Adequacy of the SU(3)-scheme Basis for No-Core Shell Model Calculations

Tomas Dytrych

Jerry P. Draayer, Kristina D. Launey

Louisiana State University

Daniel Langr

Czech Technical University

Collaborators:

Pieter Maris, James P. Vary

Iowa State University

Mark Caprio

University of Notre Dame

Erik Saule, Umit Catalyurek

Ohio State University

Perspectives of the Ab Initio No-Core Shell Model, February 23-25 2012, Vancouver, Canada

SU(3)-Scheme Basis

- Complete basis
- Relevant for description of spatially deformed nuclei & nuclear collective motion
- SU(3) is a subgroup of the symplectic model of the nuclear collective motion
- ullet $(\lambda \ \mu)$ related to shape variables eta and γ of the collective model
- Allows to include correlations important for α cluster structures

Nuclear Hilbert Space in SU(3)-scheme Basis

SU(3)-scheme allows truncations according to (1) maximal number of total HO quanta Nmax
 (2) intrinsic spins S_p S_n S
 (3) deformations (λ μ)

Realistic interactions: enormous mixing of different S_pS_nS $(\lambda \ \mu)$ subspaces

Coherent mixing of $N\hbar\Omega$ $S_pS_nS(\lambda \mu)$ subspaces due to a persistent Sp(3,R) symmetry

⁶Li : ground state

• JISP16 bare + Vcoul interactions $N_{
m max}=10$ $\hbar\Omega=20~{
m MeV}$

⁶Li : ground state

• JISP16 bare + Vcoul interactions $N_{
m max}=10$ $\hbar\Omega=20~{
m MeV}$

• four Sp Sn S components dominate (over 99%)

• Coherent pattern of important deformations

$0\hbar\Omega$	$2\hbar\Omega$	$4\hbar\Omega$	$6\hbar\Omega$	$8\hbar\Omega$	$10\hbar\Omega$	• • •
(2 0)	(4 0)	(6 0)	(8 0)	(10 0)	(12 0)	
	(2 1)	(4 1)	(6 1)	(8 1)	(10 1)	
	(0 2)	(2 2)	(4 2)	(6 2)	(8 2)	
			(2 3)	(4 3)	(6 3)	
			(0 4)	(2 4)	(4 4)	

• $(\lambda_0 + k \ \mu_0) \ k = 0, 2, 4, 6 \dots$

indication that Sp(3,R) symmetry is persistent

Model Space A

	Α	В	С	Full
E	-29.317			-30.875
RMS (mass)	2.035			2.090
E2 moment	-0.062			-0.066
M1 moment	0.839			0.836
dimension	3.7%			100%

Model Space B

	А	В	С	Full
E	-29.317	-29.881		-30.875
RMS (mass)	2.035	2.042		2.090
E2 moment	-0.062	-0.069		-0.066
M1 moment	0.839	0.838		0.836
dimension	3.7%	4.2%		100%

Model Space C

	А	В	С	Full
E	-29.317	-29.881	-30.433	-30.875
RMS (mass)	2.035	2.042	2.075	2.090
E2 moment	-0.062	-0.069	-0.074	-0.066
M1 moment	0.839	0.838	0.837	0.836
dimension	3.7%	4.2%	10.8%	100%

Truncation Efficacy

Number of non zero matrix elements [millons]

Nmax:	8	10	12					
M-scheme M=1	776	8,443	70,381					
J-scheme	636	7,249	62,286					
SU(3)-scheme	1,945	31,177	~380,000					
В	146	325	823					
С	276	1,193	4,861					

Model space reduction: two orders of magnitude and even more substantial for higher Nmax and heavier nuclei

⁶Li : low-lying T=0 states

Symmetry-truncated model space C: "tuned" to describe the ground state of 6Li

(20) S=1 L=2 x S=1 --> J = 3, 2, 1 major components of excited T=0 states?

Calculate excited T=0 states in model space C

Low-lying T=0 states in 6Li

Symmetry-truncated model space C: "tuned" to describe the ground state of 6Li

(20) S=1 L=2 x S=1 --> J = 3, 2, 1 major components of excited T=0 states?

