The automatized partial wave decomposition and its applications

> <u>R.Skibiński (JU</u>), J.Golak (JU), D.Rozpędzik (JU), K.Topolnicki (JU), H.Witała (JU), E.Epelbaum (RUB), H.Krebs (RUB), W.Glöckle (RUB) A.Nogga (FZJ), H.Kamada (KIT)

Progress in Ab Initio Techniques in Nuclear Physics February 21-23, 2013

Outline

Method:

- Partial wave decomposition (PWD) and automatized partial wave decomposition (aPWD)
- Simple case: NN potential

Applications:

- 3NF at N²LO and N³LO
- Results on aPWD of 3NF at N³LO
- Numerical tests
- LECs values at N³LO
- Some details of ³H at N³LO
- Analyzing power A_Y(N)
- Electromagnetic current (in the deuteron photodisintegration)
- Comments and Outlook

Introduction – 2N and 3N systems

- Nonrelativistic formalism
- 2N:

Schrödinger equation,

Lippmann-Schwinger equation for the t-matrix

(interaction + free propagation)

$$t(E) = V + VG_0(E)V + VG_0VG_0(E)V + \dots$$

$$G_0(E) = \lim_{\varepsilon \to 0^+} \frac{1}{E - H_0 + i\varepsilon}$$

• 3N: Faddeev equation $T = tP\phi + (1 + tG_0)V_{123}^{(1)}(1 + P)\phi + tPG_0T + (1 + tG_0)V_{123}^{(1)}(1 + P)G_0T$ Transition amplitudes $U = PG_0^{-1} + V_{123}^{(1)}(1 + P)\phi +$ $+ PT + V_{123}^{(1)}(1 + P)G_0T$ $+ \Box + \Box + \Box +$

Introduction – 2N and 3N systems

• The input to the above equations is:

- the nucleon-nucleon potential V (CD Bonn, AV18, chiral)
- the three nucleon force V_{123} (TM, Urbana IX, chiral)
- the nuclear electromagnetic/weak currents

 (in the case of processes with electroweak probes (e,μ,γ))
 (single nucleon current + meson exchange currents (π- and ρlike or currents from χEFT)

 Solutions of the above mentioned equations allows us to calculate the ²H, ³H, ³He properties and observables in elastic NN and Nd scattering or in deuteron breakup.

JAGIELLONIAN UNIVERSITY IN KRAKOW

2N states

- Two particles with momenta p_1 and p_2 and spin $\frac{1}{2}$ and izospin $\frac{1}{2}$ $|\vec{p}_1 m_1 v_1 \rangle |\vec{p}_2 m_2 v_2 \rangle$
- It is more convenient to work with states $|\vec{p}\vec{P}m_1\nu_1m_2\nu_2\rangle$ where $\vec{n} = \frac{1}{2}(\vec{n} - \vec{n}) = \vec{P} - \vec{n} + \vec{n}$

$$\vec{p} = \frac{1}{2}(\vec{p}_2 - \vec{p}_1), \quad \vec{P} = \vec{p}_2 + \vec{p}_1$$

Coupling of spins and isospins of both nucleons and using the orbital angular momentum operator leads (in the 2N c.m. system) to

$$\left| p(ls)jm_{j} \right\rangle \left| tm_{t} \right\rangle \equiv \left| p(ls)jm_{j}; tm_{t} \right\rangle \equiv \left| p\alpha_{2} \right\rangle$$

$$\left| p(ls)jm_{j} \right\rangle \equiv \sum_{m_{l},m_{s}} c(l,s,j;m_{l},m_{s},m_{j}) \left| plm_{l} \right\rangle \left| sm_{s} \right\rangle$$

$$\left| sm_{s} \right\rangle \equiv c(1/2,1/2,s;m_{1},m_{2},m_{s}) \left| 1/2 m_{1} \right\rangle \left| 1/2 m_{2} \right\rangle$$

$$(-1)^{l+s+t} = -1$$

$$\left\langle \overrightarrow{p'} \mid plm_l \right\rangle = \frac{\delta(p-p')}{pp'} Y_{l,m_l}(\theta',\varphi')$$

How to calculate the matrix element of the

potential?

I-st method (the standard PWD)

- Analyticaly: using the properties of the spherical harmonics, Clebsch-Gordan coefficients, Legendre' a polynomials, making decouplings of spin and momentum spaces
- This method is tedious and (real) time-consuming
- Example: one-pion exchange at N²LO

$$V(\vec{p}', \vec{p}) = -\frac{1}{(2\pi)^3} \left(\frac{g_A}{2F_\pi}\right)^2 \frac{\vec{\sigma}_1 \cdot \vec{q} \ \vec{\sigma}_2 \cdot \vec{q}}{M_\pi^2 + \vec{q}^2} \vec{\tau}_1 \cdot \vec{\tau}_2 + \frac{1}{(2\pi)^3} C_S + \frac{1}{(2\pi)^3} C_T \ \vec{\sigma}_1 \cdot \vec{\sigma}_2,$$

