Ab-Initio Light-Ion Reactions with Chiral Twoand Three-Body Interactions.

Progress in Ab-Initio Techniques in Nuclear Physic

Vancouver, February 22 ${ }^{\text {th }} 2013$.
Guillaume Hupin

```Lawrence Livermore
National Laboratory
```

Collaborators:
S. Quaglioni (LLNL)
P. Navrátil (TRIUMF,LLNL)
R. Roth (TU Darmstadt)
J. Langhammer (TU Darmstadt)
C. Romero-Redondo (TRIUMF)

\checkmark Astrophysics motivations

Fusion processes play an important role in determining the evolution of our universe: nucleosynthesis, stellar evolution

- What powers stars ?
- How long does a star live ?

Nuclear astrophysics community relies on accurate fusion reactions observables among others.

Challenging for both experiment and theory:

- Low rates: Coulomb repulsion between target and projectile + low energy (quantum tunneling effects).
- Projectile and target are not fully ionized in a lab. This leads to laboratory electron screening
- Fundamental theory is still missing

Some words about the ingredients of an ab initio calculation

A high precision nuclear Hamiltonian

N. Ishii et al. PRL99 (2007)

The nuclear interaction has a strong repulsive core. This makes nuclear structure calculation converge slowly.

P. Navrátil et al. PRL 99 (2007)

We need a NNN interaction to achieve a high-precision.
This is ~ 100 times numerically costlier.

Status of nuclear reaction models

- Ab initio nuclear reactions lagging behind structure calculations
- Exact reaction calculations for very light systems A=3,4
- Faddeev / Faddev-Yacubovsky
- Alt-Grassberger-Sandhas
- Hyperspherical Harmonics, ...

M. Viviani at al. PRC84 (2011)
- Now trying to incorporate continuum effects in methods for light nuclei to describe reactions
$n-\alpha$ phase-shifts in QMC calculation with/without NNN interaction

Nuclear scattering is sensitive to NNN interaction which plays an important role in the spin-orbit physic

Why is it hard to model nuclear reactions?

... inbound and outbound waves cannot be described by finite number of basis states

For more information on boundary conditions and R-matrix see
P. Descouvemont, D. Baye Rep.Prog.Phys.73 (2010)

Ab initio NCSM/RGM: formalism for binary clusters

S. Quaglioni and P. Navrátil, Phys. Rev. Lett. 101, 092501 (2008); Phys. Rev. C 79, 044606 (2009)

- Starts from:

$$
\Psi_{R G M}^{(A)}=\sum_{v} \int d \vec{r} g_{v}(\vec{r}) \hat{A}_{v}\left|\Phi_{v \vec{r}}^{(A-a, a)}\right\rangle \sim \psi_{\alpha_{1}}^{(A-a)} \psi_{\alpha_{2}}^{(a)} \delta\left(\vec{r}-\vec{r}_{A-a, a}\right)
$$

- Schrödinger equation on channel basis:

RGM accounts for: 1) interaction (Hamiltonian kernel), 2) Pauli principle (Norm kernel) between clusters and NCSM accounts for: internal structure of clusters

Ab initio NCSM/RGM: formalism for binary clusters

Few details

$$
\left|\Psi^{J^{\pi} T}\right\rangle=\sum_{\begin{array}{c}
v \\
\begin{array}{c}
\text { Constrained by the } \\
\text { asymptotic scattering } \\
\text { solution }
\end{array} \\
\frac{g_{v}^{\pi T}(r)}{r}
\end{array} \hat{A}_{v}\left[\left(\left|A-a \alpha_{1} 1_{1}^{\pi_{1}} T_{1}\right\rangle\left|a \alpha_{2} I_{2}^{\pi_{2}} T_{2}\right\rangle\right)^{(s T)} Y_{\ell}\left(\hat{r}_{A-a, a}\right)\right]^{\left.J^{\pi_{T}}\right)} \frac{\delta\left(r-r_{A-a, a}\right)}{r r_{A-a, a}}}^{r^{2}} d r
$$

