Purpose: Accurate description of 1+N reactions

Elastic: 1+N

Inelastic: 1+N*

Transfer: 1*+N'

Breakup: $N_1+N_2+...+N_m=N+1$

Purpose: Accurate description of 1+N reactions

Elastic: 1+N

Inelastic: 1+N*

Transfer: 1*+N'

Breakup: $N_1+N_2+...+N_m=N+1$

N+1 wave function
$$\longrightarrow$$
 $H = T + V; (H - E) \Psi_{N+1} = 0$

Coordinates: One radial coordinate ρ and 3N-1 angles

$$\Psi_{N+1} \stackrel{\rho \to \infty}{\longrightarrow} \mathbb{I} \cdot F + S \cdot G \qquad (T - E) F, G = 0$$

Purpose: Accurate description of 1+N reactions

Elastic: 1+N

Inelastic: 1+N*

Transfer: 1*+N'

Breakup: $N_1+N_2+...+N_m=N+1$

E. Garrido – Nuclear Structure & Reactions: Experimental and Ab Initio Theoretical Perspectives, Vancouver 18-21 Feb. 2014

Purpose: Accurate description of 1+N reactions

- ✓ Problem 1: Already for N=2 accurate calculation of the asymptotic part of the radial wave functions can be rather complicated.
- ✓ Problem 2: Even when done, it is not guaranteed that the extracted Smatrix is also accurate.
- ✓ Solution: Extract the S-matrix from the internal part of the wave function.

N+1 wave function
$$\longrightarrow$$
 $H = T + V; (H - E) \Psi_{N+1} = 0$

Coordinates: One radial coordinate ρ and 3N-1 angles

$$\Psi_{N+1} \stackrel{\rho \to \infty}{\longrightarrow} \mathbb{I} \cdot F + S \cdot G \qquad (T - E) F, G = 0$$

Purpose: Accurate description of 1+N reactions

- ✓ Problem 1: Already for N=2 accurate calculation of the asymtotic part of the radial wave functions can be rather complicated.
- ✓ Problem 2: Even when done, it is not guaranteed that the extracted Smatrix is also accurate.
- ✓ Solution: Extract the S-matrix from the internal part of the wave function.

N+1 wave function
$$\longrightarrow$$
 $H = T + V; (H - E) \Psi_{N+1} = 0$

$$\Psi_{N+1} = \Psi_c + A \cdot F + B \cdot G, \qquad S = A^{-1}B$$

$$\Psi_{N+1} \stackrel{\rho \to \infty}{\longrightarrow} \mathbb{I} \cdot F + S \cdot G \qquad (T - E) F, G = 0$$

E. Garrido - Nuclear Structure & Reactions: Experimental and Ab Initio Theoretical Perspectives, Vancouver 18-21 Feb. 2014

$$W(\Psi_{N+1}, G) = \Psi_{N+1}(\nabla G) - (\nabla \Psi_{N+1})G = A$$
$$W(\Psi_{N+1}, F) = \Psi_{N+1}(\nabla F) - (\nabla \Psi_{N+1})F = -B$$
$$W(F, G) = F(\nabla G) - (\nabla F)G = \mathbb{I}$$

N+1 wave function
$$\longrightarrow$$
 $H = T + V; (H - E) \Psi_{N+1} = 0$

$$\Psi_{N+1} = \Psi_c + A \cdot F + B \cdot G, \qquad S = A^{-1}B$$

$$\Psi_{N+1} \xrightarrow{\rho \to \infty} \mathbb{I} \cdot F + S \cdot G \qquad (T-E) F, G = 0$$

$$W(\Psi_{N+1}, G) = \Psi_{N+1}(\nabla G) - (\nabla \Psi_{N+1})G = A$$
$$W(\Psi_{N+1}, F) = \Psi_{N+1}(\nabla F) - (\nabla \Psi_{N+1})F = -B$$
$$\nabla W(\Psi_{N+1}, G) = \Psi_{N+1}(\nabla^2 G) - (\nabla^2 \Psi_{N+1})G$$
$$\nabla W(\Psi_{N+1}, F) = \Psi_{N+1}(\nabla^2 F) - (\nabla^2 \Psi_{N+1})F$$