$$\vec{q} = \vec{p}' - \vec{p}.$$

Standard PWD – one pion exchange

$$\begin{split} &\left\langle p'(l's')j'm';t'm_{l'} \left| V^{OPE} \right| p(ls)jm;tm_{l} \right\rangle = \\ &= -\frac{1}{(2\pi)^3} \left(\frac{g_A}{2F_\pi} \right)^2 \delta_{j'j} \, \delta_{m'm} \, \delta_{s's} \, \delta_{l'l} \, \delta_{m_{l}m_{l}} \, 12\pi \sqrt{(2s+1)(2s'+1)} \, (-1)^{j+s} \big[2t(t+1)-3 \big] \\ &\sum_{a=0,2} \sqrt{2a+1} \, c(1,1,a,0,0,0) \, \sqrt{(2a+1)!} \left\{ \begin{matrix} l' \ l \ a \\ s \ s' \ j \end{matrix} \right\} \left\{ \begin{matrix} 1 & 1 & a \\ 1/2 & 1/2 & s \\ 1/2 & 1/2 & s' \end{matrix} \right\} \\ &\sum_{a_1+a_2=a} p^{a_1}(p')^{a_2} \, (-1)^{a_2} \, \frac{1}{\sqrt{(2a_1)!(2a_2)!}} \sum_k (2k+1) \, (-1)^k \, g_{ka} \, \left\{ \begin{matrix} l' \ l \ a \\ a_1 \ a_2 \ k \end{matrix} \right\} \\ &c(k,a_1,l;000) \, c(k,a_2,l';0,0,0), \\ &\text{where} \quad g_{ka} = \int_{-1}^{1} dx \, P_k(x) \, \frac{\left(\sqrt{p^2 + p'^2 - 2pp' x}\right)^{2-a}}{M_\pi^2 + p^2 + p'^2 - 2pp' x} \end{split}$$

JAGIELLONIAN UNIVERSITY IN KRAKOW

The PWD of NN potential

 Any two-nucleon potential (invariant under rotations, parity and time reversal) can be written as

$$\left\langle \vec{p}' \left| V^{tm_t} \right| \vec{p} \right\rangle = \sum_{j=1}^{6} v_j^{tm_t} \left(\vec{p}', \vec{p} \right) w_j \left(\vec{\sigma}_1, \vec{\sigma}_2, \vec{p}', \vec{p} \right),$$
$$\left\langle t'm_{t'} \left| V \right| tm_t \right\rangle = \delta_{t't} \, \delta_{m_{t'}m_t} \, V^{tm_t}$$

$$w_{1}(\vec{\sigma}_{1},\vec{\sigma}_{2},\vec{p}',\vec{p}) = 1$$

$$w_{2}(\vec{\sigma}_{1},\vec{\sigma}_{2},\vec{p}',\vec{p}) = \vec{\sigma}_{1}\cdot\vec{\sigma}_{2}$$

$$w_{3}(\vec{\sigma}_{1},\vec{\sigma}_{2},\vec{p}',\vec{p}) = i(\vec{\sigma}_{1}+\vec{\sigma}_{2})\cdot(\vec{p}\times\vec{p}')$$

$$w_{4}(\vec{\sigma}_{1},\vec{\sigma}_{2},\vec{p}',\vec{p}) = \vec{\sigma}_{1}\cdot(\vec{p}\times\vec{p}')\vec{\sigma}_{2}\cdot(\vec{p}\times\vec{p}')$$

$$w_{5}(\vec{\sigma}_{1},\vec{\sigma}_{2},\vec{p}',\vec{p}) = \vec{\sigma}_{1}\cdot(\vec{p}+\vec{p}')\vec{\sigma}_{2}\cdot(\vec{p}+\vec{p}')$$

$$w_{6}(\vec{\sigma}_{1},\vec{\sigma}_{2},\vec{p}',\vec{p}) = \vec{\sigma}_{1}\cdot(\vec{p}'-\vec{p})\vec{\sigma}_{2}\cdot(\vec{p}'-\vec{p})$$

JAGIELLONIAN UNIVERSITY IN KRAKOW

How to do that simpler (aPWD)

$$M = \langle p'(l's')j'm';t'm_{t'}|\hat{O}|p(ls)jm;tm_{t}\rangle = \\ = \int_{0}^{\pi} d\theta'\sin\theta'\int_{0}^{2\pi} d\phi'\int_{0}^{\pi} d\theta\sin\theta\int_{0}^{2\pi} d\phi \\ \sum_{m_{l'}=-l'}^{l'} c(l',s',j',m_{l'},m'-m_{l'},m')\sum_{m_{l}=-l}^{l} c(l,s,j,m_{l},m-m_{l},m) \\ Y_{l'm_{l'}}^{*}(\theta',\phi')Y_{lm_{l}}(\theta,\phi) \langle t'm_{t'}|\langle s'm'-m_{l'}|\hat{O}(\vec{p}',\vec{p})|sm-m_{l}\rangle|tm_{t}\rangle$$

Thus, we face four-dimensional inegration (and have to know the matrix element in the integrand).

JAGIELLONIAN UNIVERSITY IN KRAKOW

How to do that simpler (aPWD)

$$\begin{split} M_{RINV} &= \left\langle p'(l's')j'm';t'm_{t'} | \hat{O}_{RINV} | p(ls)jm;tm_{t} \right\rangle = \\ &= \frac{1}{2j+1} \sum_{m=-j}^{j} \left\langle p'(l's')j'm';t'm_{t'} | \hat{O}_{RINV} | p(ls)jm;tm_{t} \right\rangle = \\ &= \int_{0}^{\pi} d\theta' \sin \theta' \int_{0}^{2\pi} d\phi' \int_{0}^{\pi} d\theta \sin \theta \int_{0}^{2\pi} d\phi \frac{1}{2j+1} \\ &\sum_{m=-j}^{j} \delta_{mm'} \sum_{m_{l'}=-l'}^{l'} c(l',s',j',m_{l'},m'-m_{l'},m') \sum_{m_{l}=-l}^{l} c(l,s,j,m_{l},m-m_{l},m) \\ &\quad Y_{l'm_{l'}}^{*}(\theta',\phi') Y_{lm_{l}}(\theta,\phi) \\ &\quad \left\langle t'm_{t'} | \left\langle s'm'-m_{l'} | \hat{O}_{RINV} (\vec{p}',\vec{p}) | sm-m_{l} \right\rangle | tm_{t} \right\rangle \end{split}$$

The integrand depends only on $x \equiv \hat{p}' \cdot \hat{p}$

How to do that simpler (aPWD)

W

Ve choose
$$\hat{p} = (0,0,1),$$

 $\hat{p}' = (\sin\theta',0,\cos\theta'),$
 $M_{RINV} = 8\pi^2 \int_0^{\pi} d\theta' \sin\theta' \frac{1}{2j+1} \sum_{m=-j}^{j} \delta_{mm'}$
 $\sum_{m_{l'}=-l'}^{l'} c(l',s',j',m_{l'},m'-m_{l'},m') \sum_{m_{l}=-l}^{l} c(l,s,j,m_{l},m-m_{l},m)$
 $Y_{l'm_{l'}}^{*}(\theta',0) Y_{lm_{l}}(0,0) \langle t'm_{t'} | \langle s'm'-m_{l'} | \hat{O}_{RINV}(\vec{p}',\vec{p}) | sm-m_{l} \rangle | tm_{t} \rangle$

1-dimensional integration !