Calculate excited T=0 states in model space C

Model space C provides a good approximation to excitation spectra of low-lying T=0 states in 6Li

Physical Observables in Truncated Model Space

model space C reproduces B(E2) & quadrupole moments independently of harmonic oscillator strength

Physical Observables in Truncated Model Space

		Magne	tic dipole mom	ents $[\mu_N]$	$\hbar\Omega = 17.5 \text{ M}$	ſeV
	$N_{\rm max} = 12$	1^+_{gs}	3^+	2^{+}	1_{2}^{+}	
	full	0.838	1.866	0.960	0.336	
	С	0.840	1.866	1.015	0.337	
_						·

		Mat	ter rms radii [fm]	$\hbar\Omega = 17.5 \text{ M}$	ſeV
$N_{ m m}$	$_{\rm ax} = 12$	1^+_{gs}	3^+	2^+	1_{2}^{+}	
	full	2.146	2.092	2.257	2.373	
	С	2.139	2.079	2.236	2.355	

model space C reproduces physical observables independently on HO strength

⁶Li - coherent structure of T=0 states

 12 C : model space decomposition

 ${}^{12}_{C}: J=0 \text{ ground state}$

1740	-								•										:		•				• •			:	•	•	•	•	•	•		•	•	•		0 (0
	-																					•		•					•		•	•	•			•	•			•	D
ļ	-									:	:		•	•		:	:		:	•	:			:				:	•	:		•	· ·		•	•	:		:	•	•
ł	-	· ·		•				•		•			•		:	•		•	:	·	·	·	•			•		•	:	·		•	•		•	0	•	•	•		C
	-																												•			•				۰	•			•	•
ļ	-				:				:		:			•		•		•					•		• •		:			•					•	•	•	•	•	0 0	°
ł	-				•					•	·				•	·	•		•	•			•				•		·	·	•	•	• •	•	•	°	·		•	•	•
F	-						 															_		· .													•	·		•	•
ł	-																																								
$\left \right $	-																																			•		•			•
ļ	-																												:		:						:			•	•
ł	-																												·	·	•	•			•		·	_		·	
-	-																												•			•				•	•	Ů		•	, (
	-																				•	•	•	•					·	•	•	•				•	•		•	•	
	-																																								•
ļ	-																	:	•		:		•					:	:	:	:				:	•	:		•	•	D
$\left \right $	-																		•													•		•		•	·			•	•
F	-								•		•			•		•		•		•	•		•				•		:	•			•		•	0	•	•	•	•	, (
ł	-											•			•		•		•					:				•	•		:	•		•		•	:			•	•
$\left \right $							 																		·													<u>.</u>			
ļ	-																																			•		·			. °
$\left \right $	-																																							•	
ļ	-																												•	•	•	•				•	•			•	C
	-																																				•			•	
1	-																												•							•	•			· ·	· .
ł	-																													•	:		 		•	•	•		•	•	
-	-																																			•	-	•			C
ļ							 																																	0	<u>-</u>
	-																																							•	
5	-																																			۰		•			. •
L	6		1	1		1	5	5	<u>+</u>	+	4	4	<u> </u>	÷		4	4	4	-	4	+	+	4	4	4		1	1	1	4	4	4	ų		4	4	4	4	4	4-	4

: model space decomposition

16 0

¹⁶ O : ground state (12,3)(13,1)10,411.2 12.0 (8.5) 19:31 (10.1)(6.6)(7,4)47 · · O 8.2 . -0.0 -0.9 (6.3)(3.6) · O O -(7.1)(1.7)4.4 · 🔵 🛛 • . . 0 (6.0)-(0.6)(3:3) (1,4)0 (2.2)(3,0) -(0.3)(1,1)(0.0)(8,4)(92) (10.0)(6.5)(7.3)(4.6)· 0 . .6 **.** . · 0 ο. 3 (2.1) 1.0° 42 (5.0)(2'3'). 2.0· • -(0,1)(0,0)f

Summary & Outlook

We have tested SU(3) and spin based truncation scheme

Our results suggest the existence of coherent SU(3) structures and reaffirm the importance of the symplectic symmetry

Tranform N3LO NN interaction into SU(3) compatible form

Implement 3N forces in SU(3)-scheme

Move toward sd-shell nuclei