New Directions in Valence-Space Methods for Exotic sd-Shell Nuclei

Jason D. Holt

<u>References</u>

- Otsuka, Suzuki, JDH, Schwenk, Akaishi PRL 105, 032501 (2010)
- JDH, Menendez, Schwenk, EPJA **49**, 39 (2013)
- Caesar et al. (R3B), Simonis, JDH, Menendez, Schwenk PRC 88, 034313 (2013)
- Bogner, Hergert, JDH, Schwenk, Binder, Calci, Langhammer, Roth, arXiv:1402.1407

Bundesministerium für Bildung und Forschung

Drip Lines and Magic Numbers: The Nuclear Landscape Toward the Extremes

Exploring the frontiers of nuclear science:

Worldwide joint experimental/theoretical effort What are the properties of proton/neutron-rich matter? What are the limits of nuclear existence? 82 How do magic numbers form and evolve?

Advances in many-body methods

Green's Function Monte Carlo Hyperspherical Harmonics (IT) No-Core Shell Model Coupled Cluster In-Medium SRG Many-Body Perturbation Theory Self-Consistent Green's Function

Oxygen Isotopes

The Nuclear Many-Body Problem

Nuclei understood as many-body system starting from closed shell, add nucleons Calculate valence-space Hamiltonian inputs from nuclear forces Interaction matrix elements Single-particle energies (SPEs)

The Nuclear Many-Body Problem

Nuclei understood as many-body system starting from closed shell, add nucleons Calculate valence-space Hamiltonian inputs from nuclear forces Interaction matrix elements Single-particle energies (SPEs)

Valence-Space Strategy

- 1) Effective interaction: sum excitations outside valence space to 3rd order
 2) Single-particle energies calculated self consistently
 3) Harmonic-oscillator basis of 13 major shells: converged
 - 4) NN and 3N forces from chiral EFT to 3^{rd} -order MBPT
 - 5) Explore extended valence spaces

Valence-Space Strategy

- 1) Effective interaction: sum excitations outside valence space to 3rd order
- 2) Single-particle energies calculated self consistently
- 3) Harmonic-oscillator basis of 13 major shells: converged
- \star 4) NN and 3N forces from chiral EFT to 3rd-order MBPT
 - 5) Explore extended valence spaces

NN matrix elements

- Chiral N³LO (Machleidt, $\Lambda_{NN} = 500$ MeV); smooth-regulator $V_{low k}(\Lambda)$

3N force contributions

- Chiral N²LO

c_D, c_E fit to properties of light nuclei with $V_{\text{low }k}$ ($\Lambda = \Lambda_{3N} = 2.0 \text{ fm}^{-1}$)

- Included to 5 major HO shells

Valence-Space Strategy

- 1) Effective interaction: sum excitations outside valence space to 3rd order
- 2) Single-particle energies calculated self consistently
- 3) Harmonic-oscillator basis of 13 major shells: converged
- 4) NN and 3N forces from chiral $EFT to 3^{rd}$ -order MBPT
- **★**5) Explore **extended valence spaces**

Philosophy: diagonalize in largest possible valence space (where orbits relevant)

Treats higher orbits nonperturbatively When important for exotic nuclei?

Limits of Nuclear Existence: Oxygen Anomaly

Limits of Nuclear Existence: Oxygen Anomaly

Mass Number A

Oxygen Anomaly

Otsuka, Suzuki, JDH, Schwenk, Akaishi, PRL (2010)

Ground-State Energies of Oxygen Isotopes

Valence-space interaction and SPEs from NN+3N

JDH, Menendez, Schwenk, EPJA (2013)

Repulsive character improves agreement with experiment *sd*-shell results underbound; improved in **extended space**

Impact on Spectra: ²²O

Neutron-rich oxygen spectra with NN+3N

²²O: N=14 new magic number – not reproduced with NN

Contributions from 3N and extended valence orbitals important

Impact on Spectra: ²³O

Neutron-rich oxygen spectra with NN+3N

 $5/2^+$, $3/2^+$ energies reflect ^{22,24}O shell closures

Experimental Connection: Beyond the Dripline

Hoffman, Kanungo, Lunderberg... PRLs (2008+)

Valence-space Hamiltonian from NN + 3N + residual 3N

Repulsion more pronounced for neutron-rich systems: 400 keV at ²⁶O Improved agreement with new data beyond ²⁴O dripline Future: include coupling to continuum

Evolution of SPEs

SPE evolution with 3N forces in *sd* and *sdf*_{7/2} $p_{3/2}$ spaces:

NN+3N extended space:

Much different trend than sd-shell No gap at ²²O yet enhanced closed-shell features Inversion of levels past ²⁴O – essential to include for neutron-rich oxygen

Evaluating Center-of-Mass Contamination

Nonperturbative Lee-Suzuki (LS) transformation from extended space

$$H|\psi_{n}\rangle = E_{n}|\psi_{n}\rangle$$

$$PH_{eff}^{LS}P|\phi_{n}\rangle = \varepsilon_{n}P|\phi_{n}\rangle$$

$$\{\varepsilon_{n}\} \subset \{E_{n}\}$$

$$\langle H_{CM}\rangle = 0$$

$$Sd \qquad Sdf_{7/2}P_{3/2}$$

$$P \qquad Q$$

Transform for **two-body** systems (*e.g.*, ¹⁸O, ⁴²Ca)

