RECENT INSIGHTS FROMTHE NO-CORE SHELL MODEL: From Light Nucleito Cold Atoms

Christian Forssén, Fundamental Physics, Chalmers, Sweden

Main research funding by:

TRIUMF workshop, Vancouver, Feb. 21 - 23, 2013

RECENT INSIGHTS FROMTHE NO-CORE SHELL MODEL:
 From Cold Atoms to Light Nuclei

Christian Forssén,
Fundamental Physics, Chalmers, Sweden

Main research funding by:

TRIUMF workshop, Vancouver, Feb. 21-23, 2013

Acknowledgments

Many thanks to my collaborators

* Lucas Platter (ANL), Jimmy Rotureau, Mikhail Zhukov, Emil Ryberg,

© triumf

 Daniel Sääf, Boris Carlsson, Jonathan Lindgren, Håkan Johansson (Chalmers)* Petr Navrátil (TRIUMF), Robert Roth (Darmstadt), James Vary and Pieter Maris (lowa), and the NCSM collaboration.
* Witek Nazarewicz and Nicolas Michel (UT/ORNL), Marek Ploszajczak (GANIL), George Papadimitriou and Bruce Barrett (UA)
* Andreas Ekström, Morten Hjorth Jensen (UiO, MSU), Gaute Hagen, Gustav Jansen, Thomas Papenbrock (ORNL/UT), Ruprecht Machleidt (Idaho)
* Nikolai Zinner, Artem Volosniev (Aarhus)

Research funded by:

- The Swedish Research Council
- European Research Council

Grand Accélérateur National d'lons Lourds

Outline

* Cold atoms in deformed traps
- Ab initio NCSM towards the driplines
* NNLO (POUNDerS) in the NCSM

From "QCD" to Nuclei

Nuclear Structure

Many-body Methods

ab initio no-core shell model

- A-body HO model space (m scheme)
- Full-space $N_{\max }$ energy cutoff

Renormalization Scheme

Renormalized for truncated model space

- SRG flow in HO or momentum space
- Lee-Suzuki transformation

Realistic nuclear interaction

- fits scattering data
- chiral EFT interaction

Cold Atoms In Deformed Traps

Busch model

From: G. Zürn et al., Phys. Rev. Lett. I 08, 075303 (2012).

Heidelberg Experiment

Id system with repulsively interacting bosonic gases (TonksGirardeau regime)

Two-component

 fermionic systems using hyperfine states of ${ }^{6} \mathrm{Li}$- I:IO asymmetric optomagnetic trap.

From: G. Zürn et al., Phys. Rev. Lett. I 08, 075303 (20| 2).

Model and energy spectrum

* Studied I + 2, I + 3, I + 4 systems
* Hamiltonian

$$
\begin{array}{r}
H=\sum_{i_{\sigma}}\left(\frac{p^{2}}{2}+\frac{1}{2} x_{i_{\sigma}}^{2}\right)+g \sum_{i_{\sigma}, j_{\tilde{\sigma}}} \delta\left(x_{i_{\sigma}}-x_{j_{\tilde{\sigma}}}\right) \\
\text { with } \sigma= \pm, \tilde{\sigma}=-\sigma
\end{array}
$$

Coupling strength

$$
g \propto \frac{a_{3 d}}{1-C a_{3 d} / a_{\perp}}
$$

\leftarrow Repulsive \quad Attractive \rightarrow

* LS-transformation using
exact Busch model solution

Densities

Ground state

* Repulsive interaction
* From weak to strong
* Non-interacting state
corresponds to the three-fermion ground state in HO trap
* At $-1 / g \rightarrow 0$, these are degenerate

Densities and correlation densities

C. Forssén,TRIUMF, Feb. 23, 2013

Ab Initio Towards The Driplines

Extremes of the (light) nuclear landscape

Observables: anomalous trends

${ }^{6} \mathrm{He}$ Ground-State Properties

* Very accurate charge-radius measurements using laser spectroscopy.

```
6-He references
-P. Mueller et al., Phys. Rev. Lett. }9
(2007) 25250I.
-M. Brodeur et al. Phys. Rev. Lett. I }0
(20|2)}05250
- S. Bacca. et al. Phys. Rev. C86, (2012)
03432I
```

* Very accurate mass measurement with a Penning trap mass spectrometer.
- Several ab initio calculations
* Most recently by S. Bacca et al
- using ElHH and $V_{\text {lowk }}$ NN potential based on I-N ${ }^{3} \mathrm{LO}$.
- Study of Vlowk cutoff-dependence and observable correlations.

