The Role of the Delta Resonance in Chiral Three-Nucleon Forces

Hermann Krebs

Ruhr-Universität-Bochum

Progress in Ab Initio Techniques in Nuclear Physics February 21, 2013, TRIUMF, Vancouver

With V. Bernard, E. Epelbaum, A. Gasparyan, U.-G. Meißner

LENPIC
 Low Energy Nuclear Physics International Collaboration

Sven Binder, Angelo Calci, Joachim Langhammer, Robert Roth

Richard J. Furnstahl, Kai Hebeler

Evgeny Epelbaum, Hermann Krebs

RUB

Outline

- From QCD to nuclear physics
- Nuclear forces in chiral EFT
- Three-nucleon forces up to $\mathrm{N}^{3} \mathrm{LO}$
- Long-range part of three-nucleon forces up to N^{4} LO
- Summary \& Outlook

From QCD to nuclear physics

NN interaction is strong: resummations/nonperturbative methods needed
$1 / m_{N}$ - expansion: nonrelativistic problem $\left(\left|\vec{p}_{i}\right| \sim M_{\pi} \ll m_{N}\right) \Longrightarrow$ the QM A-body problem

$$
[\left(\sum_{i=1}^{A} \frac{-\vec{\nabla}_{i}^{2}}{2 m_{N}}+\mathcal{O}\left(m_{N}^{-3}\right)\right)+\underbrace{V_{2 N}+V_{3 N}+V_{4 N}+\ldots}_{\text {derived within ChPT }}]|\Psi\rangle=E|\Psi\rangle
$$

Weinberg '91

- unified description of $\pi \pi$, πN and NN
o consistent many-body forces and currents
- systematically improvable
- bridging different reactions (electroweak, π-prod., ...)
o precision physics with/from light nuclei

Nucleon-nucleon force up to N^{3} LO

Ordonez et al. '94; Friar \& Coon '94; Kaiser et al. '97; Epelbaum et al. '98, ‘03; Kaiser '99-'01; Higa et al. '03;
Chiral expansion for the 2 N force:

$$
V_{2 N}=V_{2 N}^{(0)}+V_{2 N}^{(2)}+V_{2 N}^{(3)}+V_{2 N}^{(4)}+\ldots
$$

- LO:

- NLO:

- $\mathrm{N}^{2} \mathrm{LO}$:
 renormalization of 1π-exchange

- $\mathrm{N}^{3} \mathrm{LO}:$

renormalization of 1π-exchange

sub-subleading 2π-exchange

$+1 / m$ and isospin-breaking corrections...

Neutron-proton phase shifts up to N^{3} LO
np scattering at 50 MeV

Deuteron binding energy \& asymptotic normalizations A_{s} and η_{d}

	NLO	$\mathrm{N}^{2} \mathrm{LO}$	$\mathrm{N}^{3} \mathrm{LO}$	Exp
$E_{\mathrm{d}}[\mathrm{MeV}]$	$-2.171 \ldots-2.186$	$-2.189 \ldots-2.202$	$-2.216 \ldots-2.223$	$-2.224575(9)$
$A_{S}\left[\mathrm{fm}^{-1 / 2}\right]$	$0.868 \ldots 0.873$	$0.874 \ldots 0.879$	$0.882 \ldots 0.883$	$0.8846(9)$
η_{d}	$0.0256 \ldots 0.0257$	$0.0255 \ldots 0.0256$	$0.0254 \ldots 0.0255$	$0.0256(4)$

[^0]
Nuclear forces up to $\mathbf{N}^{3} \mathrm{LO}$

dimensional analysis counting

Two-nucleon force

NLO (Q^{2})
LO (Q $\left.{ }^{0}\right)$

Three-nucleon force
Four-nucleon force

N2LO (Q ${ }^{3}$)

- converged
- accurate description of NN at least up to $\mathrm{E}_{\text {lab }} \sim 200 \mathrm{MeV}$
- not yet converged
- higher orders in progress
- impact on few- \& many-N systems?
- converged ??
- presently out of reach for few- \& many-N studies

Three-nucleon forces

Three-nucleon forces in chiral EFT start to contribute at NNLO(U. van Kolck '94; Epelbaum et al. '02; Nogga et al. 05; Navratil et al. '07)

- LECs D and E incorporate short-range contr.