One only needs to know the matix element in the integrand. O_{RINV} is the matrix element in the momentum space and an operator in the spin and isospin space.

Automatized PWD

The action of the spin and isospin operators in

$$\langle t'm_{t'}|\langle s'm'-m_{l'}|\hat{O}_{RINV}(\vec{p}',\vec{p})|sm-m_{l}\rangle|tm_{t}\rangle$$

can be calculated analyticaly by means of software for the symbolic algebra, for example *Mathematica*®

$$\sum_{j=1}^{\circ} v_j(\vec{p}',\vec{p}) \langle s m_j - m_{l'} | w_j(\vec{\sigma}_1,\vec{\sigma}_2,\vec{p}',\vec{p}) | s m_j - m_l \rangle$$

$$H(l',l,s,j) = \frac{1}{2j+1} \sum_{m_j=-j}^{j} \left\langle p'(l's)jm_j \left| \mathbf{V} \right| p(ls)jm_j \right\rangle$$

$$H(2,0,1,1) = \frac{2\pi\sqrt{2}}{3} \int_{-1}^{1} dx \{ v_4(p', p, x) p'^2 p^2(x^2 - 1) + v_5(p', p, x) [(3x^2 - 1)p'^2 + 2p^2 + 4p' px] + v_6(p', p, x) [(3x^2 - 1)p'^2 + 2p^2 - 4p' px] \}$$

JAGIELLONIAN UNIVERSITY IN KRAKOW

Example: ¹S₀ and ³F₂-³F₂ waves for the BonnB and the chiral N²LO potentials

JAGIELLONIAN UNIVERSITY

3N basis states

jl-coupling (used during ³H and scattering states calculations)

LS-coupling (more convenient due to the form of 3NF)

$$\left\langle p'q'(l'\lambda')L'(s'\frac{1}{2})S'(L'S')J'M_{J'}\right|V^{3N}\right|pq(l\lambda)L(s\frac{1}{2})S(LS)JM_{J}\right\rangle$$

$$\begin{aligned} aPWD \text{ of } 3NF \\ M &= \left\langle p'q'(l'\lambda')L'(s'\frac{1}{2})S'(L'S')JM_{J} \left| \hat{O} \right| pq(l\lambda)L(s\frac{1}{2})S(LS)JM_{J} \right\rangle = \\ &= \int d\hat{p} \int d\hat{q} \int d\hat{p}' \int d\hat{q}' \sum_{m_{L'}=-L'}^{L'} c(L',S',J,m_{L'},M_{J}-m_{L'},M_{J}) \\ &\sum_{m_{L}=-L}^{L} c(L,S,J,m_{L},M_{J}-m_{L},M_{J}) \sum_{m_{l'}=-l'}^{l'} c(l',\lambda',L',m_{l'},m_{L'}-m_{l'},m_{L'}) \\ &\sum_{m_{l}=-l}^{l} c(l,\lambda,L,m_{l},m_{L}-m_{l},m_{L})Y_{lm_{l}}(\hat{p})Y^{*}_{l'm_{l'}}(\hat{p}')Y_{\lambda m_{L}-m_{l}}(\hat{q})Y^{*}_{\lambda'm_{L'}-m_{l'}}(\hat{q}') \\ &\left\langle (s'\frac{1}{2})S'M_{J}-m_{L'} \right| \hat{O}(\vec{p}',\vec{q}',\vec{p},\vec{q}) \left| (s\frac{1}{2})SM_{J}-m_{L} \right\rangle \end{aligned}$$

In aPWD one needs to perform:

- 8-dimensional integration for each p',q',p,q
- calculation of the spin-space (isospin-space) element

$$\left\langle (s'\frac{1}{2})S'M_J - m_{L'} \left| \hat{O}(\vec{p}', \vec{q}', \vec{p}, \vec{q}) \right| (s\frac{1}{2})SM_J - m_L \right\rangle$$

Progress in Ab Initio Techniques in Nuclear Physics, 21-23.02.2013

Traditional PWD:

Decouple

momentum and spin spaces, **use** properties of the spherical harmonics, Clebsh-Gordan coefficients, 6j and 9j symbols to reduce the number of integrations, program (summations, integrals)

aPWD of 3NF

$$\begin{split} M &= \left\langle p'q'(l'\lambda')L'(s'\frac{1}{2})S'(L'S')JM_{J} \left| \hat{O} \right| pq(l\lambda)L(s\frac{1}{2})S(LS)JM_{J} \right\rangle = \\ &= \frac{1}{2J+1} \sum_{M_{J}=-J}^{J} \left\langle p'q'(l'\lambda')L'(s'\frac{1}{2})S'(L'S')JM_{J} \left| \hat{O} \right| pq(l\lambda)L(s\frac{1}{2})S(LS)JM_{J} \right\rangle \end{split}$$

Since *M* is a scalar quantity, taking

$$\hat{p} = (0,0,1),$$
$$\hat{q} = (\sin \theta_q, 0, \cos \theta_q)$$

reduces the number of integrations to 5.

The isospin matrix elements can be easily calculated analyticaly. The spin matrix elements can be calculated using a software for symbolic algebra (for example *Mathematica*®).

