Reactions in three body cluster states

Eduardo Garrido, Alejandro Kievsky and Michele Viviani

Petr Navratil, Sofia Quaglioni

Reactions in three body cluster states

Carolina Romero Redondo

Eduardo Garrido, Alejandro Kievsky and Michele Viviani 🚛 Integral relations

Petr Navratil, Sofia Quaglioni 🛛 MCSM/RGM

Outline

Introduction

Integral relations

HA method

*Motivation

*Results

*Conclusions

NCSM/RGM *n+n+4He *Summary

Carolina Romero-Redondo TRIUMF February 25th, 2012

Outline

Integral Relations

The Hyperspherical adiabatic expansion method

Studying scattering with HA method Motivation Particular Cases

Conclusions I

Three-body cluster NCSM/RGM

Outline

Introduction

Integral relations

HA method

*Motivation

*Results

*Conclusions

NCSM/RGM *n+n+4He *Summary

Carolina Romero-Redondo TRIUMF February 25th, 2012

Introduction

Scattering properties are usually obtained from the long distance behavior of the wave function

Calculating **accurate** asymptotic wave functions can be complicated

Outline

Introduction

Integral relations

HA method

*Motivation

*Results

*Conclusions

NCSM/RGM *n+n+4He

*Summary

Carolina Romero-Redondo TRIUMF February 25th, 2012

Introduction

Scattering properties are usually obtained from the long distance behavior of the wave function

Calculating **accurate** asymptotic wave functions can be complicated

Solution:

Extract the scattering matrix from the internal part of the wave function

Outline

Introduction

Integral relations

HA method

*Motivation

*Results

*Conclusions

NCSM/RGM *n+n+4He *Summary

Carolina Romero-Redondo TRIUMF February 25th, 2012 We derived, from Kohn variational principle, a formalism in which the use of two integral relations solves this problem

* PRL 103, 090402 (2009). One channel in s-wave

* PRA 83, 022705 (2011). General form of the method

Outline

Introduction

Integral relations

HA method

*Motivation

*Results

*Conclusions

NCSM/RGM

*n+n+4He

*Summary

Carolina Romero-Redondo TRIUMF February 25th, 2012

Integral relations

Asymptotic Behaviour

 $\Psi
ightarrow F-KG$

Where F and G are asymptotic solutions of the Hamiltonian.

Outline

Introduction

Integral relations

HA method

*Motivation

*Results

*Conclusions

NCSM/RGM

*n+n+4He

*Summary

Carolina Romero-Redondo TRIUMF February 25th, 2012

Integral relations

Asymptotic Behaviour

 $\Psi \to F-KG$

Where F and G are asymptotic solutions of the Hamiltonian.

Multichannel reaction

 $\Psi_n o F_n - \sum_i K_{ni} G_i$

Outline

Introduction

Integral relations

HA method

*Motivation

*Results

*Conclusions

NCSM/RGM

*n+n+4He

*Summary

Carolina Romero-Redondo TRIUMF February 25th, 2012

Integral relations

Asymptotic Behaviour

 $\Psi \to F-KG$

Undefined Normalization

 $\Psi \to AF + BG$

Outline

Introduction

Integral relations

HA method

*Motivation

*Results

*Conclusions

NCSM/RGM *n+n+4He

*Summary

Carolina Romero-Redondo TRIUMF February 25th, 2012

Integral relations

Asymptotic Behaviour

 $\Psi \to F-KG$

Undefined Normalization

 $\Psi \to AF + BG$

$$\mathcal{K} = -A^{-1}B$$

We just need to calculate A and B!

Outline

Introduction

Integral relations

HA method

*Motivation

*Results

*Conclusions

NCSM/RGM

*n+n+4He

*Summary

Carolina Romero-Redondo TRIUMF February 25th, 2012

Integral relations

General expressions for A and B

$$egin{aligned} B &= -rac{2m}{\hbar^2} \left[\langle F | \hat{\mathcal{H}} - E | \Psi
angle^T - \langle \Psi | \hat{\mathcal{H}} - E | F
angle
ight] \ A &= -rac{2m}{\hbar^2} \left[\langle \Psi | \hat{\mathcal{H}} - E | G
angle - \langle G | \hat{\mathcal{H}} - E | \Psi
angle^T
ight] \end{aligned}$$