Resonance saturation interpretation of LECs

- Delta contributions encoded in LECs
(Bernard, Kaiser \& Meißner '97)

$$
\begin{array}{r}
c_{3}=-2 c_{4}=c_{3}(\not \Delta)-\frac{4 h_{A}^{2}}{9 \Delta} \\
\\
\begin{array}{c}
\text { Enlargement due to } \\
\text { Delta contribution }
\end{array}
\end{array}
$$

nd elastic scattering

nd break-up $\left[\mathrm{mb} \mathrm{MeV}^{-1} \mathrm{Sr}^{-2}\right]$

For references see recent reviews:
Epelbaum, Prog. Part Nucl. Phys. 57 (06) 654
Epelbaum, Hammer, Meißner, Rev. Mod. Phys. 81 (09) 1773
Entem, Machleidt, Phys. Rept. 503 (11) 1
Epelbaum, Meißner, Ann. Rev. Nucl. Part. Sci. 62 (12) 159 Kalantar et al. Rep. Prog. Phys. 75 (12) 016301
Hammer, Schwenk, Nogga Rev. Mod. Phys. 85 (13) 197

- Generally good description of data.

But some discrepancies arise. E.g. break-up observables for SCRE/SST configuration at low energy

Hope for improvement at N^{3} LO

Proton- ${ }^{3} \mathrm{He}$ elastic scattering

Viviani, Girlanda, Kievsky, Marcucci, Rosati arXiv: 1004.1306
p- ${ }^{3} \mathrm{He}$ differential cross section at low energies

proton vector analyzing power A_{y}-puzzle

As in n-d scattering case N^{2} LO 3NF's are not enough to resolve underprediction of A_{y}

Hope for improvement at higher orders

Three-nucleon forces

- Three-nucleon forces at $\mathrm{N}^{3} \mathrm{LO}$

Long range contributions Bernard, Epelbaum, H.K., Meißner `08; Ishikawa, Robilotta `07

- No additional free parameters
- Expressed in terms of g_{A}, F_{π}, M_{π}

- Rich isospin-spin-orbit structure
- Δ (1232)-contr. are important

Shorter range contributions

Bernard, Epelbaum, H.K., Meißner '11

- LECs needed for shorter range contr.

$$
g_{A}, F_{\pi}, M_{\pi}, C_{T}
$$

- Central NN contact interaction does not contribute
- Unique expressions in the static limit for a renormalizable 3NF

Two-pion-exchange 3NF

Two-pion-exchange 3NF

$$
\text { N³LO - contr. (leading } 1 \text { loop) }
$$

$$
\begin{aligned}
& \mathcal{A}^{(4)}\left(q_{2}\right)=\frac{g_{A}^{4}}{256 \pi F_{\pi}^{6}}\left[A\left(q_{2}\right)\left(2 M_{\pi}^{4}+5 M_{\pi}^{2} q_{2}^{2}+2 q_{2}^{4}\right)+\left(4 g_{A}^{2}+1\right) M_{\pi}^{3}+2\left(g_{A}^{2}+1\right) M_{\pi} q_{2}^{2}\right], \\
& \mathcal{B}^{(4)}\left(q_{2}\right)=-\frac{g_{A}^{4}}{256 \pi F_{\pi}^{6}}\left[A\left(q_{2}\right)\left(4 M_{\pi}^{2}+q_{2}^{2}\right)+\left(2 g_{A}^{2}+1\right) M_{\pi}\right] \begin{array}{l}
\text { Ishikawa, Robilotta '07, } \\
\text { Bernard, Epelbaum, HK, Meißner '07 }
\end{array}
\end{aligned}
$$

- No unknown parameters at this order
- Everything is expressed in terms of loop function $A(q)=\frac{1}{2 q} \arctan \frac{q}{2 M_{\pi}}$
- Additional unitarity transformations required for proper renormalization

