Adequacy of the SU(3)-scheme Basis for No-Core Shell Model Calculations

Tomas Dytrych
Jerry P. Draayer, Kristina D. Launey
Louisiana State University
Daniel Langr
Czech Technical University

Collaborators:
Pieter Maris, James P. Vary
Iowa State University
Mark Caprio
University of Notre Dame
Erik Saule, Umit Catalyurek
Ohio State University

SU(3)-Scheme Basis

- Complete basis
- Relevant for description of spatially deformed nuclei \& nuclear collective motion
- $\operatorname{SU}(3)$ is a subgroup of the symplectic model of the nuclear collective motion
- $(\lambda \mu)$ related to shape variables β and γ of the collective model
- Allows to include correlations important for α-cluster structures

J-coupled proton-neutron basis labeled by intrinsic spins Sp Sn S and deformations

$$
\begin{aligned}
& \text { intrinsic spin part } \\
& \text { spatial part } \\
& \left|\gamma S_{p} S_{n} S(\lambda \mu) \kappa L \quad J M\right\rangle \\
& \text { orbital angular momentum } \\
& \text { multiplicity label - needed to distinguish multiple occurrence of } \mathrm{L}
\end{aligned}
$$

Nuclear Hilbert Space in SU(3)-scheme Basis

SU(3)-scheme allows truncations according to (1) maximal number of total HO quanta Nmax
(2) intrinsic spins $S_{p} S_{n} S$
(3) deformations $(\lambda \mu)$

- Realistic interactions: enormous mixing of different $S_{p} S_{n} S(\lambda \mu)$ subspaces

Coherent mixing of $N \hbar \Omega \quad S_{p} S_{n} S(\lambda \mu)$ subspaces due to a persistent $\mathrm{Sp}(3, \mathrm{R})$ symmetry

6
 Li : ground state

- JISP16 bare + Vcoul interactions
$N_{\text {max }}=10$
$\hbar \Omega=20 \mathrm{MeV}$

Li : ground state

- JISP16 bare + Vcoul interactions
$N_{\text {max }}=10$
$\hbar \Omega=20 \mathrm{MeV}$
- four Sp Sn S components dominate (over 99\%)
- Coherent pattern of important deformations

- $\left(\lambda_{0}+k \mu_{0}\right) k=0,2,4,6 \ldots$
- indication that $\operatorname{Sp}(3, R)$ symmetry is persistent

Model Space A

	A	B	C	Full
E	-29.317			-30.875
RMS (mass)	2.035			2.090
E2 moment	-0.062			-0.066
M1 moment	0.839			0.836
dimension	3.7%			100%

Model Space B

	A	B	C	Full
E	-29.317	-29.881		-30.875
RMS (mass)	2.035	2.042		2.090
E2 moment	-0.062	-0.069		-0.066
M1 moment	0.839	0.838		0.836
dimension	3.7%	4.2%		100%

Model Space C

	A	B	C	Full
E	-29.317	-29.881	-30.433	-30.875
RMS (mass)	2.035	2.042	2.075	2.090
E2 moment	-0.062	-0.069	-0.074	-0.066
M1 moment	0.839	0.838	0.837	0.836
dimension	3.7%	4.2%	10.8%	100%

Truncation Efficacy

Number of non zero matrix elements [millons]

Nmax:	$\mathbf{8}$		10	
	12			
M-scheme M=1	776	8,443	70,381	
J-scheme	636	7,249	62,286	
SU(3)-scheme	1,945	31,177	$\sim 380,000$	
B	146	325	823	
C	276	1,193	4,861	

Model space reduction: two orders of magnitude and even more substantial for higher Nmax and heavier nuclei

6
 Li : low-lying $T=0$ states

Symmetry-truncated model space C: "tuned" to describe the ground state of 6Li
$(20) \quad \mathrm{S}=1 \mathrm{~L}=0 \times \mathrm{S}=1 \rightarrow \mathrm{~J}=1 \longrightarrow$ leading configuration of 6 Li ground state [62\%]
(2 0) $\quad S=1 \quad L=2 \times S=1$--> $J=3,2,1$ major components of excited $T=0$ states?

- Calculate excited $T=0$ states in model space C

Low-lying $T=0$ states in 6 Li

Symmetry-truncated model space C : "tuned" to describe the ground state of 6 Li
$(20) \quad \mathrm{S}=1 \mathrm{~L}=0 \times \mathrm{S}=1 \rightarrow \mathrm{~J}=1 \longrightarrow$ leading configuration of 6 Li ground state [62\%]
(2 0) $\quad S=1 \quad L=2 \times S=1$--> $J=3,2,1$ major components of excited $T=0$ states?

