"Progress in Ab Initio Techniques in Nuclear Physics" TRIUMF - February 21-23, 2013

Toward ab-initio predictions for mid-mass open shells

C. Barbieri

Towards a unified description of nuclei

Open issues @ mid masses are:
\rightarrow Need of good nuclear Hamiltonians (3N forces mostly!)
\rightarrow Structure calculations are limited to closed-shells or $\mathrm{A} \pm 1, \mathrm{~A} \pm 2$
\rightarrow Ab-Initio link between structure and reactions.
(BUT calculations are GOOD!!!)

> Green's functions can be naturally extended to: Scattering observable Open shell nuclei

Green's functions in many-body theory

One-body Green's function (or propagator) describes the motion of quasiparticles and holes:

$$
g_{\alpha \beta}(E)=\sum_{n} \frac{\left\langle\Psi_{0}^{A}\right| c_{\alpha}\left|\Psi_{n}^{A+1}\right\rangle\left\langle\Psi_{n}^{A+1}\right| c_{\beta}^{\dagger}\left|\Psi_{0}^{A}\right\rangle}{E-\left(E_{n}^{A+1}-E_{0}^{A}\right)+i \eta}+\sum_{k} \frac{\left\langle\Psi_{0}^{A}\right| c_{\beta}^{\dagger}\left|\Psi_{k}^{A-1}\right\rangle\left\langle\Psi_{k}^{A-1}\right| c_{\alpha}\left|\Psi_{0}^{A}\right\rangle}{E-\left(E_{0}^{A}-E_{k}^{A-1}\right)-i \eta}
$$

...this contains all the structure information probed by nucleon transfer (spectral function):

Towards a global description exotic structures..

Nuclear Landscape

trimi	Ab initio
\|xax	Configuration Interaction
TiTII	Density Functional Theory

Calculating the spectral function:

 FRPA, ADC(3), and the like...
Faddeev-RPA in two words...

Self-energy (optical potential):

Phys.Rev.C63,

- A complete expansion requires all types of particle-vibration coupling: $\checkmark \quad g^{\text {II }}(\omega) \rightarrow$ pairing effects, two-nucleon transfer $\checkmark \Pi^{(\mathrm{ph})}(\omega) \rightarrow$ collective motion, using RPA or beyond
\checkmark Pauli exchange effects
- The Self-energy $\Sigma^{\star}(\omega)$ yields both single-particle states and scattering
- Finite nuclei: \rightarrow require high-performance computing

Faddeev-RPA in two words...

Particle vibration coupling is the main cause driving the distribution of particle strength-a least close to the Fermi surface...

Self-Consistent Green's Function Approach

Why self-consistency ???

- Global picture of nuclear dynamics
- Reciprocal correlations among effective modes
- Guaranties macroscopic conservation laws

Self-Consistent Green's Function Approach

Ionization energies/ affinities, in atoms

[CB, D. Van Neck,

AIP Conf.Proc.1120,104 ('09) \& in prep]

[C. B., B. K. Jennings
Nucl. Phys A758, 395c (2005)
Phys Rev. C72, 014613 (2005)]

Faddeev-RPA in two words...

Self-energy (optical potential):

- A complete expansion requires ale of particle-vibration coupling: $\checkmark \quad g^{\mathrm{II}}(\omega) \rightarrow$ pairing effe $\$ \mathbf{S}$ nucleon transfer $\checkmark \Pi^{(\mathrm{ph})}(\omega) \rightarrow$ collective a°. \checkmark Pauli exchange effec $\stackrel{\circ}{\circ}^{\circ}$
- The Self-energy $\Sigma^{\star}(\omega)$ yields both single-particle states and scattering
- Finite nuclei: \rightarrow require high-performance computing

Dyson equation

* Propagators solves the Dyson equations

$$
g_{a b}(\omega)=g_{a b}^{0}(\omega)+\sum_{c d} g_{a c}^{0}(\omega) \Sigma_{c d}(\omega) g_{d b}(\omega)
$$