Two-pion-exchange 3NF

N^{4} LO - contr. (subleading 1 loop) Epelbaum, Gasparyan, H.K., PRC85 (2012) 054006

c_{i} 's LECs from $\mathcal{L}_{\pi N}^{(2)}, d_{i}$'s LECs from $\mathcal{L}_{\pi N}^{(3)}, e_{i}$'s LECs from $\mathcal{L}_{\pi N}^{(4)}$: fitted to πN - scattering data

Leading Δ - contributions are taken into account through $c_{i}{ }^{\prime}$ s

- Vanishing $1 / m$-contributions at this order

Two-pion-exchange 3NF at $\mathrm{N}^{4} \mathrm{LO}$

$$
\begin{aligned}
\mathcal{A}^{(5)}\left(q_{2}\right) & =\frac{g_{A}}{4608 \pi^{2} F_{\pi}^{6}}\left[M _ { \pi } ^ { 2 } q _ { 2 } ^ { 2 } \left(F_{\pi}^{2}\left(2304 \pi^{2} g_{A}\left(4 \bar{e}_{14}+2 \bar{e}_{19}-\bar{e}_{22}-\bar{e}_{36}\right)-2304 \pi^{2} \bar{d}_{18} c_{3}\right)\right.\right. \\
& \left.+g_{A}\left(144 c_{1}-53 c_{2}-90 c_{3}\right)\right)+M_{\pi}^{4}\left(F_{\pi}^{2}\left(4608 \pi^{2} \bar{d}_{18}\left(2 c_{1}-c_{3}\right)+4608 \pi^{2} g_{A}\left(2 \bar{e}_{14}+2 \bar{e}_{19}-\bar{e}_{36}-4 \bar{e}_{38}\right)\right)\right) \\
& \left.\left.+g_{A}\left(72\left(64 \pi^{2} \bar{l}_{3}+1\right) c_{1}-24 c_{2}-36 c_{3}\right)\right)+q_{2}^{4}\left(2304 \pi^{2} \bar{e}_{14} F_{\pi}^{2} g_{A}-2 g_{A}\left(5 c_{2}+18 c_{3}\right)\right)\right] \\
& -\frac{g_{A}^{2}}{768 \pi^{2} F_{\pi}^{6}} L\left(q_{2}\right)\left(M_{\pi}^{2}+2 q_{2}^{2}\right)\left(4 M_{\pi}^{2}\left(6 c_{1}-c_{2}-3 c_{3}\right)+q_{2}^{2}\left(-c_{2}-6 c_{3}\right)\right) \\
\mathcal{B}^{(5)}\left(q_{2}\right) & =-\frac{g_{A}}{2304 \pi^{2} F_{\pi}^{6}}\left[M_{\pi}^{2}\left(F_{\pi}^{2}\left(1152 \pi^{2} \bar{d}_{18} c_{4}-1152 \pi^{2} g_{A}\left(2 \bar{e}_{17}+2 \bar{e}_{21}-\bar{e}_{37}\right)\right)+108 g_{A}^{3} c_{4}+24 g_{A} c_{4}\right)\right. \\
& \left.+q_{2}^{2}\left(5 g_{A} c_{4}-1152 \pi^{2} \overparen{\bar{e}} 17 F_{\pi}^{2} g_{A}\right)\right]+\frac{g_{A}^{2} c_{4}}{384 \pi^{2} F_{\pi}^{6}} L\left(q_{2}\right)\left(4 M_{\pi}^{2}+q_{2}^{2}\right)
\end{aligned}
$$

Some LECs can be absorbed by shifting c_{i} 's

$$
\begin{aligned}
& c_{1} \rightarrow c_{1}-2 M_{\pi}^{2}\left(\bar{e}_{22}-4 \bar{e}_{38}-\frac{\bar{l}_{3} c_{1}}{F_{\pi}^{2}}\right) \\
& c_{3} \rightarrow c_{3}+4 M_{\pi}^{2}\left(2 \bar{e}_{19}-\bar{e}_{22}-\bar{e}_{36}+2 \frac{\bar{l}_{3} c_{1}}{F_{\pi}^{2}}\right) \\
& c_{4} \rightarrow c_{4}+4 M_{\pi}^{2}\left(2 \bar{e}_{21}-\bar{e}_{37}\right)
\end{aligned}
$$

$$
g_{\pi N N}=\frac{g_{A} m}{F_{\pi}}\left(1-\frac{2 M_{\pi}^{2} \bar{d}_{18}}{g_{A}}\right) \Longleftrightarrow \text { Violation of Goldberger-Treiman relation }
$$