The remaining task is still hard numerically (10^7 5-dim integrations).

3NF at N^2LO

N²LO (E.Epelbaum, Prog.Part.Nucl.Phys. 57, 654(2006)): $V_{123} = V_{2\pi}^{(3)} + V_{1\pi.cont}^{(3)} + V_{cont}^{(3)}$

$$V_{2\pi}^{(3)} = \sum_{i \neq j \neq k} \frac{1}{2} \left(\frac{g_A}{2F_{\pi}} \right)^2 \frac{\left(\stackrel{\Gamma}{\sigma_i} \circ \stackrel{\Gamma}{q_i} \right) \left(\stackrel{\Gamma}{\sigma_j} \circ \stackrel{\Gamma}{q_j} \right)}{\left(\stackrel{\Gamma}{q_i^2} + M_{\pi}^2 \right) \left(\stackrel{\Gamma}{q_j^2} + M_{\pi}^2 \right)} F_{ijk}^{\alpha\beta} \tau_i^{\alpha} \tau_j^{\beta}$$

$$\stackrel{\Gamma}{q_i} = \stackrel{\Gamma}{p_i} - \stackrel{\Gamma}{p_i}$$

$$F_{ijk}^{\alpha\beta} = \delta^{\alpha\beta} \left[-\frac{4c_1 M_{\pi}^2}{F_{i\tau}^2} + \frac{2c_3}{F_{\pi}^2} \stackrel{\Gamma}{q_i} \circ \stackrel{\Gamma}{q_j} \right] + \sum_{\gamma} \frac{c_4}{F_{\pi}^2} \varepsilon^{\alpha\beta\gamma} \tau_k^{\gamma} \stackrel{\Gamma}{\sigma_k} \circ \left[\stackrel{\Gamma}{q_i} \times \stackrel{\Gamma}{q_j} \right]$$

$$V_{1\pi,cont}^{(3)} = -\sum_{i \neq j \neq k} \frac{g_A}{8F_{\pi}^2} D \frac{\stackrel{\sigma}{\sigma_j} \stackrel{O}{q_j} \stackrel{O}{q_j} }{\stackrel{\Gamma}{q_j^2} + M_{\pi}^2} \left(\stackrel{\Gamma}{\tau_i} \circ \stackrel{\Gamma}{\tau_j} \right) \left(\stackrel{\Gamma}{\sigma_i} \circ \stackrel{\Gamma}{q_j} \right)$$

$$V_{cont}^{(3)} = \frac{1}{2} \sum_{j \neq k} E \left(\stackrel{\Gamma}{\tau_j} \circ \stackrel{\Gamma}{\tau_k} \right)$$
we free parameters: D and F

Two free parameters: D and E

Example: Two-pion exchange potential at N²LO $V^{3N} = F_1 \vec{\sigma}_2 \cdot \vec{q}_2 \vec{\sigma}_3 \cdot \vec{q}_3 \vec{\tau}_2 \cdot \vec{\tau}_3 + F_2 \vec{\sigma}_1 \cdot (\vec{q}_2 \times \vec{q}_3) \vec{\sigma}_2 \cdot \vec{q}_2 \vec{\sigma}_3 \cdot \vec{q}_3 \vec{\tau}_1 \cdot (\vec{\tau}_2 \times \vec{\tau}_3)$ where $\vec{q}_1 = \vec{q}' - \vec{q} \qquad \vec{q}_2 = \vec{p}' - \frac{1}{2} \vec{q}' - \left(\vec{p} - \frac{1}{2} \vec{q}\right)$ $\vec{q}_4 = \vec{q}_2 \times \vec{q}_3 \qquad \vec{q}_3 = -\vec{p}' - \frac{1}{2} \vec{q}' - \left(-\vec{p} - \frac{1}{2} \vec{q}\right)$

Examples of integrals resulting from symbolic calculations:

$$\begin{split} &G(0,0,0,1,\frac{1}{2};0,0,0,0,\frac{1}{2};\frac{1}{2}) = \int d\hat{p}' \int d\hat{q}' \int d\theta_q \frac{i}{16\pi^2 \sqrt{3}} F_2((\vec{q}_2 \cdot \vec{q}_3)^2 - q_2^2 q_3^2) \\ &G(1,1,1,0,\frac{1}{2};2,2,0,0,\frac{1}{2};\frac{1}{2}) = \int d\hat{p}' \int d\hat{q}' \int d\theta_q \frac{1}{2\sqrt{3}} F_2 \vec{q}_2 \cdot \vec{q}_3 Y_{2,2}^{0,0}(\hat{p},\hat{q}) \times \\ &\times \left\{ \sqrt{2} \left(q_{4x} - iq_{4y} \right) Y_{1,1}^{1,-1*}(\hat{p}',\hat{q}') + 2q_{4z} Y_{1,1}^{1,0*}(\hat{p}',\hat{q}') - \sqrt{2} \left(q_{4x} + iq_{4y} \right) Y_{1,1}^{1,1*}(\hat{p}',\hat{q}') \right\} \\ &Y_{l,\lambda}^{L,m_L}(\hat{p},\hat{q}) = \sum_{m_l=-l}^{l} c(l,\lambda,L;m_l,m_L - m_l,m_L) Y_{l,m_l}(\hat{p}) Y_{\lambda,m_L-m_l}(\hat{q}) \end{split}$$

Simple matrix elements of isospin operators give additional factors to G.

JAGIELLONIAN UNIVERSITY IN KRAKOW

Test: aPWD vs PWD for 3NF

Example: 2π -exchange potential for the Tucson-Melbourne 3NF

Test: symmetries of the (1+P)V(1+P) operator

For V symmetrical under the exchange of particles 2 and 3, in (antysymmetric in 2-3 exchange) basis $|pq\alpha\rangle$ following symmetries are valid:

$$\begin{split} &VP_{12}P_{23} = VP_{13}P_{23} \\ &P_{12}P_{23}VP_{12}P_{23} = P_{13}P_{23}VP_{13}P_{23} \\ &P_{12}P_{23}VP_{13}P_{23} = P_{13}P_{23}VP_{12}P_{23} \\ &P_{12}P_{23}V = P_{13}P_{23}V \end{split}$$

3NF at N³LO long range part

N³LO V.Bernard, E.Epelbaum, H.Krebs, U-G.Meißner, Phys Rev C77 (2008) 064004.