粦 (Hole) single particle spectral function
$S_{a b}^{h}(\omega)=\frac{1}{\pi} \operatorname{Im} g_{a b}(\omega)=\sum_{k}\left\langle\Psi_{k}^{A-1}\right| c_{b}\left|\Psi_{0}^{A}\right\rangle\left\langle\Psi_{0}^{A}\right| c_{a}^{\dagger}\left|\Psi_{k}^{A-1}\right\rangle \delta\left(\omega-\left(E_{0}^{A}-E_{k}^{A-1}\right)\right)$

粦 Koltun sum rule (for 2 N interactions):
$\frac{1}{2} \sum_{a b} \int_{-\infty}^{E_{F}}\left(t_{a b}+\delta_{a b} \omega\right) S_{a b}^{h}(\omega) d \omega=\langle T\rangle+\left\langle V^{N N}\right\rangle$

Accuracy of FRPA $-{ }^{4} \mathrm{He}$ binding energy

\rightarrow Self-consistent FRPA compares well with benchmark calculations on ${ }^{4} \mathrm{He}$

Accuracy of FRPA - simple atoms/molecules

binding, eq. bond distances, \rightarrow ionization energies (molecules)

		FTDAc	FRPAc	CCSD(T)	FCI	Expt.
H_{2}						
	E_{0}	-1.161	-1.161	-1.164	-1.164	-1.175
	r_{H-H}	0.757	0.757	0.761		0.741
	1	16.03	16.03	16.12		16.08
BeH_{2}						
	E_{0}	-15.831	-15.832	-15.835	-15.836	-
	$r_{B e-H}$	1.337	1.337	1.339		1.340
	I	11.78	11.76	11.89		-
HCl						
	E_{0}	-460.256	-460.255	-460.254		-
	$r_{\text {H-Cl }}$	1.297	1.293	1.290		1.275
	1	12.24	12.24	12.26		-
HF						
	E_{0}	-100.224	-100.228	-100.228	-100.231	-
	r_{H-F}	0.916	0.913	0.920		0.917
	1	15.70	15.54	15.42		16.12
$\mathrm{H}_{2} \mathrm{O}$						
	E_{0}	-76.240	-76.236	-76.241		-
	r_{H-O}	0.964	0.962	0.967		0.958
	Λ_{O-H-O}	102	102	102		104
	I	12.15	12.21	11.94		12.61

			Second order		FTDA

\leftarrow ionization energies (atoms)
[M. Degroote, D. van Neck, C. B.
Phys. Rev. A 83, 042517 (2011);
85, 012501 (2012)]

Experiment [63,64] 5.6556 0.3426
4.533
1.782
2.9499
2.12 0.579 1.075

Three-nucleon interactions

\rightarrow Added to self-energy as an effective 1 N plus 2 N force.
\rightarrow Correction to Koltun SR
A. Cipollone, P. Navratil, CB
arXiv:1211.3315 [nucl-th]

Modern realistic nuclear forces

Chiral EFT for nuclear forces:

$$
\operatorname{LO} \quad \mathcal{O}\left(\frac{Q^{0}}{\Lambda^{0}}\right)
$$

2 N forces

3 N forces
4 N forces
$\operatorname{Lo} \mathcal{O}\left(\frac{Q^{0}}{\Lambda^{0}}\right): X|-\quad-\quad|:$

(3NF arise naturally at N2LO)

Single particle spectrum at $E_{\text {fermi }}$:

Need at LEAST 3NF!!!
("cannot" do RNB physics without...)

Saturation of nuclear matter:

Dyson equation

* Propagators solves the Dyson equations

$$
g_{a b}(\omega)=g_{a b}^{0}(\omega)+\sum_{c d} g_{a c}^{0}(\omega) \Sigma_{c d}(\omega) g_{d b}(\omega)
$$

粦 (Hole) single particle spectral function
$S_{a b}^{h}(\omega)=\frac{1}{\pi} \operatorname{Im} g_{a b}(\omega)=\sum_{k}\left\langle\Psi_{k}^{A-1}\right| c_{b}\left|\Psi_{0}^{A}\right\rangle\left\langle\Psi_{0}^{A}\right| c_{a}^{\dagger}\left|\Psi_{k}^{A-1}\right\rangle \delta\left(\omega-\left(E_{0}^{A}-E_{k}^{A-1}\right)\right)$

