Shell evolution in the neutron rich calcium isotopes

Gustav R. Jansen^{1,2}

gustav.jansen@utk.edu

¹University of Tennessee, Knoxville

²Oak Ridge National Laboratory

February 22. 2013

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

Collaborators

▲日▼▲□▼▲□▼▲□▼ □ のので

- Andreas Ekström (UiO, MSU)
- Christian Forrsen (Chalmers)
- Gaute Hagen (ORNL, UTK)
- Morten Hjorth-Jensen (UiO, MSU)
- Gustav R. Jansen (UTK, ORNL)
- Ruprecht Machleidt (UI)
- Hai Ah Nam (ORNL)
- Thomas Papenbrock (ORNL, UTK)

Outline

• Evolution of shell structure in neutron rich calcium isotopes.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回 ● のへで

- Preliminary results using N²LO (POUNDerS).
- Notes on three nucleon forces and outlook.

Shell evolution in neutron rich calcium isotopes.

Details

- J. D. Holt, T. Otsuka, A. Schwenk and T. Suzuki, J Phys G39 085111 (2012)..
- $J^{\pi} = 2^+$ systematics in even calcium isotopes.

Main features

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

- Threebody forces needed to make ⁴⁸Ca magic.
- Different models have ⁵⁴Ca magic, semi magic and not magic at all.

э

Evolution of single particle energies

Technical details

- J. Meng, H. Toki,
 J. Y. Zeng, S. Q. Zhang and S. -G. Zhou, PRC 65 041302(R) (2002).
- Relativistic mean-field including continuum effects.

Main features

- Bunching of single-particle energies outside the *pf*-shell.
- No shell-gap in ⁶⁰Ca ⁷⁰Ca.
- Large deformations and no shell-closure.
- Continuum effects responsible for bound ⁶⁰Ca - ⁷²Ca.

-

・ロッ ・ 一 ・ ・ ・ ・

Evolution of single particle energies

Technical details

- S. M. Lenzi, F. Nowacki, A. Poves and K. Sieja, PRC 82 054301 (2010).
- Shell-model calculation in the *pf*-shell including 0g_{9/2} and 2d_{5/2} for neutrons.

Main features

(日)

- Inversion of the $0g_{9/2}$ and the $2d_{5/2}$ single particle states in 60 Ca.
- Bunching of levels including the 0f_{5/2} state indicates no shell-closure.

э

Binding energies in calcium isotopes

G. Hagen, M. Hjorth-Jensen, GRJ, R. Machleidt, and T. Papenbrock, PRL109 032502 (2012)

Technical details

- Chiral interaction at N³LO.
- Density dependent three body force with $k_F = 0.95 \text{fm}^{-1}$, $c_D = -0.2$ and $c_E = 0.735$. $N_{max} = 18$ and $\hbar \omega = 26$ MeV. • Mass of ⁵¹Ca and ⁵²Ca
 - Mass of ⁵¹Ca and ⁵²Ca from A. T. Gallant *et al.*, PRL 109, 032506 (2012)

Main features

- Total binding energies agree well with experimental masses.
- ⁶⁰Ca is not magic.

< ロ > < 同 > < 回 > < 回 >

• Three nucleon force is repulsive.

Binding energies in calcium isotopes

G. Hagen, M. Hjorth-Jensen, GRJ, R. Machleidt, and T. Papenbrock, PRL109 032502 (2012)

Technical details

- Chiral interaction at N³LO.
- Density dependent three body force with $k_F = 0.95 \text{fm}^{-1}$, $c_D = -0.2$ and $c_E = 0.735$. $N_{max} = 18$ and $\hbar\omega = 26$ MeV.
- Mass of ⁵¹Ca and ⁵²Ca from A. T. Gallant *et al.*, PRL 109, 032506 (2012)

Main features

< ロ > < 同 > < 回 > < 回 >

- Total binding energies agree well with experimental masses.
- ⁶⁰Ca is not magic.
- Three nucleon force is repulsive.

$J^{\pi} = 2^+$ systematics in even calcium isotopes G. Hagen, M. Hjorth-Jensen, GRJ, R. Machleidt, and T. Papenbrock, PRL109 032502 (2012)

Technical details

- Chiral interaction at N³LO.
- Density dependent three body force with $k_F = 0.95 \text{fm}^{-1}$, $c_D = -0.2$ and $c_E = 0.735$. $N_{max} = 18$ and $\hbar\omega = 26$ MeV.

Main features

・ロト ・ 雪 ト ・ ヨ ト

- Good agreement between theory and experiment.
- Shell closure in ⁴⁸Ca.
- Sub-shell closure in ⁵²Ca.

ъ

 Predict weak sub-shell closure in ⁵⁴Ca.

$J^{\pi} = 2^+$ systematics in even calcium isotopes G. Hagen, M. Hjorth-Jensen, GRJ, R. Machleidt, and T. Papenbrock, PRL109 032502 (2012)

Technical details

- Chiral interaction at N³LO.
- Density dependent three body force with $k_F = 0.95 \text{fm}^{-1}$, $c_D = -0.2$ and $c_E = 0.735$. $N_{max} = 18$ and $\hbar\omega = 26$ MeV.

Main features

・ロト ・ 同ト ・ ヨト ・ ヨト

- Good agreement between theory and experiment.
- Shell closure in ⁴⁸Ca.
- Sub-shell closure in ⁵²Ca.

э

 Predict weak sub-shell closure in ⁵⁴Ca.

Spectra in calcium isotopes

G. Hagen, M. Hjorth-Jensen, GRJ, R. Machleidt, and T. Papenbrock, PRL109 032502 (2012)

Technical details

- Chiral interaction at N³LO.
- Density dependent three body force with $k_F = 0.95 \text{fm}^{-1}$, $c_D = -0.2$ and $c_E = 0.735$. $N_{max} = 18$ and $\hbar\omega = 26$ MeV.
- Continuum included for selected weakly bound and resonant states.

Main features

ヘロト ヘ部ト ヘヨト ヘヨト

- Inversion of g_{9/2} and d_{5/2}.
- 1/2⁺ groundstate in ⁶¹Ca.
- Continuum effects are crucial.

◆□ > ◆□ > ◆臣 > ◆臣 > ─ 臣 ─ のへで

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

◆□▶ ◆□▶ ◆□▶ ◆□▶ ─ □ ─ つくで

◆□▶ ◆□▶ ◆□▶ ◆□▶ ─ □ ─ つくで

$J^{\pi} = 2^+$ systematics with NNLO (POUNDerS) Preliminary

▲ロト ▲暦 ▶ ▲ 臣 ▶ ▲ 臣 ▶ ● ○ ● ● ●

Notes on three nucleon forces

- Need $N_{\rm max} > 20$ for converged results.
- Possible, but the cost will be in the order of 10⁸ cpu-hours.

- Relative energies converges faster.
- Main culprit Transformation brackets.
- Exploring different architectures (GPU, MIC etc..).