$L(q)=\frac{\sqrt{q^{2}+4 M_{\pi}^{2}}}{q} \log \frac{\sqrt{q^{2}+4 M_{\pi}^{2}}+q}{2 M_{\pi}}$

- No d_{i} dependence of TPE-contr. besides d_{18}
- Pion-nucleon scattering does strongly depend on d_{i} 's

Pion-nucleon scattering

Heavy baryon calculation up to order q 4 Fettes, Meißner Nucl. Phys. A676 (2000) 311
1/m power counting used in FM work $\Longleftrightarrow \frac{p}{m} \sim \frac{q}{\Lambda_{\chi}}$
Difference in Weinberg's power counting for $\mathrm{NN} \longmapsto \frac{p}{m} \sim\left(\frac{q}{\Lambda_{\chi}}\right)^{2}$
Refit of d_{i} and e_{i} LECs is needed

$$
\begin{gathered}
\pi^{a}\left(q_{1}\right)+N\left(p_{1}\right) \rightarrow \pi^{b}\left(q_{2}\right)+N\left(p_{2}\right) \\
T_{\pi N}^{b a}=\frac{E+m}{2 m}\left(\delta^{b a}\left[g^{+}(\omega, t)+i \vec{\sigma} \cdot \vec{q}_{2} \times \vec{q}_{1} h^{+}(\omega, t)\right]+i \epsilon^{b a c} \tau^{c}\left[g^{-}(\omega, t)+i \vec{\sigma} \cdot \overrightarrow{q_{2}} \times \vec{q}_{1} h^{-}(\omega, t)\right]\right) \\
\text { CMS kinematics: } \omega=q_{1}^{0}=q_{2}^{0}, \quad E=E_{1}=E_{2}=\sqrt{\vec{q}^{2}+m^{2}}, \quad \vec{q}_{1}^{2}=\vec{q}_{2}^{2}=\vec{q}^{2}, \quad t=\left(q_{1}-q_{2}\right)^{2} \\
\text { Partial wave amplitudes: } f_{l \pm}^{ \pm}(s)=\frac{E+m}{16 \pi \sqrt{s}} \int_{-1}^{1} d z\left[g^{ \pm} P_{l}(z)+\vec{q}^{2} h^{ \pm}\left(P_{l \pm 1}(z)-z P_{l}(z)\right)\right]
\end{gathered}
$$

$$
\text { In the isospin basis: } f_{l \pm}^{1 / 2}=f_{l \pm}^{+}+2 f_{l \pm}^{-}, \quad f_{l \pm}^{3 / 2}=f_{l \pm}^{+}-f_{l \pm}^{-}
$$

Absence of inelasticity below the two-pion production threshold

$$
\delta_{l \pm}^{I}(s)=\arctan \left(|\vec{q}| \mathcal{R} e f_{l \pm}^{I}(s)\right)
$$

Two-pion-exchange at $\mathrm{N}^{4} \mathrm{LO}$

Data fitted for $\mathrm{p}_{\mathrm{Lab}}<150 \mathrm{MeV}$

Karlsruhe-Helsinki (KH) PWA: R. Koch Nucl. Phys. A 448 (1986) 707

Similar fit to George-Washington (GW) PWA: Arndt et al. Phys. Rev. C 74 (2006) 045205

	c_{1}	c_{2}	c_{3}	c_{4}	$\bar{d}_{1}+\bar{d}_{2}$	\bar{d}_{3}	\bar{d}_{5}	$\bar{d}_{14}-\bar{d}_{15}$	\bar{e}_{14}	\bar{e}_{15}	\bar{e}_{16}	\bar{e}_{17}	\bar{e}_{18}
GW-fit	-1.13	3.69	-5.51	3.71	5.57	-5.35	0.02	-10.26	1.75	-5.80	1.76	-0.58	0.96
KH-fit	-0.75	3.49	-4.77	3.34	6.21	-6.83	0.78	-12.02	1.52	-10.41	6.08	-0.37	3.26