NCSM example: Energy convergence

$\mathrm{N}^{3} \mathrm{LO}, \mathrm{SRG}$ (NN only, $\Lambda=2.0 \mathrm{fm}^{-1}$)

HO basis cutoff scales

$$
\begin{aligned}
\Lambda_{\mathrm{UV}} & =\sqrt{2(N+3 / 2)} \hbar / b \\
L_{\mathrm{IR}} & =L_{2}=\sqrt{2(N+3 / 2+2)} b
\end{aligned}
$$

Extrapolations from finite HO basis

- R.J. Furnstahl et al., Phys. Rev. C 86(20I2)03I30IR
- S. Coon et al., Phys. Rev. C 86(2012)054002
- R.J. Furnstahl et al., arXiv:I302.38I5 (2013)

Previous work with $\mathbf{N}_{\max } / \hbar \Omega$ extrapolation

- C. Forssén et al., Phys. Rev. C 77 (2008)02430।
- P. Maris et al., Phys. Rev. C 79 (2009) 14308

Correction to the energy due to finite HO space

$$
\begin{aligned}
& E_{L}=E_{\infty}+\Delta E_{L} \\
& \quad \text { with } \Delta E_{L}=a_{0} \exp \left(-2 k_{\infty} L\right)
\end{aligned}
$$

NCSM example: Energy convergence

Binding energies
$\mathrm{N}^{3} \mathrm{LO}$, $\operatorname{SRG}\left(\mathrm{NN}\right.$ only, $\left.\Lambda=2.0 \mathrm{fm}^{-1}\right)$

	Including UV correction $\begin{aligned} & E_{L}=E_{\infty}+\Delta E_{L}+\Delta E_{\Lambda_{\mathrm{UV}}} \\ & \quad \text { with } \Delta E_{L}=a_{0} \exp \left(-2 k_{\infty} L\right) \\ & \quad \text { and } \Delta E_{\Lambda_{\mathrm{UV}}}=a_{1} \exp \left(-2 \Lambda_{\mathrm{UV}}^{2} / a_{2}^{2}\right) \end{aligned}$
	$\begin{array}{llllllll} \hline 4 & 5 & 6 & & { }^{8} & 8 \\ & & & & \left.{ }^{\mathrm{Lfm}}\right] \end{array}$

$$
\begin{array}{c|c}
\mathrm{E}\left({ }^{6} \mathrm{He}\right) & -29.25(\mathrm{I}) \mathrm{MeV} \\
\mathrm{~S}_{2 n} & 1.01(1) \mathrm{MeV}
\end{array}
$$

NCSM example: Energy convergence

$\mathrm{N}^{3} \mathrm{LO}, \mathrm{SRG}\left(\mathrm{NN}\right.$ only, $\left.\Lambda=2.0 \mathrm{fm}^{-1}\right)$

- UV-corrected, $\Lambda:$ [627-718] MeV Λ : [627-718] MeV
$-\mathrm{E}_{\infty}=-29.132 \mathrm{MeV} \mathrm{k}_{\infty}=0.425 \mathrm{fm}^{-1}$
- UV-corrected, $\Lambda:$ [565-612] MeV Λ : [565-718] MeV
$\mathrm{E}_{\infty}=-29.227 \mathrm{MeV} \mathrm{k}_{\infty}=0.402 \mathrm{fm}^{-1}$
- ○ UV-corrected, $\Lambda:[518-561] \mathrm{MeV}$
_ \quad : [518-718] MeV
- $\quad \mathrm{E}_{\infty}=-29.165 \mathrm{MeV} \mathrm{k}_{\infty}=0.414 \mathrm{fm}^{-1}$
- ○ UV-corrected, $\Lambda:$ [468-505] MeV
_ $\quad \Lambda:[468-718] \mathrm{MeV}$
- $\mathrm{E}_{\infty}=-29.155 \mathrm{MeV} \mathrm{k}_{\infty}=0.439 \mathrm{fm}^{-1}$

○ ○ UV-corrected, Λ : [382-441] MeV Λ : [382-718] MeV
$\mathrm{E}_{\infty}=-28.822 \mathrm{MeV} \mathrm{k}_{\infty}=0.503 \mathrm{fm}^{-1}$
C. Forssén,TRIUMF, Feb. 23, 2013

NCSM example: Energy convergence

$\mathrm{N}^{3} \mathrm{LO}, \mathrm{SRG}\left(\mathrm{NN}\right.$ only, $\left.\Lambda=2.0 \mathrm{fm}^{-1}\right)$

- UV-corrected, $\Lambda:[565-658] \mathrm{MeV} \quad \Lambda:[505-658] \mathrm{MeV}$
- $\mathrm{E}_{\infty}=-29.048 \mathrm{MeV} \mathrm{k}_{\infty}=0.446 \mathrm{fm}^{-1}$

- $\mathrm{E}_{\infty}=-28.811 \mathrm{MeV}_{\infty}=0.513 \mathrm{fm}^{-1}$
- UV-corrected, $\Lambda:$ [505-561] MeV
$\Lambda:[441-658] \mathrm{MeV}$ $\mathrm{E}_{\infty}=-28.908 \mathrm{MeV} \mathrm{k}_{\infty}=0.503 \mathrm{fm}^{-1}$

Ab initio $<\left.{ }^{6} \mathrm{He}\right|^{4} \mathrm{He}+\mathrm{n}+\mathrm{n}>$ overlap