Extended-space spectrum free of CM contamination

Project into standard space onto eigenenergies from extended space calculation

Use H_{eff}^{LS} as new two-body Hamiltonian in *sd*-shell valence-space calculations

Evolution of SPEs

SPE evolution of LS-projected sd-shell interaction

Overall evolution similar to USD $-s_{1/2}$ too attractive Work in progress: involving N > 2 neutrons in extended space

Evaluating Center-of-Mass Contamination

Apply new H_{eff}^{LS} to calculate spectra in neutron-rich oxygen

Improvements from standard *sd*-shell – not due to center of mass Work in progress: involving N > 2 neutrons in extended space

Towards Full sd-Shell with MBPT: Fluorine

Next challenge: valence protons + neutrons

Neutron-rich fluorine and neon

sd shell filled at 29 F/ 30 Ne

Need extended-space orbits

Towards Full sd-Shell with MBPT: Fluorine

Next challenge: valence protons + neutrons

Neutron-rich fluorine and neon

NN only: severe overbinding

NN+3N: good experimental agreement through ²⁹F Sharp increase in ground-state energies beyond ²⁹F: incorrect dripline

Towards Full sd-Shell with MBPT: Neon

Next challenge: valence protons + neutrons

Neutron-rich fluorine and neon

Similar behavior in Neon isotopes

Revisit cross-shell valence space theory – **non-degenerate valence spaces** Tsunoda, Hjorth-Jensen, Otsuka

IM-SRG for Valence-Space Hamiltonians

In-Medium SRG applies continuous unitary transformation to drive offdiagonal physics to zero Tsukiyama, Bogner, Schwenk, PRL (2011)

$$H(s) = U(s)HU^{\dagger}(s) \equiv H^{d}(s) + H^{od}(s) \rightarrow H^{d}(\infty)$$

Decouples reference state from excitations $\langle npnh | H(\infty) | \Phi_c \rangle = 0$

IM-SRG for Valence-Space Hamiltonians

In-Medium SRG applies continuous unitary transformation to drive offdiagonal physics to zero Tsukiyama, Bogner, Schwenk, PRC (2012)

Open shell systems:

split particle states into valence states, v, and those above valence space, qRedefine "off-diagonal" to exclude valence particles

 $H(s=0) \rightarrow H(\infty)$

IM-SRG for Valence-Space Hamiltonians

In-Medium SRG applies continuous unitary transformation to drive offdiagonal physics to zero Tsukiyama, Bogner, Schwenk, PRC (2012)

Open shell systems:

split particle states into valence states, v, and those above valence space, qRedefine "off-diagonal" to exclude valence particles

 $H(s = 0) \rightarrow H(\infty)$

Defines new effective valence-space Hamiltonian $H_{\rm eff}$ States outside valence space are decoupled

Nonperturbative Valence-Space Strategy

- 1) Effective interaction: nonperturbative from IM-SRG
- 2) Single-particle energies: nonperturbative from IM-SRG
- 3) Hartree-Fock basis of $e_{\text{max}} = 2n + l = 14$ converged
- \bigstar 4) NN and 3N forces from chiral EFT
 - 5) Explore extended valence spaces in progress

NN matrix elements

- Chiral N³LO (Machleidt, Λ_{NN} = 500MeV); free-space SRG evolution
- Cutoff variation $\lambda_{\text{SRG}} = 1.88 2.24 \text{ fm}^{-1}$
- Vary $\hbar \omega = 20 24 \text{MeV}$
- Consistently include 3N forces induced by SRG evolution

Initial 3N force contributions

- Chiral N²LO Λ_{3N} = 400MeV
- Included with cut: $e_1 + e_2 + e_3 \le E_{3 \max} = 14$

IM-SRG Monopoles

Monopoles: angular average of interaction

Determines interaction of orbit a with b; evolution of orbital energies

(2J+1) V V_{ab}^T $\sum_{J} (2J+1)$

NN-only too attractive

NN+3N-full similar trend to USDb

IM-SRG Oxygen Ground-State Energies

Valence-space interaction and SPEs from NN+3N in *sd*-shell

Repulsive 3N gives unbound $d_{3/2}$ Good dripline properties? Bogner et al., arXiv: 1402.1407

Conclusion/Outlook

• Nuclear structure theory of medium-mass nuclei with 3N forces, extended spaces

Non-empirical valence-space methods

- First calculations based on NN+3N forces
- Extended valence spaces needed
- Cures NN-only failings: dripline, shell evolution, spectra
- Residual 3N forces improve predictions beyond dripline

New directions

- Promising first results for F/Ne ground states to
- Non-perturbative IM-SRG excellent binding energies, spectra in sd shell only!

• Large-space ab-initio methods

- Similar improvements with NN+3N as in valence-space methods
- Agreement between methods encouraging for future benchmarking valuable!

Acknowledgments

Collaborators

J. Menendez J. Simonis A. Schwenk S. Binder, A. Calci, J. Langhammer, R. Roth