No dependence on $d_{i}{ }^{\prime}$ s
e_{i}^{\prime} s are of natural size
Good convergence of TPE 3NF

Most general structure of a local 3NF

Epelbaum, Gasparyan, H.K., arXiv: 1302.2872
Up to N^{4} LO, the computed contributions are local \longrightarrow it is natural to switch to r-space.
A meaningful comparison requires a complete set of independent operators

Generators \mathcal{G} of 89 independent operators	S	A	G_{12}	G_{22}	G_{11}	G_{21}
$\mathcal{G}_{1}=1$	O_{1}	0	0	0	0	0
$\mathcal{G}_{2}=\boldsymbol{\tau}_{1} \cdot \boldsymbol{\tau}_{3}$	O_{2}	0	O_{3}	O_{4}	0	0
$\mathcal{G}_{3}=\vec{\sigma}_{1} \cdot \vec{\sigma}_{3}$	O_{5}	0	O_{6}	O_{7}	0	0
$\mathcal{G}_{4}=\boldsymbol{\tau}_{1} \cdot \boldsymbol{\tau}_{3} \vec{\sigma}_{1} \cdot \vec{\sigma}_{3}$	O_{8}	0	O_{9}	O_{10}	0	0
$\mathcal{G}_{5}=\boldsymbol{\tau}_{2} \cdot \boldsymbol{\tau}_{3} \vec{\sigma}_{1} \cdot \vec{\sigma}_{2}$	O_{11}	O_{12}	O_{13}	O_{14}	O_{15}	O_{16}
$\mathcal{G}_{6}=\boldsymbol{\tau}_{1} \cdot\left(\boldsymbol{\tau}_{2} \times \boldsymbol{\tau}_{3}\right) \vec{\sigma}_{1} \cdot\left(\vec{\sigma}_{2} \times \vec{\sigma}_{3}\right)$	O_{17}	0	0	0	0	0
$\mathcal{G}_{7}=\boldsymbol{\tau}_{1} \cdot\left(\boldsymbol{\tau}_{2} \times \boldsymbol{\tau}_{3}\right) \vec{\sigma}_{2} \cdot\left(\vec{q}_{1} \times \vec{q}_{3}\right)$	O_{18}	0	O_{19}	O_{20}	0	0
$\mathcal{G}_{8}=\vec{q}_{1} \cdot \vec{\sigma}_{1} \vec{q}_{1} \cdot \vec{\sigma}_{3}$	O_{21}	O_{22}	O_{23}	O_{24}	O_{25}	O_{26}
$\mathcal{G}_{9}=\vec{q}_{1} \cdot \vec{\sigma}_{3} \vec{q}_{3} \cdot \vec{\sigma}_{1}$	O_{27}	0	O_{28}	O_{29}	0	0
$\mathcal{G}_{10}=\vec{q}_{1} \cdot \vec{\sigma}_{1} \vec{q}_{3} \cdot \vec{\sigma}_{3}$	O_{30}	0	O_{31}	O_{32}	0	0
$\mathcal{G}_{11}=\boldsymbol{\tau}_{2} \cdot \tau_{3} \vec{q}_{1} \cdot \vec{\sigma}_{1} \vec{q}_{1} \cdot \vec{\sigma}_{2}$	O_{33}	O_{34}	O_{35}	O_{36}	O_{37}	O_{38}
$\mathcal{G}_{12}=\boldsymbol{\tau}_{2} \cdot \boldsymbol{\tau}_{3} \vec{q}_{1} \cdot \vec{\sigma}_{1} \vec{q}_{3} \cdot \vec{\sigma}_{2}$	O_{39}	O_{40}	O_{41}	O_{42}	O_{43}	O_{44}