N+1 wave function
$$\longrightarrow$$
 $H = T + V; (H - E) \Psi_{N+1} = 0$

$$\Psi_{N+1} = \Psi_c + A \cdot F + B \cdot G, \qquad S = A^{-1}B$$

$$\Psi_{N+1} = \Psi_c + A \cdot F + B \cdot G, \qquad (T - F) = C - 0$$

$$\Psi_{N+1} \xrightarrow{\rho \to \infty} \mathbb{I} \cdot F + S \cdot G \qquad (T - E) F, G = 0$$

$$W(\Psi_{N+1}, G) = \Psi_{N+1}(\nabla G) - (\nabla \Psi_{N+1})G = A$$
$$W(\Psi_{N+1}, F) = \Psi_{N+1}(\nabla F) - (\nabla \Psi_{N+1})F = -B$$
$$\nabla W(\Psi_{N+1}, G) = \Psi_{N+1}(\nabla^2 G) - (\nabla^2 \Psi_{N+1})G$$
$$\nabla W(\Psi_{N+1}, F) = \Psi_{N+1}(\nabla^2 F) - (\nabla^2 \Psi_{N+1})F$$

N+1 wave function \longrightarrow $H = T + V; (H - E) \Psi_{N+1} = 0$

$$\begin{aligned} \mathbf{A} &= -\frac{2m}{\hbar^2} \left[\langle \Psi | H - E | G \rangle - \langle G | H - E | \Psi \rangle^T \right] \\ -\mathbf{B} &= \frac{2m}{\hbar^2} \left[\langle F | H - E | \Psi \rangle^T - \langle \Psi | H - E | F \rangle \right] \end{aligned}$$

$$\begin{split} W(\Psi_{N+1},G) &= \Psi_{N+1}(\nabla G) - (\nabla \Psi_{N+1})G = A\\ W(\Psi_{N+1},F) &= \Psi_{N+1}(\nabla F) - (\nabla \Psi_{N+1})F = -B\\ \text{If }\Psi \text{ is an exact solution} \Rightarrow \begin{cases} \langle F|H - E|\Psi \rangle = 0\\ \langle G|H - E|\Psi \rangle = 0 \end{cases} \end{split}$$

N+1 wave function
$$\longrightarrow H = T + V; (H - E) \Psi_{N+1} = 0$$

$$\begin{aligned} \mathbf{A} &= -\frac{2m}{\hbar^2} \left[\langle \Psi | H - E | G \rangle - \langle G | H - E | \Psi \rangle^T \right] \\ -\mathbf{B} &= \frac{2m}{\hbar^2} \left[\langle F | H - E | \Psi \rangle^T - \langle \Psi | H - E | F \rangle \right] \end{aligned}$$

$$\begin{split} W(\Psi_{N+1},G) &= \Psi_{N+1}(\nabla G) - (\nabla \Psi_{N+1})G = A\\ W(\Psi_{N+1},F) &= \Psi_{N+1}(\nabla F) - (\nabla \Psi_{N+1})F = -B\\ \text{If }\Psi \text{ is an exact solution} \Rightarrow \begin{cases} \langle F|H - E|\Psi \rangle = 0\\ \langle G|H - E|\Psi \rangle = 0 \end{cases} \end{split}$$

N+1 wave function
$$\longrightarrow H = T + V; \ (H - E) \Psi_{N+1} = 0$$

 $\Psi_{N+1} \xrightarrow{\rho \to \infty} A \cdot F + B \cdot G, \quad S = A^{-1}B$
 $A = -\frac{2m}{\hbar^2} \langle \Psi | H - E | G \rangle; \quad B = \frac{2m}{\hbar^2} \langle \Psi | H - E | F \rangle$

Purpose: Accurate description of 1+N reactions

✓ The Kohn Variational Principle establishes that each matrix element of $A^{-1}B + \frac{2m}{\hbar^2}A^{-1}\langle \Psi_t | H - E | \Psi_t \rangle (A^{-1})^T$

is a stationary with respect to variations in the trial wave function

N+1 wave function
$$\longrightarrow H = T + V; \ (H - E) \Psi_{N+1} = 0$$

$$\Psi_{N+1} \stackrel{\rho \to \infty}{\longrightarrow} A \cdot F + B \cdot G, \qquad S = A^{-1}B$$
$$A = -\frac{2m}{\hbar^2} \langle \Psi | H - E | G \rangle; \qquad B = \frac{2m}{\hbar^2} \langle \Psi | H - E | F \rangle$$