$<^{6} \mathrm{He}\left(0^{+}\right) \mid{ }^{4} \mathrm{He}\left(0^{+}\right)+n+n>$
$L=S=0$

$$
L=S=1
$$

N^{3} LO, SRG
NN only, $\Lambda=2.0 \mathrm{fm}^{-1}$,
$N_{\text {max }}=14, \mathrm{HO}=20 \mathrm{MeV}$

$<{ }^{6} \mathrm{He}(0+) \mid{ }^{4} \mathrm{He}(0+)+\mathrm{n}+\mathrm{n}>$ overlap with $\mathrm{S}=1, \mathrm{~L}=1$

$\left.u_{(A-2) I_{1} T_{1} ; L S}^{A J T}(x, y)=\sum_{i j} R_{i}(x) R_{j}(y)_{\mathrm{SD}}\langle(A) J T|\left|a_{i}^{\dagger} a_{j}^{\dagger} \|\right|(A-2) I_{1} T_{1}\right\rangle_{\mathrm{SD}}$

Ab initio $<\left.{ }^{6} \mathrm{He}\right|^{4} \mathrm{He}+\mathrm{n}+\mathrm{n}>$ overlap

$$
\begin{aligned}
& \mathrm{N}^{3} \mathrm{LO}, \mathrm{SRG} \\
& \mathrm{NN} \text { only, } \Lambda=2.0 \mathrm{fm}^{-1}, \\
& \mathrm{~N}_{\max }=14, \mathrm{HO}=20 \mathrm{MeV}^{2}
\end{aligned}
$$

$<\left.{ }^{6} \mathrm{He}\right|^{4} \mathrm{He}+\mathrm{n}+\mathrm{n}>$ overlap: $\mathrm{N}_{\max }$ dependence

NNLO (POUNDerS) optimized to NN phase shifts (see A. Ekström's talk)

- It is soft:
we will show bare interaction results in NCSM up to A~10.

Study effects on the structure of light nuclei

Technical developments
${ }^{4}$ He with NNLO (POUNDerS) -bare

d~1.7×109- one Lanczos iteration in 35 min on one node.

$A=6$ energy

${ }^{6}$ He with NNLO (POUNDerS) -bare

C. Forssén,TRIUMF, Feb. 23, 2013

\square

Exp.

$\operatorname{NCSM}\left(S R G \wedge=2.0 \mathrm{fm}^{-1}\right):$

$r_{p t-p}(6 \mathrm{He})[\mathrm{fm}] \quad \mathrm{S}_{2 n}(6 \mathrm{He})[\mathrm{fm}]$
1.938(23) 0.97
1.01(4)
HH (S. Bacca) (LS+ $\mathrm{V}_{\text {lowk, }} 2.0 \mathrm{fm}^{-1}$): N3LO (EM) $1.804(9) \quad \sim 0.8$
1.81(1)
0.1 (I)

${ }^{10} \mathrm{~B}$ ground state

Realistic NN interactions predict the incorrect ground-state spin of ${ }^{10} \mathrm{~B}$

* It has been shown that NNN terms in the Hamiltonian are needed to remedy this situation.

With the NNLO (POUNDerS) NN interaction we find a very small gap between the $3^{+}, 1^{+}$levels.

From: P. Navrátil et al., Phys. Rev. Lett. 99 (2007)04250 I.

${ }^{10} \mathrm{~B}$ ground state

${ }^{10}$ B with NNLO (POUNDerS) -bare

${ }^{10} \mathrm{~B}$ ground state

${ }^{10}$ B with NNLO (POUNDerS) -bare

${ }^{10} \mathrm{~B}$ ground state assignment

${ }^{10}$ B with NNLO (POUNDerS) -bare

Technical developments

Antoine employs the (smaller) p/n subspaces:
MB state $i=q_{p}+r_{n}$
MB matrix generated on-the-fly. MatVec operations the largest bottleneck.

New version: PANTOINE $M^{*} x=y$, split into subsets $\left(M_{1}+M_{2}+\ldots\right)^{*} x=y$

* Shared memory / multithread Close to theoretical max of Miter / s on multicore.

* Timing: qprn used in average 31.8 of Opteron 6220 (4 sockets, 32 cores, 512 GB) 32 cores on Glenn no. 5

Technical developments

$N_{\max }=10$ for ${ }^{10} \mathrm{~B} \Rightarrow \mathrm{~d} \sim 1.7 \times 10^{9}$
Ground state obtained in seven hours on one node.

Conclusion and Outlook

* Effective interactions for cold atoms in deformed traps
* Introduction of UV and IR scales; optimization of run sequence
- BUT still need several large $N_{\max }$ computations
- Technical development - pAntoine
* Microscopic description of clustering
- Calculate core swelling: $r_{p p}$
- Study projection on HH basis
* First results from NNLO (POUNDerS) in the NCSM
- Soft - bare interaction used
- ${ }^{10} \mathrm{~B}\left(\mathrm{I}^{+}, 3^{+}\right)$states almost degenerate