Outline

Introduction

Integral relations

HA method

*Motivation

*Results

*Conclusions

NCSM/RGM *n+n+4He

*Summary

Carolina Romero-Redondo TRIUMF February 25th, 2012

Integral relations

General expressions for A and B

$$egin{aligned} B &= -rac{2m}{\hbar^2} \left[\langle F | \hat{\mathcal{H}} - E | \Psi
angle^T - \langle \Psi | \hat{\mathcal{H}} - E | F
angle
ight] \ A &= -rac{2m}{\hbar^2} \left[\langle \Psi | \hat{\mathcal{H}} - E | G
angle - \langle G | \hat{\mathcal{H}} - E | \Psi
angle^T
ight] \end{aligned}$$

If ψ is the exact solution, then:

$$A = -\frac{2m}{\hbar^2} \langle \Psi | \hat{\mathcal{H}} - E | G \rangle$$

$$B = \frac{2m}{\hbar^2} \langle \Psi | \hat{\mathcal{H}} - E | F \rangle$$

Outline

Introduction

Integral relations

HA method

*Motivation

*Results

*Conclusions

NCSM/RGM *n+n+4He

*Summary

Carolina Romero-Redondo TRIUMF February 25th, 2012

Integral relations

General expressions for A and B

$$egin{aligned} B &= -rac{2m}{\hbar^2} \left[\langle F | \hat{\mathcal{H}} - E | \Psi
angle^T - \langle \Psi | \hat{\mathcal{H}} - E | F
angle
ight] \ A &= -rac{2m}{\hbar^2} \left[\langle \Psi | \hat{\mathcal{H}} - E | G
angle - \langle G | \hat{\mathcal{H}} - E | \Psi
angle^T
ight] \end{aligned}$$

If ψ is the exact solution, then:

$$A = -\frac{2m}{\hbar^2} \langle \Psi_t | \hat{\mathcal{H}} - E | G \rangle$$

$$B^{2^{nd}} = \frac{2m}{\hbar^2} \langle \Psi_t | \hat{\mathcal{H}} - E | F \rangle$$

$$\Psi_t = \Psi + \delta \Psi$$

Outline

Introduction

Integral relations

HA method

*Motivation

*Results

*Conclusions

NCSM/RGM *n+n+4He

*Summary

Carolina Romero-Redondo TRIUMF February 25th, 2012

Integral relations

Kohn Variational Principle

Stationary functional:

$$A^{-1}B^{2^{nd}} = A^{-1}B + rac{2m}{\hbar^2}A^{-1}\langle \Psi_t | \hat{\mathcal{H}} - E | \Psi_t
angle (A^{-1})^T$$

P. Barletta et al. PRL 103, 090402 (2009).

C. Romero-Redondo et al. PRA 83, 022705 (2011).

Outline

Introduction

Integral relations

HA method

*Motivation

*Results

*Conclusions

NCSM/RGM *n+n+4He

*Summary

Carolina Romero-Redondo TRIUMF February 25th, 2012

Integral relations

Kohn Variational Principle

Stationary functional:

$$A^{-1}B^{2^{nd}} = A^{-1}B + rac{2m}{\hbar^2}A^{-1}\langle \Psi_t | \hat{\mathcal{H}} - E | \Psi_t
angle (A^{-1})^T$$

$$A=-rac{2m}{\hbar^2}\langle\Psi_t|\hat{\mathcal{H}}-E|G
angle$$

$$B^{2^{nd}} = rac{2m}{\hbar^2} \langle \Psi_t | \hat{\mathcal{H}} - E | F
angle$$

$$\mathcal{K}=-A^{-1}B^{2^{nd}}$$

$$\mathcal{S} = (1 + i\mathcal{K})(1 - i\mathcal{K})^{-1}$$

Outline

Introduction

Integral relations

HA method

*Motivation

*Results

*Conclusions

NCSM/RGM *n+n+4He

*Summary

Carolina Romero-Redondo TRIUMF February 25th, 2012

Integral relations

The integral relations are general:

* They can be used with wave functions calculated from different methods (in particular with HA method).

* Are extremely useful when the inner part of the wave function can be calculated much accurately than the asymptotic part

Outline

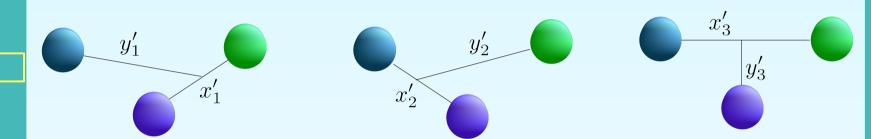
Introduction

Integral relations

HA method

*Motivation

*Results


*Conclusions

NCSM/RGM *n+n+4He

*Summary

Carolina Romero-Redondo TRIUMF February 25th, 2012

Adiabatic Approximation Jacobi Coordinates

$$(T-E)\,\psi_{JM}^{(1)} + V_1\left(\psi_{JM}^{(1)} + \psi_{JM}^{(2)} + \psi_{JM}^{(3)}\right) = 0$$

$$(T-E)\psi_{JM}^{(2)} + V_2\left(\psi_{JM}^{(1)} + \psi_{JM}^{(2)} + \psi_{JM}^{(3)}\right) = 0$$

$$(T-E)\,\psi_{JM}^{(3)} + V_3\left(\psi_{JM}^{(1)} + \psi_{JM}^{(2)} + \psi_{JM}^{(3)}\right) = 0$$

