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Outline

❖ Three Steps Between QCD and Nuclear Structure

❖ From few to many to few

‣ Clustering in light nuclei

‣ Borromean nucleus 6-He

‣ Core+N+N structure in the A=6 isobar

❖ Outlook
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From “QCD” To Nuclei

Low-energy QCD

Nuclear Structure

Chiral Effective 
Field Theory

Many-body 
Methods

Renormalization 
Scheme

ab initio no-core shell model
‣ A-body HO model space (m scheme)
‣ Full-space Nmax energy cutoff

chiral EFT NN interaction
‣ Entem and Machleidt (2003)
‣ N3LO,  Λ = 500 MeV

Similarity Renormalization Group
‣ SRG flow in NN momentum space
‣ Study of cutoff dependence
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Low-energy QCD

Nuclear Structure

Chiral Effective 
Field Theory
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Methods

Renormalization 
Scheme

Non-observables

❖ For many light nuclei most 
properties are determined by 
long-range cluster dynamics.

❖ How does clustering 
emerge from a 
microscopic theory?

❖ We will mostly be dealing 
with non-observables; but will 
provide good visualization!



Clustering In Light Nuclei
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6He: Facts And Fiction

❖ Properties
Small 2n separation energy,  Borromean nucleus, halo ground state

❖ Three-body model
See,  e.g., M. V. Zhukov et al, Phys. Rep. 231(1993)151

❖ Ground-state properties
Recent precision measurements of charge radius, mass 
M. Brodeur et al., 2011. Phys. Rev. Lett. 108(2011)052504. P. Mueller et 
al., Phys. Rev. Lett. 99(2007) 252501.

❖ Ab initio approaches
GFMC, FMD, EIHH, NCSM, CC
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Energy Convergence

N3LO, SRG (NN only, Λ = 2.0 fm-1)

Binding energies

Λ E(4He) E(6He)

1.8 -28.45 -29.29

2.0 -28.23 -28.72

2.2 -27.87 -27.96

Nmax=12, HO=20 MeV

4He

6He
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6He: Two-Neutron Separation Energy
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6He: Two-Neutron Separation Energy
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6He: Point-Proton Radius

❖ Very accurate charge-radius measurements using laser 
spectroscopy

❖ Relation between charge and point-proton radius:

❖ Several ab initio calculations

❖ Most recently by Bacca et al 

‣ using EIHH and Vlowk NN potential based on (EM) N3LO. 

‣ Study of Λ-dependence and observable correlations.

r2pp = r2
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6He: Point-Proton Radius
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6He As A Three-Body System
❖ Borromean nucleus

❖ HH and CSF three-body 
models with inert cluster. 
Vnn and Vnα

‣ Core polarization needed 
rnα=1.03rnα(free) 
(cf. three-body force) 

‣ Repulsive s-wave potential 
(“Pauli core”)

‣ HH expansion
K=2 (90%) with L=S=0 (80%) 
and L=S=1(10%)

❖ Pauli focusing.

M.V. Zhukov et al.— Phys. Rep. 231, 151 (1993),

6He = 4He+n+n

6He(0+), L=S=0
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Three-body Cluster Overlap Functions
Outline Introduction NCSM Overlap Functions Derivation Numerical Results

Coordinate Systems

Coordinates and variables in the 3-Body Cluster Overlap

ν,l23

η,
l1(
23
)Cluster  1 Cluster  3

Cluster  2
a2 nucleons
I2,T2,β
μ

A-a nucleons
I1,T1,α
ξ

a3 nucleons
I3,T3,γ
ρ

D.Sääf

❖ Investigate clustering in 
NCSM wave functions

❖ Preserve translational 
invariance

❖ Harmonic oscillator SD 
many-body basis

❖ Transformation 
between single-particle 
and Jacobi coordinates
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Three-body Cluster Overlap Functions

Outline Introduction NCSM Overlap Functions Derivation Numerical Results

Radial 3-Body Cluster Overlap Function
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Overlap Function For Core+N+N

❖ Do a couple of coordinate 
transformations 
(between relative and s.p.)