粦 Koltun sum rule (for 2 N interactions):
$\frac{1}{2} \sum_{a b} \int_{-\infty}^{E_{F}}\left(t_{a b}+\delta_{a b} \omega\right) S_{a b}^{h}(\omega) d \omega=\langle T\rangle+\left\langle V^{N N}\right\rangle$

Dyson equation

* Propagators solves the Dyson equations

$$
g_{a b}(\omega)=g_{a b}^{0}(\omega)+\sum_{c d} g_{a c}^{0}(\omega) \Sigma_{c d}(\omega) g_{d b}(\omega)
$$

粦 (Hole) single particle spectral function
$S_{a b}^{h}(\omega)=\frac{1}{\pi} \operatorname{Im} g_{a b}(\omega)=\sum_{k}\left\langle\Psi_{k}^{A-1}\right| c_{b}\left|\Psi_{0}^{A}\right\rangle\left\langle\Psi_{0}^{A}\right| c_{a}^{\dagger}\left|\Psi_{k}^{A-1}\right\rangle \delta\left(\omega-\left(E_{0}^{A}-E_{k}^{A-1}\right)\right)$

粦 Koltun sum rule (with NNN interactions):
$\frac{1}{2} \sum_{a b} \int_{-\infty}^{E_{F}}\left(t_{a b}+\delta_{a b} \omega\right) S_{a b}^{h}(\omega) d \omega=\langle T\rangle+\left\langle V^{N N}\right\rangle+\frac{9}{2}\left\langle V^{N N N}\right\rangle$

$$
\left\langle V^{N N N}\right\rangle \approx \frac{1}{6} \bigcirc
$$

Inclusion of NNN forces

A. Carbone, A. Cipollone, CB, A. Rios, A Polls

粦 NNN forces can enter diagrams in three different ways:

Correction to external 1-Body interaction

Correction to non-contracted 2-Body interaction

pure 3-Body contribution

- Contractions are with fully correlated density matrices (BEYOND a normal ordering...)

Inclusion of NNN forces

A. Carbone, A. Cipollone, CB, A. Rios, A Polls

粦 NNN forces can enter diagrams in three different ways:

Correction to external 1-Body interaction

Correction to non-contracted 2-Body interaction

- Contractions are with fully correlated density matrices (BEYOND a normal ordering...)

Inclusion of NNN forces

A. Carbone, A. Cipollone, CB, A. Rios, A Polls

粦 NNN forces can enter diagrams in three different ways:

Correction to external 1-Body interaction

Correction to non-contracted 2-Body interaction

- Contractions are with fully correlated density matrices (BEYOND a normal ordering...)

Inclusion of NNN forces

A. Carbone, A. Cipollone, CB, A. Rios, A Polls

粦 NNN forces can enter diagrams in three different ways:

Correction to external 1-Body interaction

Correction to non-contracted 2-Body interaction

pure 3-Body contribution

BEWARE that defining:

and then:

would double count the 1-body term.

Inclusion of NNN forces

A. Carbone, A. Cipollone, CB, A. Rios, A Polls

粦 NNN forces can enter diagrams in three different ways:
\rightarrow Define new 1- and 2-body interactions and use only interaction-irreducible diagrams

- Contractions are with fully correlated density matrices (BEYOND a normal ordering...)

NNN forces in FRPA/FTDA formalism

A. Cipollone, CB, P. Navratil

Use: $\cdot{ }^{\dot{v}} \cdot={ }^{V} \cdot+.{ }^{W} \circlearrowleft$ as 2-body potential in all V-irred. RPA/TDA summations

Then:

$$
\sum^{*}=\bullet \cdots+\frac{1}{2} \cdot \cdots \cdots+
$$

...approximations and some improvements still being assessed - this is all work in progress

NNN forces in FRPA/FTDA formalism

A. Cipollone, CB, P. Navratil Koltun sum rule requires a correction on the 3-bodypotential $\langle W\rangle$:

$$
\langle H\rangle=\sum_{\alpha \beta} \frac{1}{4 \pi i} \int_{C \uparrow} d \omega\left[T_{\alpha \beta}+\omega \delta_{\alpha \beta}\right] g_{\alpha \beta}(\omega)-\frac{1}{2}\langle W\rangle
$$