- We use the closure properties of HO radial wave function

$$
\delta\left(r-r_{A-a, a}\right)=\sum_{n} R_{n \ell}(r) R_{n \ell}\left(r_{A-a, a}\right) \quad \begin{aligned}
& \text { This defines the RGM model space (Ok } \\
& \text { for localized parts of the kernels) }
\end{aligned}
$$

- We introduce Jacobi channel states in the HO space

$$
\left|\Phi_{\nu n}^{\sigma^{\pi} T}\right\rangle=\left[\left(\left|A-a \alpha_{1} I_{1}^{\pi_{1}} T_{1}\right\rangle\left|a \alpha_{2} I_{2}^{\pi_{2}} T_{2}\right\rangle\right)^{(s T)} Y_{\ell}\left(\hat{r}_{A-a, Q}\right)\right]^{J^{\pi_{T} T}} R_{n \ell}\left(r_{A-a, a}\right)
$$

- The coordinate space channel states are given by $\left|\Phi_{v r}^{J^{\pi} T}\right\rangle=\sum_{n} R_{n \ell}(r)\left|\Phi^{J^{J^{\pi}} T}\right\rangle$

Matrix elements of translationally invariant operators

- Translational invariance is preserved (exactly!) also with SD cluster basis

$$
{ }_{S D}\left\langle\Phi_{f_{S D}}^{\left(A-a^{\prime}, a^{\prime}\right)}\right| \hat{O}_{t . i .}\left|\Phi_{i_{S D}}^{(A-a, a)}\right\rangle_{S D}=\sum_{i_{R} f_{R}} M_{i_{s_{D}} f_{S D}, i_{R} f_{R}}\left\langle\Phi_{f_{R}}^{\left(A-a^{\prime}, a^{\prime}\right)}\right| \hat{O}_{t . i .}\left|\Phi_{i_{R}}^{(A-a, a)}\right\rangle
$$

What we calculate in the "SD" channel basis		Observables calculated in the translationally invariant basis
$\left\|\psi_{\alpha_{1}}^{(A-a)}\right\rangle_{S D}\left\|\psi_{\alpha_{2}}^{(a)}\right\rangle \varphi_{n \ell}\left(\vec{R}_{c . m .}^{(a)}\right)$	Matrix inversion	

- Advantage: can use powerful second quantization techniques

$$
{ }_{S D}\left\langle\Phi_{\left.v^{\prime} n^{\prime}, a^{\prime}\right)}^{\left(A-O_{t i .} \mid\right.} \mid \Phi_{m p}^{(A-a, a)}\right\rangle_{S D} \propto_{S D}\left\langle\psi_{\alpha_{1}}^{\left(A-a^{\prime}\right)}\right| a^{+} a\left|\psi_{\alpha_{1}}^{(A-a)}\right\rangle_{S D},{ }_{s D}\left\langle\psi_{\alpha_{1}}^{\left(A-a^{\prime}\right)}\right| a^{+} a^{+} a a\left|\psi_{\alpha_{1}}^{(A-a)}\right\rangle_{S D}, \cdots
$$

In practice, we made use of second quantization More insights

1. New basis: Slater Determinant channel basis
> The target (A>a nucleons) described by a Slater Determinant
2. With a basis change, we can recover a simple expression

$$
\begin{aligned}
\left|\Phi_{\nu n}^{J^{\pi} T}\right\rangle_{\mathrm{SD}}= & \sum_{j} \hat{s} \hat{j}(-1)^{I_{1}+J+j}\left\{\begin{array}{c}
I_{1} \frac{1}{2} s \\
\ell \\
\ell
\end{array}\right\} \quad \begin{array}{l}
\text { Then, the kernels can be } \\
\text { calculated with the help of } \\
\text { the second quantization }
\end{array} \\
& \times\left[\left|A-1 \alpha_{1} I_{1}^{\pi_{1}} T_{1}\right\rangle_{\mathrm{SD}} \varphi_{n \ell j \frac{1}{2}}\left(\vec{r}_{A} \sigma_{A} \tau_{A}\right)\right]^{\left(J^{\pi} T\right)}
\end{aligned}
$$