Purpose: Accurate description of 1+N reactions

✓ The Kohn Variational Principle establishes that each matrix element of $A^{-1}B + \frac{2m}{\hbar^2}A^{-1}\langle \Psi_t | H - E | \Psi_t \rangle (A^{-1})^T$

is a stationary with respect to variations in the trial wave function

✓ When using the trial functions the expressions of the matrices A and B are still valid **up to second order** $\delta \Psi = \Psi - \Psi_t$

C. Romero-Redondo et al. PRA 83 (2011) 022705, PRL 103 (2009) 090402

N+1 wave function
$$\longrightarrow H = T + V; \ (H - E) \Psi_{N+1} = 0$$

$$\Psi_{N+1} \stackrel{\rho \to \infty}{\longrightarrow} A \cdot F + B \cdot G, \qquad S = A^{-1}B$$
$$A = -\frac{2m}{\hbar^2} \langle \Psi_t | H - E | G \rangle; \qquad B = \frac{2m}{\hbar^2} \langle \Psi_t | H - E | F \rangle$$

Purpose: Accurate description of 1+N reactions

Elastic: 1+N

Inelastic: 1+N*

Transfer: 1*+N'

Breakup: $N_1+N_2+...+N_m=N+1$

$$B_{ij} = \frac{2m}{\hbar^2} \int d\tau \Psi_t^i(\tau) (H - E) F_j(\tau) \qquad S = A^{-1}B$$
$$A = -\frac{2m}{\hbar^2} \langle \Psi_t | H - E | G \rangle; \quad B = \frac{2m}{\hbar^2} \langle \Psi_t | H - E | F \rangle$$

E. Garrido – Nuclear Structure & Reactions: Experimental and Ab Initio Theoretical Perspectives, Vancouver 18-21 Feb. 2014

Purpose: Accurate description of 1+N reactions

E. Garrido – Nuclear Structure & Reactions: Experimental and Ab Initio Theoretical Perspectives, Vancouver 18-21 Feb. 2014

Results for 1+2 reactions with the adiabatic expansion method

$$\rho^2 = x^2 + y^2; \quad \alpha = \arctan(x/y)$$

$$\hat{\mathcal{H}} = -\frac{\hbar^2}{2m}\hat{T}_{\rho} + \hat{\mathcal{H}}_{\Omega} \qquad \hat{\mathcal{H}}_{\Omega}\Phi_n(\rho,\Omega) = \frac{\hbar^2}{2m}\frac{1}{\rho^2}\lambda_n(\rho)\Phi_n(\rho,\Omega)$$

Results for 1+2 reactions with the adiabatic expansion method

$$\Psi_t(\rho,\Omega) = \frac{1}{\rho^{5/2}} \sum_n f_n(\rho) \Phi_n(\rho,\Omega); \quad \rho^2 = x^2 + y^2; \quad \alpha = \arctan(x/y)$$

$$\hat{\mathcal{H}} = -\frac{\hbar^2}{2m}\hat{T}_{\rho} + \hat{\mathcal{H}}_{\Omega} \qquad \hat{\mathcal{H}}_{\Omega}\Phi_n(\rho,\Omega) = \frac{\hbar^2}{2m}\frac{1}{\rho^2}\lambda_n(\rho)\Phi_n(\rho,\Omega)$$

$$\Psi_t(\rho,\Omega) = \frac{1}{\rho^{5/2}} \sum_n f_n(\rho) \Phi_n(\rho,\Omega); \quad \rho^2 = x^2 + y^2; \quad \alpha = \arctan(x/y)$$

$$\begin{aligned} \hat{\mathcal{H}} &= -\frac{\hbar^2}{2m} \hat{T}_{\rho} + \hat{\mathcal{H}}_{\Omega} \\ \hat{\mathcal{H}}_{\Omega} \Phi_n(\rho, \Omega) &= \frac{\hbar^2}{2m} \frac{1}{\rho^2} \lambda_n(\rho) \Phi_n(\rho, \Omega) \\ &\left[-\frac{d^2}{d\rho^2} + \frac{2m}{\hbar^2} \left(V_n(\rho) - E \right) \right] f_n(\rho) + \sum_{n'} \left(-2P_{nn'} \frac{d}{d\rho} - Q_{nn'} \right) f_{n'}(\rho) = 0 \end{aligned}$$

E. Garrido – Nuclear Structure & Reactions: Experimental and Ab Initio Theoretical Perspectives, Vancouver 18-21 Feb. 2014

Results for 1+2 reactions with the adiabatic expansion method

E. Garrido – Nuclear Structure & Reactions: Experimental and Ab Initio Theoretical Perspectives, Vancouver 18-21 Feb. 2014

If two bound two-body subsystems...