Oxygen isotopes with evolved chiral 3NF

A. Cipollone, CB, P. Navratil

CB, A. Cipollone, et al., arXiv:1211.3315 [nucl-th]

N3LO ($\Lambda=500 \mathrm{Mev} / \mathrm{c}$) chiral NN interaction evolved to $2 \mathrm{~N}+3 \mathrm{~N}$ forces ($1.8 \mathrm{fm}^{-1}$) N2LO ($\Lambda=400 \mathrm{Mev} / \mathrm{c}$) chiral 3 N interaction evolved $\left(1.8 \mathrm{fm}^{-1}\right)$

Oxygen isotopes with evolved chiral 3NF

A. Cipollone, CB, P. Navratil

N3LO ($\Lambda=500 \mathrm{Mev} / \mathrm{c}$) chiral NN interaction evolved to $2 \mathrm{~N}+3 \mathrm{~N}$ forces N2LO ($\Lambda=400 \mathrm{Mev} / \mathrm{c}$) chiral 3N interaction evolved

Overlap functions and spect. factors in ${ }^{14} \mathrm{O}$

TABLE 1. Predicted matter radii (in fm) for ${ }^{16} \mathrm{O}$
form SRG evolved 2N-
radii still too small! only interactions and by including induced and full 3NF. Experiment are charge radii.

	2NF only	2+3NF(ind.)	2+3NF(full)	Experiment
${ }^{16} \mathrm{O}:$	2.10	2.41	2.38	$2.718 \pm 0.210[19]$

After rescaling, the shape and results are the same as for phenoenological

F. Flavingny et al, CB, Phys. Rev. Lett. (2013)--in print

Approaching open-shells in the mid-mass region:

\rightarrow Gorkov theory
\rightarrow proof-of-principle results at $2^{\text {nd }}$ order
V. Somà, T. Duguet, CB, Phys. Rev. C84, 046317 (2011) arXiv:1208.2472 [nucl-th]

Applications to doubly-magic nuclei

粦 Faddeev-RPA approximation for the self-energy
[C.B. et al. 2001-2011]

粦 Successful in medium-mass doubly-magic systems

Applications to doubly-magic nuclei

粦 Faddeev-RPA approximation for the self-energy
[C.B. et al. 2001-2011]

粦 Successful in medium-mass doubly-magic systems
Expansion breaks down when pairing instabilities appear

Explicit configuration mixing

Single-reference: Bogoliubov (Gorkov)

Going to open-shells: Gorkov ansatz

[V. Somà, T. Duguet, CB, Pys. Rev. C84, 046317 (2011)]

* 粦 Ansatz

$$
\ldots \approx E_{0}^{N+2}-E_{0}^{N} \approx E_{0}^{N}-E_{0}^{N-2} \approx \ldots \approx 2 \mu
$$

米 Auxiliary many-body state $\left|\Psi_{0}\right\rangle \equiv \sum_{N}^{\text {even }} c_{N}\left|\psi_{0}^{N}\right\rangle$
\longrightarrow Mixes various particle numbers
\longrightarrow Introduce a "grand-canonical" potential $\Omega=H-\mu N$
$\Longrightarrow\left|\Psi_{0}\right\rangle$ minimizes $\Omega_{0}=\left\langle\Psi_{0}\right| \Omega\left|\Psi_{0}\right\rangle$
under the constraint $\quad N=\left\langle\Psi_{0}\right| N\left|\Psi_{0}\right\rangle$
$\Longrightarrow \quad \Omega_{0}=\sum_{N^{\prime}}\left|c_{N^{\prime}}\right|^{2} \Omega_{0}^{N^{\prime}} \approx E_{0}^{N}-\mu N$