❖ Do a number of spin re-couplings

❖ Integrate over coordinates

Start with the core+N+N case: ⌫A�1

⌘A�2
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Overlap Function For Core+N+N

Outline Introduction NCSM Overlap Functions Derivation Numerical Results

Overlap function for Core+N+N
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D. Sääf and CF, - in preparation

=



C. Forssén, TRIUMF, Vancouver, Feb. 25, 2012

Ab Initio < 6He | 4He+n+n > Overlap

N3LO, SRG 
(NN only, Λ = 2.0 fm-1)

L=S=0

Cigar configuration

Di-neutron configuration

<6He (0+) | 4He (0+)+n+n>
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Pauli Focusing

<6He (0+) | 4He (0+)+n+n>

❖ Dominance of the
l1(23)= l23 =0 component.

❖ RR coefficients determine HH under 
coordinate-system transformation.

❖ E.g. with l1(23)= l23 =0 we get:

‣ l3(12)= l12 =0 for K=0 
(almost Pauli forbidden)

‣ Dominating l3(12)= l12 =1 for K=2

l1(23)

l23

l12l3(12)



C. Forssén, TRIUMF, Vancouver, Feb. 25, 2012

Ab Initio < 6He | 4He+n+n > Overlap

N3LO, SRG 
NN only, Λ = 2.0 fm-1,
Nmax=14, HO=20 MeV

L=S=1

<6He (0+) | 4He (0+)+n+n>
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Ab Initio < 6Li | 4He+n+p > Overlap

N3LO, SRG 
NN only, Λ = 2.0 fm-1,
Nmax=14, HO=20 MeV
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Halo Effective Field Theory

❖ J. Rotureau and U. Van Kolck; arXiv:1201.3351

❖ Separation of scales

‣ E(5He)-E(4He)~-0.9 MeV

‣ E(6He)-E(4He)~1 MeV

‣ Eexc(4He)~20 MeV

❖ Two-body potentials at leading order

‣ n-4He in p3/2 (Bertulani et al 2002)

‣ n-n in 1S0 

‣ Reproduce Effective Range Expansion
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Halo EFT And Gamow Shell Model

❖ J. Rotureau and U. Van Kolck; arXiv:1201.3351

❖ Solution of three-body problem using Gamow Shell Model 
(including continuum states)
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Fig. 2 Ground-state energy of 6He from the LO two-body potentials Vnα(k0;Λnα) and Vnn(Λnn). For each
value of Λnn the cutoff Λnα is varied.

4 Results for the 6He Ground State

The ground state of 6He is coupled to Jπ = 0+ and the three-body basis states are constructed from
the sp states of the Vnα(k0;Λnα) potential as described in the previous section. At LO, only p3/2 shells
are included in the valence space and, as a consequence, all matrix elements of the recoil term in Eq.
(11) vanish. For each value of Λnα the coupling constants A(Λnα) and B(Λnα) are fixed such that
the ERE in the p3/2 channel truncated at the level of the effective “range” is reproduced. Similarly,
C0(Λnn) is fixed such that the 1s0 nn scattering length is reproduced.

Figure 2 shows the energy Ennα of the ground state in 6He for different values of Λnα and Λnn. For
each value of Λnn the cutoff Λnα is increased. One can see that the energy initially quickly decreases,
then slowly rises. For Λnn = 1.6 fm−1, for example, Ennα goes from −0.034 MeV for Λnα = 2.1 fm−1

to −0.475 MeV for Λnα = 6.1 fm−1, then to −0.400 MeV for Λnα = 12.1 fm−1. As Λnn increases, the
initial decrease becomes steeper, and the increase is postponed to higher values of Λnα. For instance,
at Λnn = 2.5 fm−1, the energy goes from −0.182 MeV to −2.251 MeV to −2.524 MeV in the same
range of Λnα values.