 V_{2π} – already at N²LO, at N³LO the same operator structure but new values of C₁,C₃,C₄ and momentum dependence in formfactors

Two new topologies:

- Two pion one pion exchange $V_{2\pi-1\pi}$
- The ring term V_{ring}

No new free parameters

More operator structures and more complicated momentum dependece

3NF at N³LO short range part

N³LO: V.Bernard, E.Epelbaum, H.Krebs, U-G.Meißner, Phys Rev C84 (2011) 054001.

- 1π -contact already at N²LO (one free parameter D) at N³LO all terms cancel thus no new contributions at this order

No new free parameters

Three nucleon contact term – already at N²LO One free parameter E

2π-contact

3NF at N³LO short range part

- N³LO: V.Bernard, E.Epelbaum, H.Krebs, U-G.Meißner, Phys Rev C84 (2011) 054001.
- Relativistic 1/m corrections to 2π and 1π -contact terms origins in:

No new free parameters

2π -exchange force at N²LO and N³LO

At N³LO different values of c1,c3,c4 parameters
 + additional terms in formfactors with a new momentum dependence

Values of free parameters d and e

 Values of the d and e constants are obtained from the ³H binding energy and the ²a_{nd} scattering lenght. Only long range terms of 3NF supplemented by d- and e- short range terms are taken into account.

Cut-off	Λ [MeV]	d	е
1	450	11.4	0.56
2	600	12.03	2.196
3	550	11.85	3.04
4	450	7.59	-0.063
5	600	14.1	2.649

$$d = D \cdot F_{\pi}^{2} \cdot \Lambda_{\chi}$$
$$e = E \cdot F_{\pi}^{4} \cdot \Lambda_{\chi}$$

$$F_{\pi}$$
= 92.4 MeV
 Λ_{χ} = 700 MeV

Big compared to N²LO:

e.g cut-off=3: d=-0.45 e=-0.798 but

²a_{nd} : exp: 0.645 fm, for pure NN: N²LO: 0.794 fm, N³LO: 1.5873 fm.

³H at N³LO with relativistic corrections to 3NF (cut-off=1)

New values of d and e

	d	е
$V_{\pi\pi} + V_{2\pi-1\pi} + V_{ring} + V_d + V_e$	11.4	0.56
$V_{\pi\pi}+V_{2\pi-1\pi}+V_{ring}+V_{d}+V_{e}+V_{2\pi-cont}$	13.442	0.206
$V_{\pi\pi} + V_{2\pi-1\pi} + V_{ring} + V_d + V_e + V_{2\pi-cont} + V_{1/m}$	13.78	0.372

Expectation values [MeV]

	E _{NN}	E _{3NF}
$V_{\pi\pi} + V_{2\pi-1\pi} + V_{ring} + V_d + V_e$	-43.449	-0.996
$V_{\pi\pi} + V_{2\pi-1\pi} + V_{ring} + V_d + V_e + V_{2\pi-cont}$	-43.399	-1.024
$V_{\pi\pi} + V_{2\pi-1\pi} + V_{ring} + V_{d} + V_{e} + V_{2\pi-cont} + V_{1/m}$	-43.382	-1.017

	$V_{\pi\pi}$	V _{2π-1π}	V _{ring}	V _{2π-cont}	V _{d-term}	V _{e-term}	V _{1/m}
$V_{\pi\pi} + V_{2\pi-1\pi} + V_{ring} + V_d + V_e$	-0.648	0.470	0.015		-0.746	-0.087	
$V_{\pi\pi} + V_{2\pi-1\pi} + V_{ring} + V_d + V_e + V_{2\pi-cont}$	-0.661	0.485	0.014	0.082	-0.912	-0.032	
$V_{\pi\pi} + V_{2\pi-1\pi} + V_{ring} + V_d + V_e + V_{2\pi-cont} +$	-0.655	0.481	0.014	0.082	-0.930	-0.057	0.048
+V _{1/m}	(100%)	(73.4%)	(2.1%)	(12.5%)	(142%)	(8.7%)	(7.3%)

³H at N³LO with NN potential by R.Machleidt cut=500 (600)

New values of d and e

	d	е
$V_{\pi\pi} + V_{2\pi-1\pi} + V_{ring} + V_d + V_e$	5.96 <mark>(6.3)</mark>	-0.43 (-0.3222)
$V_{\pi\pi} + V_{2\pi-1\pi} + V_{ring} + V_{d} + V_{e} + V_{2\pi-cont} + V_{1/m}$	7.25 <mark>(7.53)</mark>	-0.5625 (-0.499)

Expectation values [MeV]

	E _{NN}	E _{3NF}
$V_{\pi\pi} + V_{2\pi-1\pi} + V_{ring} + V_d + V_e$	-44.382 (-44.572)	-0.768 <mark>(-0.869)</mark>
$V_{\pi\pi} + V_{2\pi-1\pi} + V_{ring} + V_{d} + V_{e} + V_{2\pi-cont} + V_{1/m}$	-44.381 (-44.617)	-0.768 <mark>(-0.870)</mark>

	V _{ππ}	V _{2π-1π}	V _{ring}	V _{2π-cont}	V _{d-term}	V _{e-term}	V _{1/m}
$V_{\pi\pi}+V_{2\pi-1\pi}+V_{ring}+V_{d}+V_{e}$	-1.466	0.787	-1.150		0.518	0.545	
·	-1.629	0.494	-2.233		1.790	0.709	
$V_{\pi\pi}+V_{2\pi-1\pi}+V_{ring}+V_{d}+V_{e}+V_{2\pi-cont}+V_{d}+V_{e}+V_{2\pi-cont}+V_{e}+V_$	-1.463	0.782	-1.175	-0.495	0.653	0.724	0.206
+V _{1/m}	-1.620	0.478	-2.273	-1.049	2.186	1.114	0.294

