Minnesota
potential) reproduces rather well the experimental bremsstrahlung cross sections
for α+ N.

• A Siegert approach of bremsstrahlung is developed, which takes partially the
meson-exchange currents into account.

• The Siegert operator leads to less complicated calculations than the non-Siegert
one, which makes easier the development of ab initio bremsstrahlung models (in
progress).
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