Ab Initio Theory Outside the Box

Robert Roth

TECHNISCHE UNIVERSITÄT DARMSTADT

Inside the Box

- this workshop has provided an impressive snapshot of the progress and perspectives in ab initio nuclear theory and its links to experiment
- definition: everything we have heard so-far is inside the ab initio box

Inside the Box

ab initio theory is entering new territory...

• QCD frontier

nuclear structure connected systematically to QCD via chiral EFT

accuracy frontier

control uncertainties, improve convergence, inform extrapolations

mass frontier

ab initio calculations up to heavy nuclei with quantified uncertainties

open-shell frontier

extend to medium-mass open-shell nuclei and their excitation spectrum

continuum & clustering frontier

include continuum & clustering effects for threshold states & nuclei

reaction frontier

describe structure & reaction observables on the same footing

...providing a coherent theoretical framework for nuclear structure & reactions and linking it to experiment

Outside the Box

- two more things that are not yet inside the ab initio box:
- ab initio hypernuclear structure can we describe the spectroscopy of p-shell hypernuclei ab initio ?
- perturbation theory ab initio ? wouldn't it be great if MBPT would qualify as ab initio approach ?

Ab Initio Hypernuclear Structure

with

Roland Wirth, Daniel Gazda, Petr Navrátil

Ab Initio Hypernuclear Structure

- precise data on ground states & spectroscopy of hypernuclei
- ab initio few-body (A ≤ 4) and phenomenological shell model or cluster calculations
- chiral YN & YY interactions at (N)LO are available
- constrain YN & YY interactions by ab initio hypernuclear structure calculations

YN Interaction — A Problem

Haidenbauer et al., NPA 915, 24 (2013), Polinder et al., NPA 779, 244 (2006), Haidenbauer et al., PRC 72, 044005 (2005)

- experimental YN scattering data is scarce and has large uncertainties
- fit of interactions **not well constrained** (invoke symmetries)
- scattering data cannot discriminate between different YN potentials

Ab Initio Toolbox

Hamiltonian from chiral EFT

- NN: chiral N3LO by Entem & Machleidt, $\Lambda_{NN} = 500 \text{ MeV}$
- 3N: chiral N2LO by Navrátil, $\Lambda_{3N} = 500$ MeV, A = 3 fit
- YN: chiral LO by Polinder, Haidenbauer & Meißner, $\Lambda_{YN} = 600,700$ MeV Jülich'04 by Haidenbauer & Meißner

Similarity Renormalization Group

- consistent SRG-evolution of NN, 3N, YN interactions
- using particle basis and including Λ - Σ -coupling (larger matrices)
- Λ - Σ mass difference and $p\Sigma^{\pm}$ Coulomb included consistently

Importance Truncated No-Core Shell Model

- include explicit $(p, n, \Lambda, \Sigma^+, \Sigma^0, \Sigma^-)$ with physical masses
- larger model spaces easily tractable with importance truncation
- all p-shell single-∧ hypernuclei are accessible

NN @ N3LO $\Lambda_{NN} = 500 \text{ MeV}$ Entem&Machleidt

3N @ N2LO $\Lambda_{3N} = 500 \text{ MeV}$ Navratil A = 3 fit

$$\alpha_{\rm N}=0.08\,{\rm fm}^4$$

$$h\Omega = 20 \text{ MeV}$$

Application: ⁷_^Li

Application: ⁹_^Be

Application: ⁹_^Be

Application: ⁹_^Be

Application: $^{13}_{\Lambda}C$

Application: $^{13}_{\Lambda}C$

Application: $^{13}_{\Lambda}C$

SRG Evolution of YN Channels

- SRG evolution of YN channels improves convergence as expected
- significant *a*_Y dependence
 indicates SRG-induced
 YNN interactions

 $\alpha_{\rm N} = 0.08 \, {\rm fm}^4$ $h\Omega = 20 \, {\rm MeV}$

SRG Evolution of YN Channels

Ab Initio Hypernuclear Structure

- ab initio hypernuclear structure in the IT-NCSM now possible for all single-^ p-shell hypernuclei
- LO chiral YN interactions provide spectra that agree with experiment within cutoff uncertainties
- hypernuclear structure sets tight constraints on YN interaction
- significant SRG-induced YNN interactions, implications for mean-field type models and the hyperon puzzle ?
- NLO chiral YN interactions are expected to reduce cutoff dependence, but fit is difficult...

(13 instead of 5 LECs in S/SD-waves assuming $SU(3)_f$ and neglecting P-waves; fit to 36 data)

Iots of applications are waiting...