$\mathcal{G}_{13}=\boldsymbol{\tau}_{2} \cdot \boldsymbol{\tau}_{3} \vec{q}_{3} \cdot \vec{\sigma}_{1} \vec{q}_{1} \cdot \vec{\sigma}_{2}$	O_{45}	O_{46}	O_{47}	O_{48}	O_{49}	O_{50}
$\mathcal{G}_{14}=\boldsymbol{\tau}_{2} \cdot \tau_{3} \vec{q}_{3} \cdot \vec{\sigma}_{1} \vec{q}_{3} \cdot \vec{\sigma}_{2}$	O_{51}	O_{52}	O_{53}	O_{54}	O_{55}	O_{56}
$\mathcal{G}_{15}=\boldsymbol{\tau}_{1} \cdot \boldsymbol{\tau}_{3} \vec{q}_{2} \cdot \vec{\sigma}_{1} \vec{q}_{2} \cdot \vec{\sigma}_{3}$	O_{57}	0	O_{58}	O_{59}	0	0
$\mathcal{G}_{16}=\boldsymbol{\tau}_{2} \cdot \boldsymbol{\tau}_{3} \vec{q}_{3} \cdot \vec{\sigma}_{2} \vec{q}_{3} \cdot \vec{\sigma}_{3}$	O_{60}	O_{61}	O_{62}	O_{63}	O_{64}	O_{65}
$\mathcal{G}_{17}=\boldsymbol{\tau}_{1} \cdot \boldsymbol{\tau}_{3} \vec{q}_{1} \cdot \vec{\sigma}_{1} \vec{q}_{3} \cdot \vec{\sigma}_{3}$	O_{66}	0	O_{67}	O_{68}	0	0
$\mathcal{G}_{18}=\boldsymbol{\tau}_{1} \cdot\left(\boldsymbol{\tau}_{2} \times \boldsymbol{\tau}_{3}\right) \vec{\sigma}_{1} \cdot \vec{\sigma}_{3} \vec{\sigma}_{2} \cdot\left(\vec{q}_{1} \times \vec{q}_{3}\right)$	O_{69}	0	O_{70}	O_{71}	0	0
$\mathcal{G}_{19}=\boldsymbol{\tau}_{1} \cdot\left(\boldsymbol{\tau}_{2} \times \boldsymbol{\tau}_{3}\right) \vec{\sigma}_{3} \cdot \vec{q}_{1} \vec{q}_{1} \cdot\left(\vec{\sigma}_{1} \times \vec{\sigma}_{2}\right)$	O_{72}	O_{73}	O_{74}	O_{75}	O_{76}	O_{77}
$\mathcal{G}_{20}=\boldsymbol{\tau}_{1} \cdot\left(\boldsymbol{\tau}_{2} \times \boldsymbol{\tau}_{3}\right) \vec{\sigma}_{1} \cdot \vec{q}_{1} \vec{\sigma}_{2} \cdot \vec{q}_{1} \vec{\sigma}_{3} \cdot\left(\vec{q}_{1} \times \vec{q}_{3}\right)$	O_{78}	O_{79}	O_{80}	O_{81}	O_{82}	O_{83}
$\mathcal{G}_{21}=\boldsymbol{\tau}_{1} \cdot\left(\boldsymbol{\tau}_{2} \times \boldsymbol{\tau}_{3}\right) \vec{\sigma}_{1} \cdot \vec{q}_{2} \vec{\sigma}_{3} \cdot \vec{q}_{2} \vec{\sigma}_{2} \cdot\left(\vec{q}_{1} \times \vec{q}_{3}\right)$	O_{84}	0	O_{85}	O_{86}	0	0
$\mathcal{G}_{22}=\boldsymbol{\tau}_{1} \cdot\left(\boldsymbol{\tau}_{2} \times \boldsymbol{\tau}_{3}\right) \vec{\sigma}_{1} \cdot \vec{q}_{1} \vec{\sigma}_{3} \cdot \vec{q}_{3} \vec{\sigma}_{2} \cdot\left(\vec{q}_{1} \times \vec{q}_{3}\right)$	O_{87}	0	O_{88}	O_{89}	0	0

