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Chiral Effective Field Theory for nuclear forces 
             NN  3N   4N 

Separation of scales: low momenta       breakdown scale ~500 MeV 

cD, cE don’t contribute for neutrons 
because of Pauli principle and 
pion coupling to spin, also for c4 
Hebeler, AS (2010) 
 
 
 
 
 
 
 
 

all 3- and 4-neutron forces are 
predicted to N3LO!  
 
study 3N and 4N in neutron matter 
Tews, Krüger, Hebeler, AS, PRL (2013) 

Weinberg, van Kolck, Kaplan, Savage, Wise, Epelbaum, Kaiser, Machleidt, Meissner,… 



parameter-free N3LO Bernard et al. (2007,2011), Ishikawa, Robilotta (2007) 
 

one-loop contributions: 
2π-exchange, 2π-1π-exchange, rings, contact-1π-, contact-2π-exchange 
 
 
 
 
 
 
 
 
 
 
 
 
 

1/m corrections: spin-orbit parts, interesting for Ay puzzle 

Subleading chiral 3N forces 

decrease ci strengths 
δc3=-δc4=1 GeV-1 

comparable to 
N2LO uncertainty 



 Range of ci couplings 
Uncertainty range 
 
 
 
 
 
 
 
  
High-order analysis Krebs et al. (KGE) (2012) 



Neutron matter from chiral EFT interactions 
direct calculations without RG/SRG evolution 



Measure of convergence and comments on CT 



Measure of convergence and comments on CT 

consider all NN interactions 
with good convergence pattern 
and small CT 



N3LO 3N and 4N interactions in neutron matter 
evaluated at Hartree-Fock level 



N2LO vs. N3LO 3N 



Complete N3LO calculation of neutron matter 
first complete N3LO result 
includes uncertainties from bare NN, 3N, 4N 



Complete N3LO calculation of neutron matter 
first complete N3LO result 
includes uncertainties from bare NN, 3N, 4N 



Comparisons to equations of state in astrophysics 
many equations of state not consistent with neutron matter results 



N3LO 3N and 4N interactions in nuclear matter 
dominant parts 
where Δ’s can enter 



direct measurement of 
neutron star mass from 
increase in signal travel 
time near companion 
 

J1614-2230 
most edge-on binary 
pulsar known (89.17°) 
+ massive white dwarf 
companion (0.5 Msun) 
 

heaviest neutron star 
with 1.97±0.04 Msun 

Nature (2010) 

Discovery of the heaviest neutron star 



Equation of state/pressure for neutron-star matter (includes small Ye,p) 
 
 
 
 
 
 
 
 
 
 
pressure below nuclear densities agrees with standard crust equation of 
state only after 3N forces are included 

Impact on neutron stars Hebeler, Lattimer, Pethick, AS (2010) and in prep. 



Equation of state/pressure for neutron-star matter (includes small Ye,p) 
 
 
 
 
 
 
 
 
 
 
pressure below nuclear densities agrees with standard crust equation of 
state only after 3N forces are included 
 
extend uncertainty band to higher densities using piecewise polytropes 
allow for soft regions 

Impact on neutron stars Hebeler, Lattimer, Pethick, AS (2010) and in prep. 
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Pressure of neutron star matter 

constrain polytropes by causality and require to support 1.97 Msun star  
 
 
 
 
 
 
 
 
 
 
 
 
low-density pressure sets scale, chiral EFT interactions provide strong 
constraints, ruling out many model equations of state 
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Pressure of neutron star matter 

constrain polytropes by causality and require to support 1.97 Msun star  
 
 
 
 
 
 
 
 
 
 
 
 
low-density pressure sets scale, chiral EFT interactions provide strong 
constraints, ruling out many model equations of state  
 
central densities for 1.4 Msun star: 1.7-4.4 ρ0    

14.2 14.4 14.6 14.8 15.0 15.2 15.4

log 10  [g / cm3]

33

34

35

36

lo
g

1
0
P

 [
d

y
n

e
/c

m
2
]

WFF1
WFF2
WFF3
AP4
AP3
MS1
MS3
GM3
ENG
PAL
GS1
GS2

14.2 14.4 14.6 14.8 15.0 15.2 15.4

33

34

35

36

PCL2
SQM1
SQM2
SQM3
PS



Pressure of neutron star matter 

constrain polytropes by causality and require to support 1.97 Msun star  
 
 
 
 
 
 
 
 
 
 
 
 
low-density pressure sets scale, chiral EFT interactions provide strong 
constraints, ruling out many model equations of state 
 

darker blue band for 2.4 Msun star 
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Neutron star radius constraints 

uncertainty from many-body forces and general extrapolation 
 
 

 
   
 
 
 
 
 
 
 
 
 
constrains neutron star radius: 9.9-13.8 km for M=1.4 Msun (±15% !) 
 

consistent with extraction from X-ray burst sources Steiner et al. (2010) 
provides important constraints for EOS for core-collapse supernovae 
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Neutron-star mergers and 
 gravitational waves 

explore sensitivity to neutron-rich matter 
in neutron-star merger and gw signal 
Bauswein, Janka (2012), Bauswein, Janka, Hebeler, AS (2012). 



Summary 

first calculation with N3LO 3N and 4N interactions 
 
dominant parts where Δ’s can enter 

 
3N forces are dominant uncertainty of neutron (star) matter 
below nuclear densities 
 
constrains neutron-star radii and equation of state 
 
3N force provide forefront connection between neutron-rich nuclei 
and neutron-rich matter 