E. Garrido – Nuclear Structure & Reactions: Experimental and Ab Initio Theoretical Perspectives, Vancouver 18-21 Feb. 2014

If two bound two-body subsystems...

E. Garrido – Nuclear Structure & Reactions: Experimental and Ab Initio Theoretical Perspectives, Vancouver 18-21 Feb. 2014

E. Garrido – Nuclear Structure & Reactions: Experimental and Ab Initio Theoretical Perspectives, Vancouver 18-21 Feb. 2014

E. Garrido – Nuclear Structure & Reactions: Experimental and Ab Initio Theoretical Perspectives, Vancouver 18-21 Feb. 2014

E. Garrido – Nuclear Structure & Reactions: Experimental and Ab Initio Theoretical Perspectives, Vancouver 18-21 Feb. 2014

E. Garrido – Nuclear Structure & Reactions: Experimental and Ab Initio Theoretical Perspectives, Vancouver 18-21 Feb. 2014

If two bound two-body subsystems...

E. Garrido – Nuclear Structure & Reactions: Experimental and Ab Initio Theoretical Perspectives, Vancouver 18-21 Feb. 2014

E. Garrido – Nuclear Structure & Reactions: Experimental and Ab Initio Theoretical Perspectives, Vancouver 18-21 Feb. 2014

Results: A test case

Particles 2 and 3 do not interactParticle 1 with infinite massOnly 1 and 2 form a bound state

$$\Psi_t(\rho, \Omega) = \frac{1}{\rho^{5/2}} \sum_n f_n(\rho) \Phi_n(\rho, \Omega)$$

n_A	δ_s	δ_p	δ_d
1	40.554	0.6658	0.0136
2	38.988	0.6892	0.0113
3	38.642	0.6921	0.0121
5	38.693	0.6911	0.0119
8	38.702	0.6918	0.0118
10	38.701	0.6918	0.0118
two-body	38.699	0.6917	0.0117

E. Garrido – Nuclear Structure & Reactions: Experimental and Ab Initio Theoretical Perspectives, Vancouver 18-21 Feb. 2014

E. Garrido – Nuclear Structure & Reactions: Experimental and Ab Initio Theoretical Perspectives, Vancouver 18-21 Feb. 2014

E. Garrido – Nuclear Structure & Reactions: Experimental and Ab Initio Theoretical Perspectives, Vancouver 18-21 Feb. 2014

E. Garrido – Nuclear Structure & Reactions: Experimental and Ab Initio Theoretical Perspectives, Vancouver 18-21 Feb. 2014

s-waves, J=3/2 $V_t(r) = \left(-626.885e^{-1.55r} + 1438.72e^{-3.11r}\right)/r$ $E_d = -2.2307 \text{ MeV}$

J.L. Friar et al., PRC 42 (1990) 1838, PRC 51 (1995) 2356

E. Garrido – Nuclear Structure & Reactions: Experimental and Ab Initio Theoretical Perspectives, Vancouver 18-21 Feb. 2014

Results: n-deuteron breakup

s-waves, J=3/2 $V_t(r) = \left(-626.885e^{-1.55r} + 1438.72e^{-3.11r}\right)/r$ $E_d = -2.2307 \text{ MeV}$

J.L. Friar et al., PRC 42 (1990) 1838, PRC 51 (1995) 2356

E. Garrido – Nuclear Structure & Reactions: Experimental and Ab Initio Theoretical Perspectives, Vancouver 18-21 Feb. 2014

Results: n-deuteron breakup

Transition amplitude

$$A_{\sigma_d \sigma_n}^{\sigma_1, \sigma_2, \sigma_3} \propto \sum_{JM} \langle s_d s_n \sigma_d \sigma_n | JM \rangle \sum_{n>1} i^{-K} S_{1n} \langle \sigma_1 \sigma_2 \sigma_3 | \Phi_n^{JM}(\Omega_\kappa) \rangle$$

E. Garrido – Nuclear Structure & Reactions: Experimental and Ab Initio Theoretical Perspectives, Vancouver 18-21 Feb. 2014

$$s$$
-waves, J =3/2
 $V_t(r) = \left(-626.885e^{-1.55r} + 1438.72e^{-3.11r}\right)/r$
 $E_d = -2.2307 \text{ MeV}$