Most general, local 3NF involves 89 operators, can be generated (by permutations) from 22 structures:

$$
V_{3 \mathrm{~N}}^{\mathrm{loc}}=\sum_{i=1}^{22} \mathcal{G}_{i} F_{i}\left(r_{12}, r_{23}, r_{31}\right)+5 \text { perm }
$$

The structures \mathcal{O}_{i} are defined as:

$$
\begin{aligned}
& S(\mathcal{G}):=\frac{1}{6} \sum_{P \in S_{3}} P \mathcal{G} \\
& A(\mathcal{G}):=\frac{1}{6} \sum_{P \in S_{3}}(-1)^{P} P \mathcal{G} \\
& G_{i j}(\mathcal{G}):=\frac{1}{3} \sum_{P \in S_{3}} \mathcal{D}_{i j}(P) P \mathcal{G}, \quad i, j=1,2 \\
& \text { 2-dim. irred. repr. of } S_{3}
\end{aligned}
$$

Two-pion-exchange up to $\mathrm{N}^{4} \mathrm{LO}$

Epelbaum, Gasparyan, H.K., arXiv: 1302.2872

Chiral expansion of TPE „structure functions" F_{i} (in MeV) in the equilateral-triangle configuration

Excellent convergence of TPE-force at distance $r \geq 2 \mathrm{fm}$

$2 \pi-1 \pi$ and ring $3 N F s$ up to N^{4} LO

Representative contributions to $2 \pi-1 \pi$ and ring 3 NFs

- Convergence of chiral expansion of $2 \pi-1 \pi$ and ring $3 N F s$ is much worse
- In nearly all cases subleading N^{4} LO dominate leading N^{3} LO contributions
- Leading Δ-contributions first at $N^{4} \mathrm{LO} \Longrightarrow N^{4} \mathrm{LO}>\mathrm{N}^{3} \mathrm{LO}$
- Considerably shorter range as compared with 2π-exchange contributions

Not clear whether the lack of convergence will have any significant phenomenological effect.

Individual contr. to $3 N F$ up to $\mathrm{N}^{4} \mathrm{LO}$

Representative contributions from individual topologies

- Clear dominance of 2π-exch. 3NF (if contributes) over two other topologies at $r \geq 2 \mathrm{fm}$
d At shorter distances $r \sim 1 \mathrm{fm} 2 \pi-1 \pi$ and ring 3NFs become more significant

- $2 \pi-1 \pi$ and ring 3 NFs are in the most cases of comparable size
- No conclusion about phenomenological impact due to still missing short-range contr.

Long-range 3 NF up to $\mathrm{N}^{4} \mathrm{LO}$

Epelbaum, Gasparyan, H.K., arXiv: 1302.2872

- Good convergence at long distances $r \geq 2 \mathrm{fm}$ for profile functions which are dominated by 2π-exch. 3 NF
- At shorter distances $r \sim 1 \mathrm{fm} 2 \pi-1 \pi$ and ring 3NFs start becoming more important

Profile functions which are not affected by 2π-exch. 3 NF are typically dominated by $\mathrm{N}^{4} \mathrm{LO}$ contributions and might still not be converged at this order.

Supports assumption about important role of Δ-excitation which is partially taken into account at N^{4} LO through resonance saturation of $c_{i}^{\prime} s$

Comparison with NN force

Epelbaum, Meißner Ann. Rev. Nucl. Part. Sci 62 (12) 159

$$
\begin{aligned}
\tilde{V}(\vec{r}) & =\tilde{V}_{C}+\boldsymbol{\tau}_{1} \cdot \boldsymbol{\tau}_{2} \tilde{W}_{C}+\left[\tilde{V}_{S}+\boldsymbol{\tau}_{1} \cdot \boldsymbol{\tau}_{2} \tilde{W}_{S}\right] \vec{\sigma}_{1} \cdot \vec{\sigma}_{2} \\
& +\left[\tilde{V}_{T}+\boldsymbol{\tau}_{1} \cdot \boldsymbol{\tau}_{2} \tilde{W}_{T}\right]\left(3 \vec{\sigma}_{1} \cdot \hat{r} \vec{\sigma}_{2} \cdot \hat{r}-\vec{\sigma}_{1} \cdot \vec{\sigma}_{2}\right)
\end{aligned}
$$