Going around the hard core problem

E. Jurgenson, Navrátil, R. J. Furnstahl Phys. Rev. Lett. 103 (2009)

In configuration interaction methods we need to soften interaction to address the hard core
We use the Similarity-RenormalizationGroup (SRG) method

Bare potential
${ }^{1} \mathrm{~S}_{0} \quad \lambda=20.0 \mathrm{fm}^{-1}$

$$
\begin{gathered}
\frac{d \mathrm{H}_{\lambda}}{d \lambda}=\left[\eta(\lambda), \mathrm{H}_{\lambda}\right] \\
\eta(\lambda)=\frac{d U_{\lambda}}{d \lambda} U_{\lambda}^{+}
\end{gathered}
$$

Flow parameter

Evolution with flow
parameter λ

Preserves the physics

Decouples high and low momentum

```
Induces many-body
``` forces

Evolved potential
\({ }^{1} S_{0} \quad \lambda=2.0 \mathrm{fm}^{-1}\)

\section*{Demonstrated capability to describe binary-cluster reactions starting from NN interactions}

『 Nucleon-nucleus collisions
\(\checkmark \mathrm{n}-{ }^{3} \mathrm{H}, \mathrm{p}-{ }^{3} \mathrm{He}, \mathrm{N}-{ }^{-} \mathrm{He}, \mathrm{n}^{-10} \mathrm{Be}\) scattering with \(\mathrm{N}^{3} \mathrm{LO}\) NN (mod. Lee-Suzuki eff. Int.)
\(\checkmark\) Nucleon scattering on \({ }^{3} \mathrm{H}\), \({ }^{3,4} \mathrm{He},{ }^{7} \mathrm{Li},{ }^{7} \mathrm{Be},{ }^{12} \mathrm{C},{ }^{16} \mathrm{O}\) with SRGN \({ }^{3} \mathrm{LO}\)
\(\checkmark{ }^{7} \mathrm{Be}(\mathrm{p}, \mathrm{y})^{8} \mathrm{~B}\) radiative capture with SRG-N3LO
\(\boxtimes\) Deuterium-nucleus collisions
\(\checkmark\) d- \({ }^{4} \mathrm{He}\) scattering and \({ }^{6}\) Li structure with SRG-N3LO
\(\downarrow(\mathrm{d}, \mathrm{N})\) transfer reactions
\(\checkmark{ }^{3} \mathrm{H}(\mathrm{d}, \mathrm{n})^{4} \mathrm{He}\) and \({ }^{3} \mathrm{He}(\mathrm{d}, \mathrm{p})^{4} \mathrm{He}\) reactions with SRG-N3LO

n on \({ }^{4} \mathrm{He}\) scattering

\section*{\({ }^{4} \mathrm{He}(d, d){ }^{4} \mathrm{He}\) with NN -only}
S. Quaglioni and P. Navratil

Phase shifts with \(\lambda=1.5 \mathrm{fm}^{-1}\)

\section*{Ab initio many-body calculations of the \({ }^{3} \mathrm{H}(d, n)^{4} \mathrm{He}\) and \({ }^{3} \mathrm{He}(d, p)^{4} \mathrm{He}\)} fUSİOn P. Navrátil, S. Quaglioni, PRL 108, 042503 (2012)

Calculated S-factors converge with the inclusion of the virtual breakup of the deuterium, obtained by means of excited \({ }^{3} S_{1}{ }^{-3} D_{1}\left(d^{*}\right)\) and \({ }^{3} D_{2}\left(d^{\prime *}\right)\) pseudostates.
\({ }^{3} \mathrm{H}(d, n){ }^{4} \mathrm{He}\) astrophysical S-factor

NCSM/RGM results for the \({ }^{3} \mathrm{He}(d, n)^{4} \mathrm{He}\) astrophysical S factor compared to beam-target measurements.