This behavior can be understood from the qualitative renormalization features of the system. As
Λnα increases, the phase space of the three-body system increases, the attractive nn interaction is
better resolved, and the binding energy increases. This is consistent with the pattern observed in Ref.
[25] for the energy of a three-fermion system interacting via a two-body force constructed with EFT
at LO. In that case, for a fixed cutoff of the two-body interaction, the total energy of the system
decreases as the size of the model space increased. As Λnn increases, presumably more correlations are
cut off for too small a value of Λnα, generating the faster decrease. However, there is also a residual
dependence on Λnα from Vnα(k0;Λnα). Even though the potential has been properly renormalized,
that is, the coupling constants A(Λnα) and B(Λnα) have been fixed so that the truncated ERE is
reproduced, there still is a dependence for finite values of the cutoff, as seen in Fig. 1. The energy of
the p3/2 resonance goes from k = 0.7714− 0.2947i MeV to k = 0.7696− 0.2896i MeV when Λnα goes
from 6.1 fm−1 to 12.1 fm−1. This means that, as Λnα is varied within this range, there is a variation
" 0.005 MeV, or about 7%, in the norm of the energies of the p3/2 resonance, which is consistent with
a variation of about 15% in the three-body energy in the same range —for example a variation of
" 0.075 MeV for Λnn = 1.6 fm−1.

One can clearly see from Fig. 2 that as the cutoffs Λnn and Λnα are increased, the energy decreases
without reaching a stabilized value. To stress this fact, in Fig. 3 we plot the 6He ground-state energy
as function of Λnn = Λnα. We have checked that the results are similar if other relations are assumed
between Λnn and Λnα, for example, if we take the minimum energy for each Λnn, which is equivalent

Collapse of g.s. under 
short-range V2b

Cutoff dependence of 
ground-state energy
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bound state and the shallow 5He p3/2 resonance must appear in the renormalized three-body force
as well. The infrared enhancement of the LO two-body interactions dominates the running of the LO
three-body force, making its effects much larger than the naturalness expectation. While in the pure
s-wave case the enhancement is proportional to the square of the large scattering length [10], here it
must be roughly the square of the large scattering volume.

With the three-body force so determined, we have looked for other 0+ bound states and found none
within the cutoff range we investigated. This is perhaps not surprising. It has been argued that the
Efimov effect [8] is present if both the scattering volume and the effective momentum in a system with
pairwise p-wave interactions are large, although there is debate about whether this can be realized [12].
Since rnα is not particularly large, we would not expect here an Efimov tower of shallow three-body
states anyway.

5 Conclusions and Outlook

In this paper we have described for the first time the ground state of 6He using interactions derived
from Halo/Cluster Effective Field Theory, where the alpha-particle core is treated as an explicit field
[2]. The two-body nα and nn interactions are of the contact type, with parameters determined from
two-body scattering data. The three-body dynamics of the system was solved using the formalism of
the Gamow Shell Model [13], where the set of single-particle states (resonant and continuum) is given
by the nα potential. We had to adapt the formalism to accommodate the energy dependence of the
LO nα EFT potential. This is also the first time the GSM has been applied to the solution of EFT.

We have seen that, at leading order, two-body forces are not sufficient to properly renormalize
the three-body system, even though they provide a systematic expansion for two-body scattering [2].
Indeed, as the cutoffs are increased the energy of the three-body ground state does not stabilize and
would collapse for an arbitrarily large cutoff. We have shown that the addition of a single three-
body counterterm is enough to achieve renormalization-group invariance 2, as for systems with s-wave
interactions [10]. We have obtained the RG running of the coupling constant by demanding that the
binding energy be fixed at its experimental value.

Our work paves the way for more comprehensive studies of halo nuclei with H/CEFT. For the future,
we plan to carry out a more extensive investigation of 6He, including higher-order corrections and
calculation of other observables (such as the ground-state radius and the first excited-state energy). At
the cost of more computational resources, other members of the He isotope family could be investigated

2 It is our understanding that the same conclusion was reached by Ji, Elster and Phillips [19; 27].

V2b

p-wave contact V3b:

V3b with single parameter 
is sufficient for proper 
renormalization

RG invariance
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Summary And Outlook

❖ ab initio nuclear structure calculations with realistic 
NN(+3N) interactions and unitary transformations for use 
in finite model space.

❖ Emerging cluster structures in light nuclei.

❖ NCSM/RGM calculations with three-cluster states.

❖ Additional scale separation for clusterized systems: halo EFT

❖ Constrain/guide cluster calculations.
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