

Outline

Goal: understand the role of 3N forces for structure of medium-mass exotic nuclei

- What are the limits of nuclear existence?
- How do magic numbers form and evolve?

Outline

Goal: understand the role of 3N forces for structure of medium-mass exotic nuclei

- How do magic numbers form and evolve?

Chiral Effective Field Theory: Nuclear Forces

Nucleons interact via pion exchanges and contact interactions Hierarchy: $V_{NN} > V_{3N} > \dots$ Consistent treatment of NN, 3N, ... electroweak operators Couplings fit to experiment once Evolve to **low-momentum** $V_{low k}$

3N constants fit to properties of light nuclei at low momentum

Weinberg, van Kolck, Kaplan, Savage, Wise, Epelbaum, Kaiser, Meissner,...

Solving the Nuclear Many-Body Problem

Nuclei understood as many-body system starting from closed shell, add nucleons Interaction and energies of valence space orbitals from $V_{\text{low }k}$

Does not reproduce experimental data

Solving the Nuclear Many-Body Problem

Nuclei understood as many-body system starting from closed shell, add nucleons Interaction and energies of valence space orbitals from $V_{\text{low }k}$

Does not reproduce experimental data – **allow explicit breaking of core**

Strategy

Solving the Nuclear Many-Body Problem

Nuclei understood as many-body system starting from closed shell, add nucleons Interaction and energies of valence space orbitals from $V_{\text{low }k}$

Does not reproduce experimental data – **allow explicit breaking of core**

Strategy

Extended Valence Spaces

Philosophy: diagonalize in largest possible valence space (where orbits relevant)

When do extended-space orbits impact exotic nuclei Caution: possible center-of-mass contamination

3N Forces for Valence-Shell Theories

Normal-ordered 3N: contribution to valence nucleon interactions

Effective one-body

Effective two-body

Combine with microscopic NN (Third Order): no empirical adjustments

Shell Formation/Evolution in Calcium Isotopes

Goal: understand the role of 3N forces for structure of medium-mass exotic nuclei

- What are the limits of nuclear existence?
- How do magic numbers form and evolve?

Nuclear Pairing

$$T = 1, J = 0$$

Pairing of even number of nucleons – even/odd staggering

Pairing gaps deduced from **3-point mass difference**:

$$\Delta_n^{(3)} = \frac{(-1)^N}{2} \left[BE(N+1,Z) + BE(N-1,Z) - 2BE(N,Z) \right]$$

Allows comparison with experiment

Relative peak in $\Delta_n^{(3)}$ indicates **shell closure**

- additional tool to evaluate shell evolution

Pairing in EDF with 3N Forces

Energy Density Functional calculations: 3N lowers gaps systematically ~30%

Lesinski, Hebeler, Duguet, Schwenk, JPG (2012)

What are the contributions from neglected many-body effects? (Core polarization)

Pairing in Calcium Isotopes: Ladders

Compare with $\Delta_n^{(3)}$ calculated from microscopic NN+3N in calcium

HFB iterates ladders microscopically in pairing channel
Compare with *pp*, *hh* ladders to 3rd order
Improved agreement with experiment
Convergence in order-by-order ladders
Suppression from 3N forces as in EDF
Incorrect odd/even staggering

JDH, Menendez, Schwenk, in prep

Pairing in Calcium Isotopes: Full 3rd order

Compare with $\Delta_n^{(3)}$ calculated from microscopic NN+3N in calcium

Full 3rd-order MBPT

Further increases gaps

Correct odd/even staggering; more pronounced Good experimental reproduction with 3rd-order NN+3N Can account for missing physics in EDF calculations

JDH, Menendez, Schwenk, in prep

Pairing for Shell Evolution N=28

Peak in pairing gaps: complementary signature for shell closure Compare with 2⁺ energies for Ca

General agreement with CC predictions Hagen et al PRL (2012)

N=28: strong peak, strength overpredicted in both cases

Pairing for Shell Evolution N=32

Peak in pairing gaps: complementary signature for shell closure Compare with 2⁺ energies for Ca

N=32: moderate peak

Close to experimental value with new TITAN data

Experimental measurement of ⁵³Ca mass needed to reduce uncertainty

Evolution of Magic Numbers: N=34

N=34 magic number in calcium?

GXPF1: Honma, Otsuka, Brown, Mizusaki (2004) KB3G: Poves, Sanchez-Solano, Caurier, Nowacki (2001)

Significant phenomenological disagreement for neutron-rich calcium

Pairing for Shell Evolution N=34

Peak in pairing gaps: complementary signature for shell closure Compare with 2⁺ energies for Ca

N=34: weak signature – suppression from 3N forces

Neutron-Rich Ca Spectra Near N=34

Neutron-rich calcium spectra with NN+3N

JDH, Menendez, Schwenk, in prep.