Perturbation Theory — Ab Initio ?

with

Alexander Tichai, Christina Stumpf, Joachim Langhammer

Many-Body Perturbation Theory

- Iow-order many-body perturbation theory is a cheap and simple tool to access nuclear observables
- wouldn't it be great if low-order MBPT would qualify as ab initio approach ?
- problem: convergence behavior of perturbation series unclear
 - how to quantify uncertainties?
 - which factors influence the order-by-order convergence?
 - how to restore or accelerate the convergence?
- strategy: study convergence behavior with explicit high-order calculations

Explicit High-Order MBPT

partitioning: definition of unperturbed basis $|\Phi_n\rangle$

$$H(\lambda) = H_0 + \lambda W \qquad H_0 |\Phi_n\rangle = \epsilon_n |\Phi_n\rangle$$

power-series ansatz for energy and eigenstates

$$E_n(\lambda) = \sum_{p=0}^{\infty} \lambda^p E_n^{(p)} \qquad |\Psi_n(\lambda)\rangle = \sum_{p=0}^{\infty} \lambda^p |\Psi_n^{(p)}\rangle$$

• recursive relations for energy $E_n^{(p)}$ and states $|\Psi_n^{(p)}\rangle = \sum_m C_{n,m}^{(p)} |\Phi_m\rangle$

$$E_{n}^{(p)} = \sum_{m} \langle \Phi_{n} | W | \Phi_{m} \rangle C_{n,m}^{(p-1)}$$

$$C_{n,m}^{(p)} = \frac{1}{\epsilon_{n} - \epsilon_{m}} \left(\sum_{m'} \langle \Phi_{m} | W | \Phi_{m'} \rangle C_{n,m'}^{(p-1)} - \sum_{i=1}^{p} E_{n}^{(j)} C_{n,m}^{(p-j)} \right)$$

easy to evaluate to 'arbitrary' order with NCSM technology...

Summation and Resummation

partial sum: starting point for convergence study

$$E_{sum}(p) = E^{(0)} + \lambda E^{(1)} + \lambda^2 E^{(2)} + \cdots \lambda^p E^{(p)} \big|_{\lambda=1}$$

Padé approximant: map power series of order p to a quotient of polynomials of orders M and N

$$E_{\mathsf{Pad}\acute{e}}(M/N) = \frac{A^{(0)} + \lambda A^{(1)} + \lambda^2 A^{(2)} + \dots \lambda^M A^{(M)}}{B^{(0)} + \lambda B^{(1)} + \lambda^2 B^{(2)} + \dots \lambda^N B^{(N)}}\Big|_{\lambda=1}$$
$$= E_{\mathsf{sum}}(M+N) + \mathcal{O}(M+N+1)$$

- focus on Padé main sequence: $E_{\text{Padé}}(M/M)$ and $E_{\text{Padé}}(M/M-1)$
- powerful convergence theory for special power series (e.g. Stieltjes)...
- additional sequence transformations on top of Padé can further accelerate convergence (Shanks, Levin-Weniger)...

Robert Roth - TU Darmstadt - 02/2014

MBPT Convergence Heuristics

- in many cases partial sums do not converge, but there are systematic exceptions
- factors causing the non-convergence
 - **unperturbed basis** (partitioning) is the primary factor
 - **softness of the interaction** is a secondary factor
 - many-body truncation also has some influence
- Padé resummation robustly provides convergence at intermediate orders and agrees with exact diagonalization
- can we rely on low-order MBPT ?

Low-Order MBPT

Robert Roth - TU Darmstadt - 02/2014

Low-Order MBPT vs. Coupled-Cluster

Robert Roth - TU Darmstadt - 02/2014

Low-Order MBPT vs. Coupled-Cluster

Robert Roth – TU Darmstadt – 02/2014

Perspectives: Degenerate MBPT

PRC 86, 054315 (2012), PLB 683, 272 (2010)

Epilogue

thanks to my group & my collaborators

- S. Binder, J. Braun, A. Calci, S. Fischer,
 E. Gebrerufael, H. Spiess, J. Langhammer, S. Schulz,
 C. Stumpf, A. Tichai, R. Trippel, R. Wirth, K. Vobig Institut f
 ür Kernphysik, TU Darmstadt
- P. Navrátil TRIUMF Vancouver, Canada
- J. Vary, P. Maris Iowa State University, USA
- S. Quaglioni, G. Hupin LLNL Livermore, USA
- P. Piecuch Michigan State University, USA

- H. Hergert Ohio State University, USA
- P. Papakonstantinou IBS/RISP, Korea
- C. Forssén Chalmers University, Sweden
- H. Feldmeier, T. Neff GSI Helmholtzzentrum

Deutsche Forschungsgemeinschaft

DFG

Exzellente Forschung für Hessens Zukunft

COMPUTING TIME

Bundesministerium für Bildung und Forschung