Gorkov Green's functions and equations

 [V. Somà, T. Duguet, CB, Pys. Rev. C84, 046317 (2011)]粦 Set of 4 Green's functions

$$
i G_{a b}^{11}\left(t, t^{\prime}\right) \equiv\left\langle\Psi_{0}\right| T\left\{a_{a}(t) a_{b}^{\dagger}\left(t^{\prime}\right)\right\}\left|\Psi_{0}\right\rangle \equiv G_{a b}^{21}\left(t, t^{\prime}\right) \equiv\left\langle\Psi_{0}\right| T\left\{\bar{a}_{a}^{\dagger}(t) a_{b}^{\dagger}\left(t^{\prime}\right)\right\}\left|\Psi_{0}\right\rangle \equiv
$$

[Gorkov 1958]

$$
\mathbf{G}_{a b}(\omega)=\mathbf{G}_{a b}^{(0)}(\omega)+\sum_{c d} \mathbf{G}_{a c}^{(0)}(\omega) \boldsymbol{\Sigma}_{c d}^{\star}(\omega) \mathbf{G}_{d b}(\omega)
$$

$$
\boldsymbol{\Sigma}_{a b}^{\star}(\omega) \equiv\binom{\Sigma_{a b}^{\star 11}(\omega) \Sigma_{a b}^{\star 12}(\omega)}{\Sigma_{a b}^{\star 21}(\omega) \Sigma_{a b}^{\star 22}(\omega)}
$$

Gorkov equations

$$
\boldsymbol{\Sigma}_{a b}^{\star}(\omega) \equiv \boldsymbol{\Sigma}_{a b}(\omega)-\mathbf{U}_{a b}
$$

$1^{\text {st }} \& 2^{\text {nd }}$ order diagrams

［V．Somà，T．Duguet，CB，Pys．Rev．C84， 046317 （2011）］

类 $1^{\text {st }}$ order ${ }^{~ " ~} \rightarrow$ energy－independent self－energy

米 $2^{\text {nd }}$ order $" \rightarrow$ energy－dependent self－energy

$$
\Sigma_{a b}^{11(2)}(\omega)={ }_{c}^{c} \omega_{c}^{a}
$$

粦 Gorkov equations

\longrightarrow eigenvalue problem

$\left.\sum_{b}\left(\begin{array}{cc}t_{a b}-\mu_{a b}+\Sigma_{a b}^{11}(\omega) & \Sigma_{a b}^{12}(\omega) \\ \Sigma_{a b}^{21}(\omega) & -t_{a b}+\mu_{a b}+\Sigma_{a b}^{22}(\omega)\end{array}\right)\right|_{\omega_{k}}\binom{\mathcal{U}_{b}^{k}}{\mathcal{V}_{b}^{k}}=\omega_{k}\binom{\mathcal{U}_{a}^{k}}{\mathcal{V}_{a}^{k}} \quad \begin{aligned} & \mathcal{U}_{a}^{k *} \equiv\left\langle\Psi_{k}\right| \bar{a}_{a}^{\dagger}\left|\Psi_{0}\right\rangle \\ & \mathcal{V}_{a}^{k *} \equiv\left\langle\Psi_{k}\right| a_{a}\left|\Psi_{0}\right\rangle\end{aligned}$

Espressions for $1^{\text {st }} \& 2^{\text {nd }}$ order diagrams

v SOMÀ, T. DUGUET, AND C. BARBIER
[V. Somà, T. Duguet, CB, Pys. Rev. C84, 046317 (2011)]

$$
=\delta_{a p} \delta_{n=m, m}, \frac{1}{2}
$$

which recovers relation (72a). The remaining quan $\left\{k_{1}, k_{2}, k_{3}\right\}$ indices and can be obtained from Eqs. (C

$$
\equiv \delta_{a \beta} \delta_{r a n, m}, \Sigma_{n}^{21}
$$ j_{k} to $J_{\text {Iux }}$ and J_{c} as follows:

$$
=\delta_{0 p} \delta_{n, 0,0}, \tilde{h}_{n 0}^{[\alpha]}
$$

$$
\mathcal{P}_{a\left(j_{i} k_{3}\right)}^{k_{1}, k_{3}}=\sum(-1)^{L_{4}+j_{4}+\dot{h}_{2}+\dot{h}_{3}} \sqrt{2 J}
$$

$$
=-\delta_{S_{2 j}, j} \delta_{M_{L}, m_{4}} \sum_{N_{1}, N_{0}, N_{i}} \sum_{L_{i}} \pi_{i}
$$