J.L. Friar et al., PRC 42 (1990) 1838, PRC 51 (1995) 2356

The elastic and breakup channels are open

E _{lab} =14.1 MeV	S ₁₁	Re(δ ₁₁)
8 adiabs.	0.979	68.99
12 adiabs.	0.978	68.98
16 adiabs.	0.978	68.96
20 adiabs.	0.978	68.86
Benchmark	0.978	68.96

$$\sigma_{bk} = \frac{\pi}{p_y^2} \frac{(2J+1)}{(2s_p+1)(s_t+1)} (1-|S_{11}|^2)$$

Results: n-deuteron breakup

Transition amplitude

Results: n-deuteron breakup

s-waves, J=1/2+J=3/2

Transition amplitude

Results: n-deuteron breakup

s-waves, J=1/2+J=3/2

Transition amplitude

Results: n-deuteron breakup

s-waves, J=1/2+J=3/2

Transition amplitude

$$V_{2b}(r) = -1.227e^{-r^2/10.03^2} \text{K}$$
$$E_{2b} = -1.2959 \text{ mK}$$
$$a = 189.95 \text{ a.u.}$$
$$r_e = 13.846 \text{ a.u.}$$

LM2M2 potential $E_{2b} = -1.3017 \text{ mK}$ a = 189.05 a.u. $r_e = 13.843 \text{ a.u.}$

Figure 4. The lowest angular eigenvalue as a function of ρ for the ⁴He-trimer for the realistic LM2M2 [26] potential and the three schematic potentials defined in table 1. The square well results are obtained from equation (15).

Fig. 10. The angular eigenvalues as function of hyperradius for the ${}^{4}\text{He}_{3}$ -trimer calculated with the LM2M2 potential (solid curves) and the Gaussian model potentials (dashed curves) for angular momentum and parity $L^{\pi} = 1^{-}$.

$$V_{2b}(r) = -1.227 e^{-r^2/10.03^2} \text{K}$$

 $E_{2b} = -1.2959 \text{ mK}$
 $a = 189.95 \text{ a.u.}$
 $r_e = 13.846 \text{ a.u.}$
As the
LM2M2
potential

Incident energy: 0.5 mK (E=-0.7959 mK)

n_A	δ_s	δ_p	δ_d	δ_{f}
1	-39.72	-13.19	2.01	-0.27
2	-40.30	-13.13	2.11	-0.28
4	-40.43	-13.11	2.13	-0.28
8	-40.50	-13.11	2.14	-0.28
18	-40.54	-13.11	2.14	-0.28
22	-40.54	-13.11	2.14	-0.28
HH-calculation	-40.55			

$$B_{ij} = \frac{2m}{\hbar^2} \int d\tau \Psi_t^i(\tau) (H - E) F_j(\tau)$$

$$V_{2b}(r) = -1.227 e^{-r^2/10.03^2} \text{K}$$

 $E_{2b} = -1.2959 \text{ mK}$
 $a = 189.95 \text{ a.u.}$
 $r_e = 13.846 \text{ a.u.}$
As the
LM2M2
potential

Incident	energy:	0.5	mΚ	(E=-0.7959	mK)
----------	---------	-----	----	------------	-----

n_A	δ_s	δ_p	δ_d	δ_{f}
1	-39.72	-13.19	2.01	-0.27
2	-40.30	-13.13	2.11	-0.28
4	-40.43	-13.11	2.13	-0.28
8	-40.50	-13.11	2.14	-0.28
18	-40.54	-13.11	2.14	-0.28
22	-40.54	-13.11	2.14	-0.28
HH-calculation	-40.55			

E. Garrido, C. Romero-Redondo, A. Kievsky, M. Viviani, PRA 86 (2012) 052709

$$V_{2b}(r) = -1.227e^{-r^2/10.03^2} \text{K}$$

$$E_{2b} = -1.2959 \text{ mK}$$

$$a = 189.95 \text{ a.u.}$$

$$r_e = 13.846 \text{ a.u.}$$
As the LM2M2 potential

potential	$E_0 [\mathrm{mK}]$	$E_1 [\mathrm{mK}]$	a_0 [a.u.]
LM2M2	-126.4	-2.265	217.3
gaussian	-150.0	-2.467	165.9
$(W_0 [K], \rho_0 [a.u.])$			
(306.9, 4)	-126.4	-2.283	211.7
(18.314, 6)	-126.4	-2.287	210.6
(4.0114, 8)	-126.4	-2.289	210.0
(1.4742, 10)	-126.4	-2.292	209.2
\mathbf{T}	Τ <i>Τ</i> ()		()