JAGIELLONIAN UNIVERSITY

Electromagnetic processes

Example: the deuteron photodisintegration

$$N_{\tau}^{np} = \left\langle \phi_{np} \left| (1 + tG_0) j_{\tau}(\vec{Q}) \right| \Psi_{deuteron} \right\rangle$$

Example: the 3N bound state photodisintegration

$$\begin{split} N_{\tau}^{Nd} &= \left\langle \phi_{Nd} \left| (1+P) j_{\tau}(\vec{Q}) \right| \Psi_{bound} \right\rangle + \left\langle \phi_{Nd} \left| P \right| U \right\rangle \\ N_{\tau}^{3N} &= \left\langle \phi_{0} \left| (1+P) j_{\tau}(\vec{Q}) \right| \Psi_{bound} \right\rangle + \left\langle \phi_{0} \left| tG_{0}(1+P) j_{\tau}(\vec{Q}) \right| \Psi_{bound} \right\rangle + \\ &+ \left\langle \phi_{0} \left| P \right| U \right\rangle + \left\langle \phi_{0} \left| tG_{0}P \right| U \right\rangle \\ \left| U \right\rangle &= (tG_{0} + 0.5(1+P)V_{4}^{(1)}G_{0}(tG_{0}+1))(1+P) j_{\tau}(\vec{Q}) \right| \Psi_{bound} \right\rangle + \\ &+ (tG_{0}P + 0.5(1+P)V_{4}^{(1)}G_{0}(tG_{0}+1)P) \left| U \right\rangle \end{split}$$

New component: electromagnetic current

JAGIELLONIAN UNIVERSITY IN KRAKOW

Matrix elements of the EM current operator

We deal with the (relatively simple) single nucleon current, where

Matrix elements of the EM current operator

We have also (more complicated) two-nucleon current

$$j^{\mu}\left(\vec{Q}\right) = j_{12}^{\mu}\left(\vec{Q}\right)$$

Example: one-pion-exchange current
$$\vec{J}_{ope} = \vec{J}_{ope}^{seagull} + \vec{J}_{ope}^{pionic}$$

$$\vec{J}_{ope}^{seagull} = -i \left(\frac{g_A}{2F_{\pi}}\right)^2 \vec{\sigma}_1 \left[\vec{\tau}_1 \times \vec{\tau}_2\right]_3 \frac{\vec{\sigma}_2 \cdot \vec{q}_2}{\vec{q}_2^2 + M_{\pi}^2} + (1 \leftrightarrow 2)$$

$$\vec{J}_{ope}^{pionic} = i \left(\frac{g_A}{2F_{\pi}}\right)^2 \frac{\vec{\sigma}_1 \cdot \vec{q}_1}{\vec{q}_1^2 + M_{\pi}^2} \frac{\vec{\sigma}_2 \cdot \vec{q}_2}{\vec{q}_2^2 + M_{\pi}^2} \left[\vec{\tau}_1 \times \vec{\tau}_2\right]_3 \left(\vec{q}_1 - \vec{q}_2\right).$$

$$\begin{split} \tilde{j}_{2}^{\text{reagull}}(p', p, Q; (l's')j'\mu', (ls)j\mu) \\ &= -6\sqrt{3} \pi \sqrt{\hat{l}\hat{s}\hat{j}\hat{l}'\hat{s}\hat{f}'}(-1)^{l'+s'} \delta_{\mu',\mu+\zeta} \\ &\times \sum_{\alpha_1} (-1)^{\alpha_1} \hat{\alpha}_1 \begin{cases} 1 & 1 & \alpha_1 \\ \frac{1}{2} & \frac{1}{2} & s \\ \frac{1}{2} & \frac{1}{2} & s' \end{cases} \\ &\times \sum_{\alpha_2} (-1)^{\alpha_2} C(1j\alpha_2; \zeta\mu\mu') \\ &\times \sum_{\alpha_3} (-1)^{\alpha_3} \hat{\alpha}_3 \begin{cases} 1 & \alpha_1 & 1 \\ l & s & j \\ \alpha_3 & s' & \alpha_2 \end{cases} \\ &\times \sum_{h_1+h_2=1} (-1)^{h_2} (\frac{1}{2}Q)^{h_1} \\ &\times \sum_r \hat{r} \hat{r} [1 - (-1)^{\alpha_1+h_2+r}] \\ &\times \sum_r \hat{r} \hat{r} [1 - (-1)^{\alpha_1+h_2+r}] \\ &\times \sum_{f_1} \sqrt{\hat{f}_1} C(rh_1 f_1; 000) C(f_1 j'\alpha_2; 0\mu'\mu') \begin{cases} f_1 & l' & \alpha_3 \\ s' & \alpha_2 & j' \end{cases} \\ &\times \sum_{f_2} \sqrt{\hat{f}_2} C(rh_2 f_2; 000) \sqrt{(2f_2 + 1)!} \begin{cases} f_1 & f_2 & 1 \\ l & \alpha_3 & l' \end{cases} \begin{cases} f_2 & f_1 \\ h_1 & h_2 \end{cases} \\ &\times \sum_{\nu_1+u_2=f_2} (p')^{u_1} (p)^{u_2} \frac{1}{\sqrt{(2u_1+1)!(2u_2)!}} \\ &\times \sum_z \sqrt{\hat{z}} C(u_2 lz; 000) C(l' zu_1; 000) \begin{cases} u_1 & u_2 & f_2 \\ l & l' & z \end{cases} G_{zr}^{h_2 f_2}, \end{split}$$