$Q_{a\left(j_{i}, J\right)}^{k_{2}, k_{J}}=\sum(-1)^{L_{4}+\lambda_{4}+\dot{h}_{2}+\dot{h}_{3}} \sqrt{2 J}$
angular momentum couplings of the three angular momentum couplings of the three \mathcal{Q}, \mathcal{R}, and \mathcal{S}. One proceeds first coupling
give $J_{\text {IE }}$. The recoupled \mathcal{M} term is compu

$=\sum_{m_{1}, w_{2}, M_{1}, M_{r}} \sum_{j, M_{1}} \delta_{x_{1} \rho} \delta_{m_{0},}$

where general properties of Clebsch-Gord

One can show that the same result is obta

6. Block-diagonal structure of Gorkov's equations

In the peevious subsections it has been proven that all single-particle Green's functions and all self-energy contribations entering Gorkov's equations display the same block-diagonal structure if the systems is in a 0^{+}state. Defining

$$
T_{a b}-\mu \delta_{s b} \equiv \delta_{a \phi} \delta_{m, m},\left[T_{n, n b}^{[a]}-\mu^{\mid q] \mid} \delta_{n, k_{2}}\right],
$$

introducing block-diagonal forms for amplitudes \mathcal{W} and \mathcal{Z} through
$=-\delta_{\text {Sei }} \delta_{\mu}, \sum_{n, m, m_{i}} \sum_{i} \quad$ and using Eqs. (C29), (C31), (C32), (C34), and (C44), one finally writes Eqs. (81) as

$$
\mathcal{S}_{a\left(J_{e} J_{t}\right)}^{\left.k_{i} k_{k}\right)}=\sum_{J_{f}}(-1)^{2 h_{1}+2 J_{f}} \sqrt{2 J_{e}+1}
$$

$$
\begin{aligned}
& \text { (C48b) }
\end{aligned}
$$

064317-30
These terms are finally put together to form the different connurouorns to secona-oruter sen-energers. Let us consucr $\boldsymbol{L}_{a b}$ as momenta, one has

Gorkov equations

[V. Somà, T. Duguet, CB, Pys. Rev. C84, 046317 (2011)]

$$
\left.\sum_{b}\left(\begin{array}{cc}
t_{a b}-\mu_{a b}+\Sigma_{a b}^{11}(\omega) & \Sigma_{a b}^{12}(\omega) \\
\Sigma_{a b}^{21}(\omega) & -t_{a b}+\mu_{a b}+\Sigma_{a b}^{22}(\omega)
\end{array}\right)\right|_{\omega_{k}}\binom{\mathcal{U}_{b}^{k}}{\mathcal{V}_{b}^{k}}=\omega_{k}\binom{\mathcal{U}_{a}^{k}}{\mathcal{V}_{a}^{k}}
$$

$$
\sqrt{3}
$$

$$
\left(\begin{array}{cclc}
T-\mu+\Lambda & \tilde{h} & \mathcal{C} & -\mathcal{D}^{\dagger} \\
\tilde{h}^{\dagger} & -T+\mu-\Lambda & -\mathcal{D}^{\dagger} & \mathcal{C} \\
\mathcal{C}^{\dagger} & -\mathcal{D} & E & 0 \\
-\mathcal{D} & \mathcal{C}^{\dagger} & 0 & -E
\end{array}\right)\left(\begin{array}{c}
\mathcal{U}^{k} \\
\mathcal{V}^{k} \\
\mathcal{W}_{k} \\
\mathcal{Z}_{k}
\end{array}\right)=\omega_{k}\left(\begin{array}{c}
\mathcal{U}^{k} \\
\mathcal{V}^{k} \\
\mathcal{W}_{k} \\
\mathcal{Z}_{k}
\end{array}\right)
$$

Energy independent eigenvalue problem
with the normalization condition $\sum_{a}\left[\left|\mathcal{U}_{a}^{k}\right|^{2}+\left|\mathcal{V}_{a}^{k}\right|^{2}\right]+\sum_{k_{1} k_{2} k_{3}}\left[\left|\mathcal{W}_{k}^{k_{1} k_{2} k_{3}}\right|^{2}+\left|\mathcal{Z}_{k}^{k_{1} k_{2} k_{3}}\right|^{2}\right]=1$