$$V_n(\rho) \to V_n(\rho) + W_{3b}(\rho)$$

 $W_{3b}(\rho) = W_0 e^{-\rho^2/\rho_0^2}$

$$V_{2b}(r) = -1.227e^{-r^2/10.03^2} \text{K}$$

$$E_{2b} = -1.2959 \text{ mK}$$

$$a = 189.95 \text{ a.u.}$$

$$r_e = 13.846 \text{ a.u.}$$
As the LM2M2 potential

potential	$E_0 [\mathrm{mK}]$	$E_1 [\mathrm{mK}]$	a_0 [a.u.]
LM2M2	-126.4	-2.265	217.3
gaussian	-150.0	-2.467	165.9
$(W_0 [K], \rho_0 [a.u.])$			
(306.9, 4)	-126.4	-2.283	211.7
(18.314, 6)	-126.4	-2.287	210.6
(4.0114, 8)	-126.4	-2.289	210.0
(1.4742, 10)	-126.4	-2.292	209.2

$$V_n(\rho) \to V_n(\rho) + W_{3b}(\rho)$$

 $W_{3b}(\rho) = W_0 e^{-\rho^2/\rho_0^2}$

E. Garrido – Nuclear Structure & Reactions: Experimental and Ab Initio Theoretical Perspectives, Vancouver 18-21 Feb. 2014

E. Garrido – Nuclear Structure & Reactions: Experimental and Ab Initio Theoretical Perspectives, Vancouver 18-21 Feb. 2014

E. Garrido – Nuclear Structure & Reactions: Experimental and Ab Initio Theoretical Perspectives, Vancouver 18-21 Feb. 2014

E. Garrido – Nuclear Structure & Reactions: Experimental and Ab Initio Theoretical Perspectives, Vancouver 18-21 Feb. 2014

E. Garrido – Nuclear Structure & Reactions: Experimental and Ab Initio Theoretical Perspectives, Vancouver 18–21 Feb. 2014

E. Garrido – Nuclear Structure & Reactions: Experimental and Ab Initio Theoretical Perspectives, Vancouver 18-21 Feb. 2014

E. Garrido – Nuclear Structure & Reactions: Experimental and Ab Initio Theoretical Perspectives, Vancouver 18-21 Feb. 2014

E. Garrido – Nuclear Structure & Reactions: Experimental and Ab Initio Theoretical Perspectives, Vancouver 18-21 Feb. 2014

E. Garrido – Nuclear Structure & Reactions: Experimental and Ab Initio Theoretical Perspectives, Vancouver 18-21 Feb. 2014

E. Garrido – Nuclear Structure & Reactions: Experimental and Ab Initio Theoretical Perspectives, Vancouver 18-21 Feb. 2014

E. Garrido – Nuclear Structure & Reactions: Experimental and Ab Initio Theoretical Perspectives, Vancouver 18-21 Feb. 2014

E. Garrido – Nuclear Structure & Reactions: Experimental and Ab Initio Theoretical Perspectives, Vancouver 18-21 Feb. 2014

Summary and conclusions:

- ✓ When investigating 1+N reactions, extraction of the S-matrix from the asymptotic part of the (1+N)-body cross section is a very hard task:
 - > We need the wave function at very large distances.
 - > Even when done, the result can be inaccurate.
- ✓ We have developed a method, based on the Kohn variational principle, that leads to two integral relations the permit to obtain the S-matrix from the internal part of the wave function.

> They can be used to describe elastic, inelastic, transfer, and breakup reactions.

✓ The method reproduces available benchmark calculations for neutrondeuteron scattering below and above the breakup threshold.

> Not only the S-matrix is reproduced, but also the differential cross sections.

- ✓ We have applied the method to ⁴He-(⁴He)₂, (⁴He-⁴He-⁶Li) reactions together with the adiabatic expansion method: Soft-core potentials are a good alternative to the hard-core potentials when used together with an effective three-body force.
 - > Elastic scattering phase-shifts well reproduced.
 - Dissociation and recombination rates are sensitive to the details of the two-body interaction.

Vancouver, February 2014