Incomplete nuclear interaction: requires NNN force (SRG-induced + "real")

\section*{Including the NNN force into the NCSM/RGM approach} nucleon-nucleus formalism
\[
\mathcal{V}_{\nu^{\prime} \nu}^{N N N}\left(r, r^{\prime}\right)=\sum R_{n^{\prime} \nu}\left(r^{\prime}\right) R_{n l}(r)\left[\frac{(A-1)(A-2)}{2}\left\langle\Phi_{\nu^{\prime} n^{\prime}}^{J \pi}\right| V_{A-2 A-1 A}\left(1-2 P_{A-1 A}\right)| |_{\nu n}^{J T}\right\rangle
\]

(b)

Direct potential:
\[
\propto_{S D}\left\langle\psi_{\alpha_{1}}^{(A-1)}\right| a_{i}^{+} a_{j}^{+} a_{l} a_{k}\left|\psi_{\alpha_{1}}^{(A-1)}\right\rangle_{S D}
\]
\[
\left.-\frac{(A-1)(A-2)(A-3)}{2}\left\langle\Phi_{\nu^{\prime} n^{\prime}}^{J^{\pi} T}\right| P_{A-1 A} V_{A-3 A-2 A-1}\left|\Phi_{\nu n}^{J^{\pi} T}\right\rangle\right] .
\]

Exchange potential:
\[
\propto_{S D}\left\langle\psi_{\alpha_{1}}^{(A-1)}\right| a_{h}^{+} a_{i}^{+} a_{j}^{+} a_{m} a_{l} a_{k}\left|\psi_{\alpha_{1}}^{(A-1)}\right\rangle_{S D}
\]

\section*{\(\mathrm{n}-{ }^{4} \mathrm{He}\) scattering: NN versus NNN interactions, first results}
G. Hupin, J. Langhammer, S. Quaglioni, P. Navrátil, R. Roth, work in progress

\section*{\(\mathrm{n}-{ }^{4} \mathrm{He}\) scattering: \(\mathrm{NN}+\mathrm{NNN}\) with the first three excited states}
G. Hupin, J. Langhammer, S. Quaglioni, P. Navrátil, R. Roth, work in progress

\section*{Including the NNN force into the NCSM/RGM approach} deuteron-nucleus formalism
\[
\left\langle\Phi_{v^{\prime} r^{\prime}}^{J^{\pi} T} \hat{A}_{v^{\prime}} V^{N N N} \hat{A}_{v} \mid \Phi_{v r}^{J^{\pi} T}\right\rangle=\langle\underbrace{(A-2)}_{(a=2)}| V^{N N N}\left(1-\sum_{i=1}^{A-2} \sum_{k=A-1}^{A} \hat{P}_{i, k}+\sum_{i<j=1}^{A-2} \hat{P}_{i, A-1} \hat{P}_{j, A}\right)\left|\begin{array}{c}
(a=2)
\end{array}\right\rangle
\]

(f)

(c)

(g)

(d)

(h)

four body density

\section*{\({ }^{4} \mathrm{He}(\mathrm{d}, \mathrm{d})^{4} \mathrm{He}\) with \(\mathrm{NN}+\mathrm{NNN}\) interaction}
G. Hupin, S. Quaglioni, P. Navratil, work in progress

scattering
scattering

\section*{Conclusions and Outlook}

- We are extending the \(a b\) initio NCSM/RGM approach to describe low-energy reactions with two- and three-nucleon interactions.
- We are able to describe:
- Nucleon-nucleus collisions with NN+NNN interaction
- Deuterium-nucleus collisions with \(\mathrm{NN}+\mathrm{NNN}\) interaction
- Work in progress
- The present NNN force is "incomplete", need to go to N3LO
- Before definite conclusion
- Study of \(\lambda\) dependence
- Study of \(\hbar \omega\) dependence
- Scattering of heavier target```