- Calculate excited $T=0$ states in model space C
- Model space C provides a good approximation to excitation spectra of low-lying $T=0$ states in 6 Li

Physical Observables in Truncated Model Space

model space C reproduces $B(E 2)$ \& quadrupole moments independently of harmonic oscillator strength

Physical Observables in Truncated Model Space

Magnetic dipole moments $\left[\mu_{N}\right]$					$\hbar \Omega=17.5 \mathrm{MeV}$
$N_{\text {max }}=12$	$1_{\text {gs }}^{+}$	3^{+}	2^{+}		
full	0.838	1.866	0.960		
C	0.840	1.866	1.015		

Matter rms radii [fm]						$\hbar \Omega=17.5 \mathrm{MeV}$
$N_{\text {max }}=12$	$1_{g s}^{+}$	3^{+}	2^{+}	1_{2}^{+}		
full	2.146	2.092	2.257	2.373		
C	2.139	2.079	2.236	2.355		

model space C reproduces physical observables independently on HO strength
${ }^{6} \mathrm{Li}$－coherent structure of $T=0$ states

$1_{g s}^{+}$		3^{+}		2^{+}		1_{2}^{+}	
	0．17\％	○．． 1.1	0．11\％	○．！○．．．○－	0．21\％	○．！！．．○ ${ }_{(12,0)}$	0．29\％
－． 0		－．．○－○ 0		－．．－．． 0 。		－．．．○ ○ $-(10,1)$	
－．－．－． 0		－．．－－－		－．．－．．．－－		－．．．．．○－ 8 （8，2）	
．．．．．．．		．．．．．．		．．．．．．		．．．．．．．．．$-(9,0)$	
－．．．．－．－．		－		－．．－．．．－．		－．．．－－ 6,3 ）	
－．\cdot		．．．．．．．		．．．．．．．		．．．．．．．．－ 7 （7，1）	
－．．．－．○		－．．－．．○		－．．－．．○ ．		－．．．．．○－ 4 （, 4 ）	
．．．．．．．		．．．．．		．．．．．．．．．		．．．．．．．．．－ 5 （2，2）	
C．．．．		－．		－．．．．．．－．		－．．．－．－ 2,50	
훌 ：		．．．．．		－		－．．$-(6,0)$	
$\cdots \cdot \cdot$.		．．．．．．		－．．．．．．．			
－．．．．．		．．．．．		－．．．．．．．		．．．．．．．－ 3 （ 3 ）	
		\cdots ．		－．．．．．．		－$(4,1)$	
－．．．．		．．．．．．．		－．．．．．		．．．．．－ 1,4 ）	
－• ．		．．．．．．		$\cdots \cdots \cdots$		$\cdots \cdots$ ．$-(2,2)$	
．．		．．．．．．		．．．．．		$\cdots \cdots$	
－．		－．．．．．		．		\cdots ．$-(0,3)$	
－－－－－－－－－－－－－－－－－－		－．．．．．		－．．．		（1，1）	
$\cdots-\cdots-\cdots$	0．7\％		0．54\％	O－－	1．2\％	$\bigcirc{ }^{-\cdots-}(10,0)$	1．2\％
－．．．．○．		－．．．． 0		－．．．．．．○ ．		－．．．．．．○ ○ $-(8,1)$	
－．．．．． 0		－．．．．．． 0		－．．．－．－．		－．．．．． 0 －（6，2）	
－．．．．．．		．．．．．．．		－．．．．		－－$-(7,0)$	
－		．．．．．．．		－．．．．．－．		－． $0 \cdot-(4,3)$	
द－．．．．．		．．．．		－		－．．．．$-(5,1)$	
C－．．．．．．		－．．．．．		－．．．．．		（2，4）	
∞－．．．		$\cdots \cdots \cdot$ ．		．		\cdots ．．${ }^{\text {c }}$	
－．．．．．．．		－．．		－．．．．．．		－（4，0）	
$\cdots \cdots \cdots$		．．		－．．．．		（1，3）	
－．．．．		－．		－．．．		$-(2,1)$	
－．．．		－		－．		$-(0,2)$	
－－	2．4\％	－$-1 .-$－\quad－	1．6\％	0	2．5\％	$\bigcirc-(1,0)$	3．9\％
－．${ }^{\circ}$				－．．．．． 0 。		．．．． 0 －$(6,1)$	
－． 0				－．．．－－		－$-(4,2)$	
C－．．．．		．．．．．．		－．．．．		－$-(5,0)$	
둥 ：．．．		－．．		－．．．．．．		$\cdots \cdots \cdots$	
		$\cdots \cdot$－		－．．．．．．．．		．．．．$-(3,1)$	
－．．．．．．．		．		－．．．．．．		－$-(1,2)$	
－．．		－．．．		－．．．．		$-(2,0)$	
\bigcirc	6．8\％		5．8\％		10．2\％	（0，1）	8．3\％
－．．．．．．．．		\bigcirc		。		\bigcirc－$(4,1)$	
$\mathrm{c}^{-} \cdot \cdot . \cdot \cdots \cdot \cdot \circ$		－．．． 0		－．．．．．．．．		－－（2，2）	
年		－		－．．．．		－$-(3,0)$	
	12．5\％	－．．		－．．．		（1，1）	
¢－．－			8．7\％		12．6\％	\bigcirc	23．3\％
長 ．．．．．○		O		\bigcirc		－－$(2,1)$	
		－				\bigcirc－${ }^{-(1,2,0)}$	
C］	62．6\％		70\％		55．5\％	\bigcirc	40．3\％
焐 1						（0，1）	
mm ndy nix mins							
		तू ले तो ते ते					

12
 ${ }^{12} C$: model space decomposition

12
 ${ }^{12} C: J=0$ ground state

${ }^{12} C: J=2_{1}^{+}$

${ }^{12} C: J=4_{1}^{+}$

16
 0 : model space decomposition

16 : ground state

Summary \& Outlook

We have tested SU(3) and spin based truncation scheme

Our results suggest the existence of coherent $S U(3)$ structures and reaffirm the importance of the symplectic symmetry

- Tranform N3LO NN interaction into SU(3) compatible form

Implement 3 N forces in $\mathrm{SU}(3)$-scheme

Move toward sd-shell nuclei