PWD already done for this operator

(see V.V. Kotlyar *et al.*, Few-Body Systems 28, 35 (2000))

Obviously PWD of that kind can be carried out for small number of operators. BUT WE HAVE TO EXPECT VERY MANY OPERATORS

 $\binom{1}{r}$

JAGIELLONIAN UNIVERSITY IN KRAKOW

Two-pion exchange electromagnetic current in chiral effective field theory using the method of unitary transformation

Electromagnetic current at NLO

$$\vec{J} = \sum_{i=1}^{5} \sum_{j=1}^{24} f_i^j (\vec{q}_1, \vec{q}_2) T_i \vec{O}_j,$$

$$J^0 = \sum_{i=1}^{5} \sum_{j=1}^{8} f_i^{jS} (\vec{q}_1, \vec{q}_2) T_i O_j^S,$$

$$\vec{O}_1 = \vec{Q}_1,$$

No new free parameters

$$\vec{O}_2 = \vec{Q}_1,$$

$$\vec{O}_3 = [\vec{Q}_4],$$

One can expect 24 spin operators for the vector components

$$\begin{split} \vec{O}_1 &= \vec{q}_1 + \vec{q}_2, \\ \vec{O}_2 &= \vec{q}_1 - \vec{q}_2, \\ \vec{O}_3 &= [\vec{q}_1 \times \vec{\sigma}_2] + [\vec{q}_2 \times \vec{\sigma}_1], \\ \vec{O}_4 &= [\vec{q}_1 \times \vec{\sigma}_2] - [\vec{q}_2 \times \vec{\sigma}_1], \\ \vec{O}_5 &= [\vec{q}_1 \times \vec{\sigma}_1] + [\vec{q}_2 \times \vec{\sigma}_2], \\ \vec{O}_6 &= [\vec{q}_1 \times \vec{\sigma}_1] - [\vec{q}_2 \times \vec{\sigma}_2], \\ \vec{O}_7 &= \vec{q}_1(\vec{q}_1 \cdot [\vec{q}_2 \times \vec{\sigma}_2]) + \vec{q}_2(\vec{q}_1 \cdot [\vec{q}_2 \times \vec{\sigma}_1]), \\ \vec{O}_8 &= \vec{q}_1(\vec{q}_1 \cdot [\vec{q}_2 \times \vec{\sigma}_2]) - \vec{q}_2(\vec{q}_1 \cdot [\vec{q}_2 \times \vec{\sigma}_1]), \\ \vec{O}_9 &= \vec{q}_2(\vec{q}_1 \cdot [\vec{q}_2 \times \vec{\sigma}_2]) - \vec{q}_1(\vec{q}_1 \cdot [\vec{q}_2 \times \vec{\sigma}_1]), \\ \vec{O}_{10} &= \vec{q}_2(\vec{q}_1 \cdot [\vec{q}_2 \times \vec{\sigma}_2]) - \vec{q}_1(\vec{q}_1 \cdot [\vec{q}_2 \times \vec{\sigma}_1]), \end{split}$$

Electromagnetic current at NLO

$$\begin{split} \vec{O}_{11} &= (\vec{q}_1 + \vec{q}_2)(\vec{\sigma}_1 \cdot \vec{\sigma}_2), \\ \vec{O}_{12} &= (\vec{q}_1 - \vec{q}_2)(\vec{\sigma}_1 \cdot \vec{\sigma}_2), \\ \vec{O}_{13} &= \vec{q}_1(\vec{q}_1 \cdot \vec{\sigma}_1)(\vec{q}_1 \cdot \vec{\sigma}_2) + \vec{q}_2(\vec{q}_2 \cdot \vec{\sigma}_1)(\vec{q}_2 \cdot \vec{\sigma}_2), \\ \vec{O}_{14} &= \vec{q}_1(\vec{q}_1 \cdot \vec{\sigma}_1)(\vec{q}_1 \cdot \vec{\sigma}_2) - \vec{q}_2(\vec{q}_2 \cdot \vec{\sigma}_1)(\vec{q}_2 \cdot \vec{\sigma}_2), \\ \vec{O}_{15} &= (\vec{q}_1 + \vec{q}_2)(\vec{q}_2 \cdot \vec{\sigma}_1)(\vec{q}_1 \cdot \vec{\sigma}_2), \\ \vec{O}_{16} &= (\vec{q}_1 - \vec{q}_2)(\vec{q}_2 \cdot \vec{\sigma}_1)(\vec{q}_1 \cdot \vec{\sigma}_2), \\ \vec{O}_{17} &= (\vec{q}_1 + \vec{q}_2)(\vec{q}_1 \cdot \vec{\sigma}_1)(\vec{q}_2 \cdot \vec{\sigma}_2), \\ \vec{O}_{18} &= (\vec{q}_1 - \vec{q}_2)(\vec{q}_1 \cdot \vec{\sigma}_1)(\vec{q}_2 \cdot \vec{\sigma}_2), \\ \vec{O}_{19} &= \vec{\sigma}_1(\vec{q}_1 \cdot \vec{\sigma}_2) + \vec{\sigma}_2(\vec{q}_2 \cdot \vec{\sigma}_1), \\ \vec{O}_{20} &= \vec{\sigma}_1(\vec{q}_1 \cdot \vec{\sigma}_2) - \vec{\sigma}_2(\vec{q}_2 \cdot \vec{\sigma}_1), \\ \vec{O}_{21} &= \vec{\sigma}_1(\vec{q}_2 \cdot \vec{\sigma}_2) + \vec{\sigma}_2(\vec{q}_1 \cdot \vec{\sigma}_1), \\ \vec{O}_{23} &= \vec{q}_1(\vec{q}_2 \cdot \vec{\sigma}_1)(\vec{q}_2 \cdot \vec{\sigma}_2) + \vec{q}_2(\vec{q}_1 \cdot \vec{\sigma}_1)(\vec{q}_1 \cdot \vec{\sigma}_2), \\ \vec{O}_{24} &= \vec{q}_1(\vec{q}_2 \cdot \vec{\sigma}_1)(\vec{q}_2 \cdot \vec{\sigma}_2) - \vec{q}_2(\vec{q}_1 \cdot \vec{\sigma}_1)(\vec{q}_1 \cdot \vec{\sigma}_2), \end{split}$$