Bands ($800 \mathrm{MeV} \leq \tilde{\Lambda}$) visualize estimated scheme-dependence for separation between short- and long-range contributions

Long-range behavior at $r \geq 2 \mathrm{fm}$ of

- \tilde{W}_{T} is governed by 1π-exchange
- \tilde{V}_{C} is governed by subleading 2π-exchange

Size of various dominant contributions at $r=2 \mathrm{fm}$

NN	$2 \pi-3 \mathrm{NF}$	$2 \pi-1 \pi-3 \mathrm{NF}$	ring-3NF
$\sim 3 \ldots 4 \mathrm{MeV}$	$\sim 0.7 \ldots 1 \mathrm{MeV}$	$\sim 50 \mathrm{keV}$	$\sim 70 \mathrm{keV}$

Long-range 3NFs are considerably weaker than NN forces, but not negligible!

Partial wave decomposition

- Faddeev equation is solved in the partial wave basis

$$
|p, q, \alpha\rangle \equiv\left|p q(l s) j\left(\lambda \frac{1}{2}\right) I(j I) J M_{J}\right\rangle\left|\left(t \frac{1}{2}\right) T M_{T}\right\rangle
$$

Too many terms for doing PWD by hand \Longleftrightarrow Automatization

$$
\underbrace{\left\langle p^{\prime} q^{\prime} \alpha^{\prime}\right| V|p q \alpha\rangle}_{\text {matrix } \sim 10^{5} \times 10^{5}}=\int \underbrace{d \hat{p}^{\prime} d \hat{q}^{\prime} d \hat{p} d \hat{q}}_{\begin{array}{c}
\text { can be reduced } \\
\text { to } 5 \text { dim. integral }
\end{array}} \sum_{m_{l}, \ldots}(\text { CG coeffs. })\left(Y_{l, m_{l}}(\hat{p}) Y_{l^{\prime}, m_{l}^{\prime}}\left(\hat{p}^{\prime}\right) \ldots\right) \underbrace{\left\langle m_{s_{1}}^{\prime} m_{s_{2}}^{\prime} m_{s_{3}}^{\prime}\right| V\left|m_{s_{1}} m_{s_{2}} m_{s_{3}}\right\rangle}_{\text {depends on spin } \& \text { isospin }}
$$

Ring-diagram-contr. expensive to calculate on the fly

see talk by Roman Skibinski

- PWD matrix-elements can be used to produce matrix-elements in harmonic oscillator basis see talk by Robert Roth \& Kai Hebeler

Straightforward implementation of high order 3nf's in many-body calc. within No-Core Shell Model

Ay-puzzle in elastic nd scattering

Witala et al. Proceedings of Few Body 20

Incomplete results: N 3 LO 3NF (2π-cont. \& 1/m-corr.) are missing

Summary

- Chiral nuclear forces are analyzed up to N^{3} LO
- Long-range part of chiral three-nucleon forces is analyzed up to $\mathrm{N}^{4} \mathrm{LO}$
- In general there are 89 spin-isospin structures in local 3NF's built out of $22+$ perm.
- Two-pion-exchange part dominates 3NF but does not fill all 22 structures
- With two-pion-one-pion-exchange and ring diagrams all 22 structures are filled
- First (incomplete) results for A_{y} in nd elastic scattering with $\mathrm{N}^{3} \mathrm{LO} 3 \mathrm{NF}^{\prime} \mathrm{s}$

Outlook

- Partial wave decomposition of N^{3} LO three-nucleon forces
- Complete study of 3NF and 4NF up to N^{4} LO with explicit delta-isobar
- Implementations in Nd , light nuclei \& nuclear matter

[^0]: Entem \& Machleidt ‘03; Epelbaum, Glöckle \& Meißner ‘05