Different predictions from phenomenology NN+3N similar to KB3G – no indication of *N*=*34* magic number **Consistent with predictions from Coupled-Cluster theory**

Pairing for Shell Evolution N=40

Peak in pairing gaps: complementary signature for shell closure Compare with 2⁺ energies for Ca

N=40: robust signature of shell closure

CC: continuum lowers $2s_{1/2}$, $1d_{5/2}$ Inclusion will affect N=40 prediction

Proton-Rich Systems

Proton-Rich Systems

Ground-State Energies of N=8 Isotones

Data limited – use phenomenological isobaric multiplet mass equation (IMME)

 $E(A,T,T_z) = E(A,T,-T_z) + 2b(A,T)T_z$ $b = 0.7068A^{2/3} - 0.9133$

NN-only: overbound

Ground-State Energies of N=8 Isotones

Data limited – use phenomenological isobaric multiplet mass equation (IMME) $E(A,T,T_z) = E(A,T,-T_z) + 2b(A,T)T_z$ $b = 0.7068A^{2/3} - 0.9133$

NN-only: overbound

NN+3N: improved agreement with experiment/IMME

Extended space important $\sim A = 21$

JDH, Menendez, Schwenk, PRL (2013)

Dripline unclear: ²²Si unbound in AME, NN+3N; bound in IMME

Ground-State Energies of N=8 Isotones

Data limited – use phenomenological isobaric multiplet mass equation (IMME) $E(A,T,T_z) = E(A,T,-T_z) + 2b(A,T)T_z$ $b = 0.7068A^{2/3} - 0.9133$ **NN-only**: overbound

NN+3N: improved agreement with experiment/IMME

Extended space important $\sim A = 21$

JDH, Menendez, Schwenk, PRL (2013)

Dripline unclear: ²²Si unbound in AME, NN+3N; bound in IMME

²² Si possible two-proton emitter	S.	IMME	NN+3N (sd)	NN+3N ($sdf_{7/2}p_{3/2}$)
Measurement needed	S _{2p}	0.01 MeV	-1.63 MeV	-0.12 MeV

Spectra of N=8 Isotones

JDH, Menendez, Schwenk, PRL (2012)

NN+3N: reasonable agreement with experiment

New measurement: excited state in ²⁰Mg close to predicted 4⁺-2⁺ doublet Predictions for proton-rich ²¹Al, ²²Si spectra Closed sub-shell signature in ²²Si

Ground-State Energies of N=20 Isotones

Dripline: Predicted to be ⁴⁶Fe in all calculations

C	Expt.	NN+3N (<i>pf</i>)	NN+3N ($pfg_{9/2}$)
S _{2p}	-1.28(6) MeV	-2.73 MeV	-1.02 MeV

Prediction for ⁴⁸Ni within 300keV of experiment

Dossat et al (2005); Pomorski et al (2012)

Evaluating Center-of-Mass Contamination

Nonperturbative Lee-Suzuki (LS) transformation from extended space

 $H|\psi_n\rangle = E_n|\psi_n\rangle$ Q $PH_{eff}^{LS}P|\phi_n\rangle = \varepsilon_n P|\phi_n\rangle$ $\{\varepsilon_n\} \subset \{E_n\}$ $\langle H_{CM}\rangle = 0$ $\frac{sdf_{7/2}p_{3/2}}{O}$ sd P

Diagonalize **two-body** system (*e.g.*, ¹⁸O, ⁴²Ca)

Extended-space spectrum free of CM contamination

Preserve eigenenergies from extended space calculation via LS

Use H_{eff}^{LS} as new two-body Hamiltonian in *sd*-shell valence-space calculations

Evaluating Center-of-Mass Contamination

Improvements from standard *sd*-shell – not due to center of mass Work in progress: involving N > 2 neutrons in extended space

Conclusion

- Nuclear structure theory of medium-mass nuclei with 3N forces, extended spaces
- Robust repulsive 3N mechanism for T=1 neutron/proton-rich nuclei
- Oxygen isotopes
 - Cures NN-only failings: dripline, shell evolution, spectra
- Calcium isotopes
 - Shell evolution towards the dripline from 2^+ energies and $\Delta_n^{(3)}$
 - Weak *N*=34 closure predicted
- **Proton-rich N=8, 20 isotones**: similar improvements in g.s. energies/spectra

Acknowledgments