Lanczos reduction of self-energy

$$
\left(\begin{array}{cccc}
T-\mu+\Lambda & \tilde{h} & \mathcal{C} & -\mathcal{D}^{\dagger} \\
\tilde{h}^{\dagger} & -T+\mu-\Lambda & -\mathcal{D}^{\dagger} & \mathcal{C} \\
\mathcal{C}^{\dagger} & -\mathcal{D} & E & 0 \\
-\mathcal{D} & \mathcal{C}^{\dagger} & 0 & -E
\end{array}\right)\left(\begin{array}{c}
\mathcal{U}^{k} \\
\mathcal{V}^{k} \\
\mathcal{W}_{k} \\
\mathcal{Z}_{k}
\end{array}\right)=\omega_{k}\left(\begin{array}{c}
\mathcal{U}^{k} \\
\mathcal{V}^{k} \\
\mathcal{W}_{k} \\
\mathcal{Z}_{k}
\end{array}\right)
$$

$\xrightarrow{\prime \prime} \rightarrow$ Conserves moments of spectral functions
\rightarrow Equivalent to exact diagonalization for $\mathrm{N}_{\mathrm{L}} \rightarrow \operatorname{dim}(\mathrm{E})$

Application of Lanczos (example)

\rightarrow \# of poles of the self-energy (== optical potential) are reduced without altering spectroscopic strength.

Volume integral of ${ }^{40} \mathrm{Ca} \pm n$ optical potential in $f_{7 / 2}$ part. wave

\rightarrow Ground state energies converge with ≥ 200 Lanczos vectors (10 osc. shells).

Binding energies

* Systematic along isotopic/isotonic chains has become available

$\rightarrow \rightarrow$ Accuracy is good (close to CCSD and FRPA) and improvable
m Systematic along isotopic/isotonic chains has become possible
\rightarrow Of course, need proper interactions and (at least) NNN forces...

Binding energies

Somà, CB, Duguet, arXiv:1208.2472

\rightarrow Overbinding with A: traces need for (at least) NNN forces
\rightarrow Effect of self-consistency is relevant; i.e. less bound than MBPT2

Spectral distribution

Spectral distribution

Somà, CB, Duguet, arXiv:1208.2472

\rightarrow Gorkov-GF at $2^{\text {nd }}$ order [or ADC(2)]

Evolved chiral 3NF and the Ca isotopes

A. Cipollone, CB, V.Somà, P. Navratil

N3LO ($\Lambda=500 \mathrm{Mev} / \mathrm{c}$) chiral NN interaction evolved to $2 \mathrm{~N}+3 \mathrm{~N}$ forces $\left(2.0 \mathrm{fm}^{-1}\right)$ N2LO $(\Lambda=400 \mathrm{Mev} / \mathrm{c})$ chiral 3 N interaction evolved $\left(2.0 \mathrm{fm}^{-1}\right)$

Collaborators

TECHNISCHE
UNIVERSITAT
DARMSTADT
SUNERSREY
(1)
(B) Universitat de Barcelona

Washington
University in St.Louis
AN Center for $\begin{gathered}\text { Molecular Modeling } \\ \text { Mole }\end{gathered}$

V. Somà

A. Cipollone, A. Rios
T. Duguet
P. Navratil
A. Polls, A. Carbone
W.H. Dickhoff, S. Waldecker
D. Van Neck, M. Degroote
M. Hjorth-Jensen

Conclusions

- Self-Consistent Green's Functions (SCGF), is a microscopic ab-initio method applicable to medium mass nuclei. Greatest advantage is the link to several (experimentally accessible) information.
- Proof of principle calculations Gorgov theory are successful at $2^{\text {nd }}$ order. This de facto show that the approach is viable and opens a whole new path:
\rightarrow Open-shell nuclei (many, not previously approachable otherwise!).
\rightarrow Reactions at driplines.
\rightarrow structure of next generation EDF.
- Addition of three nucleon forces (3NF) are feasible and underway.
\rightarrow This implies a step up in the accuracy of "ab-initio" calculations.