JAGIELLONIAN UNIVERSITY IN KRAKOW

Electromagnetic current at NLO

Additionally 8 spin operators for the charge density !

$$\begin{split} O_1^S &= 1\!\!1, \\ O_2^S &= \vec{q}_1 \cdot [\vec{q}_2 \times \vec{\sigma}_2] + \vec{q}_1 \cdot [\vec{q}_2 \times \vec{\sigma}_1], \\ O_3^S &= \vec{q}_1 \cdot [\vec{q}_2 \times \vec{\sigma}_2] - \vec{q}_1 \cdot [\vec{q}_2 \times \vec{\sigma}_1], \\ O_4^S &= \vec{\sigma}_1 \cdot \vec{\sigma}_2, \\ O_5^S &= (\vec{q}_1 \cdot \vec{\sigma}_2)(\vec{q}_2 \cdot \vec{\sigma}_1), \\ O_6^S &= (\vec{q}_1 \cdot \vec{\sigma}_1)(\vec{q}_2 \cdot \vec{\sigma}_2), \\ O_7^S &= (\vec{q}_2 \cdot \vec{\sigma}_1)(\vec{q}_2 \cdot \vec{\sigma}_2) + (\vec{q}_1 \cdot \vec{\sigma}_1)(\vec{q}_1 \cdot \vec{\sigma}_2), \\ O_8^S &= (\vec{q}_2 \cdot \vec{\sigma}_1)(\vec{q}_2 \cdot \vec{\sigma}_2) - (\vec{q}_1 \cdot \vec{\sigma}_1)(\vec{q}_1 \cdot \vec{\sigma}_2). \end{split}$$

Isospin operators are chosen as

$$T_{1} = \tau_{1}^{3} + \tau_{2}^{3},$$

$$T_{2} = \tau_{1}^{3} - \tau_{2}^{3},$$

$$T_{3} = [\vec{\tau}_{1} \times \vec{\tau}_{2}]^{3},$$

$$T_{4} = \vec{\tau}_{1} \cdot \vec{\tau}_{2},$$

$$T_{5} = 1.$$

3, 3

Progress in Ab Initio Techniques in Nuclear Physics, 21-23.02.2013

The deuteron photodisintegration

The deuteron photodisintegration – processes with polarization

More results: D.Rozpędzik et al. PRC83 (2011) 064004 The similar picture for ³He photodisintegration

JAGIELLONIAN UNIVERSITY IN KRAKOW

Comments on N³LO 3NF calculations

- Project: 3NF at N³LO matrix elements
 CPU many terms, huge number of integrations (one integration is not so expensive, Monte-Carlo will not help much) thanks to J.Vary, K.Heberle
- More integration points required for higher partial waves?
- Which terms at N³LO are the most important for light nuclei ?
- Fixing free paramaters
 -currently we use E_{bound}(³H), ²a_{nd}
 -future:
 the cross section in e.g. elastic nd (pd) scattering
 or
 weak process (³H beta decay: effects of MECs are expected to be
 small)

NN at N³LO – needed revision?

- To describe 2N system it is necessary to go to N3LO in chiral expansion:
- E. Epelbaum, H. -W. Hammer, U.-G. Meißner, Rev. Mod. Phys. 81, 1773 (2009)
- R. Machleidt, D. R. Entem, Phys. Rept. 503, 1 (2011)

Potential	LS cut-off [MeV]	SFR cut-off [MeV]	E_d [MeV]	Pa [%]
N2LO 101	450	500	-2.1922	3.536
N2LO 102	600	500	-2.1842	4.566
N2LO 103	550	600	-2.1887	4.989
N2LO 104	450	700	-2.2019	3.613
N2LO 105	600	700	-2.1997	4.709
N3LO 201	450	500	- 2.2 161	2.727
N3LO 202	600	600	-2.2212	3.545
N3LO 203	550	600	-2.2193	3.283
N3LO 204	450	700	-2.2187	2.844
N3LO 205	600	700	-2.2232	3.634

TABLE I: The cut-off's for Lippmann-Schwinger eq. (LS) regularization and spectral function regularization (SFR) together with the deuteron properties (E. Epelbaum Prog. Part. Nucl. Phys. 57, 654 (2006)).

Summary and Outlook

- 3NF at N³LO:
 V_{ππ} and V_{2π-1π} dominate
 V_{ring}, V_{2π-contact} and V_{1/m} play a smaller role
 Contributions of V_{d-term} and V_{e-term} strongly depend on cut-offs
- NN and 3NF at N⁴LO or from explicit Δ approach
- Revision of NN at N³LO (?)
- The preparation of the matrix elements of 3NF already started. V_{NN} , $V^{(3)}(1+P)$, $(1+P)V^{(3)}(1+P)$, ...
- aPWD is a usefull tool not only for 3NF forces !
- aPWD technically is similar to the new 3-dimensional approach for the two- and three-body systems. Up to now we calculated the deuteron electrodisintegration, triton and the NN scattering including the first calculations of pp scattering without partial wave decomposition (Golak et al. Few-Body Syst. 53 (2012) 237).

JAGIELLONIAN UNIVERSITY IN KRAKOW

Thank you for your attention and ... 22-nd EUROPEAN CONFERENCE ON FEW-BODY PROBLEMS IN PHYSICS CRACOW, POLAND, 9 - 13 September 2013 www.efb22.if.uj.edu.pl

WE INVITE YOU CORDIALLY ! Staszek Kistryn, Jacek Golak & Romek Skibiński