Outline

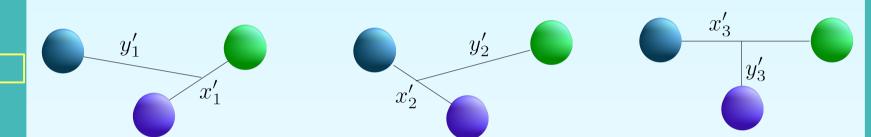
Introduction

Integral relations

HA method

*Motivation

*Results


*Conclusions

NCSM/RGM *n+n+4He

*Summary

Carolina Romero-Redondo TRIUMF February 25th, 2012

Adiabatic Approximation Jacobi Coordinates

$$(T-E)\psi_{JM}^{(1)} + V_1\left(\psi_{JM}^{(1)} + \psi_{JM}^{(2)} + \psi_{JM}^{(3)}\right) = 0$$

$$(T-E)\psi_{JM}^{(2)} + V_2\left(\psi_{JM}^{(1)} + \psi_{JM}^{(2)} + \psi_{JM}^{(3)}\right) = 0$$

$$(T-E)\psi_{JM}^{(3)} + V_3\left(\psi_{JM}^{(1)} + \psi_{JM}^{(2)} + \psi_{JM}^{(3)}\right) = 0$$

 $(T+V-E)\,\psi_{JM}=0$

Outline

Introduction

Integral relations

HA method

*Motivation

*Results

*Conclusions

NCSM/RGM *n+n+4He

*Summary

Carolina Romero-Redondo TRIUMF February 25th, 2012

Adiabatic Approximation

Hyperspherical coordinates

 $ho=\sqrt{x^2+y^2}, \qquad lpha_i=rctan(x_i/y_i), \qquad \Omega_{x_i}, \; \Omega_{y_i}$

Outline

Introduction

Integral relations

HA method

*Motivation

*Results

*Conclusions

NCSM/RGM *n+n+4He

*Summary

Adiabatic Approximation

Hyperspherical coordinates

$$ho=\sqrt{x^2+y^2}, \qquad lpha_i=rctan(x_i/y_i), \qquad \Omega_{x_i}, \; \Omega_{y_i}$$

Angular Equation

$$\hat{\Lambda}^2 \phi_n^{(i)} + \frac{2m\rho^2}{\hbar^2} V_{jk}(x_i) \left(\phi_n^{(i)} + \phi_n^{(j)} + \phi_n^{(k)} \right) = \lambda_n(\rho) \phi_n^{(i)}$$

Radial Equation

$$\left[-\frac{d^2}{d\rho^2} - \frac{2m}{\hbar^2}E + \frac{1}{\rho^2}\left(\lambda_n(\rho) + \frac{15}{4}\right)\right]f_n(\rho) + \sum_{n'}\left(-2P_{nn'}\frac{d}{d\rho} - Q_{nn'}\right)f_{n'}(\rho) = 0$$

Outline

Introduction

Integral relations

HA method

*Motivation

*Results

*Conclusions

NCSM/RGM *n+n+4He

*Summary

Adiabatic Approximation

Hyperspherical coordinates

 $ho=\sqrt{x^2+y^2}, \qquad lpha_i=rctan(x_i/y_i), \qquad \Omega_{x_i}, \; \Omega_{y_i}$

Angular Equation

$$\hat{\Lambda}^2 \phi_n^{(i)} + \frac{2m\rho^2}{\hbar^2} V_{jk}(x_i) \left(\phi_n^{(i)} + \phi_n^{(j)} + \phi_n^{(k)} \right) = \lambda_n(\rho) \phi_n^{(i)}$$

Radial Equation

$$\left[-\frac{d^2}{d\rho^2} - \frac{2m}{\hbar^2}E + \frac{1}{\rho^2}\left(\lambda_n(\rho) + \frac{15}{4}\right)\right]f_n(\rho) + \sum_{n'}\left(-2P_{nn'}\frac{d}{d\rho} - Q_{nn'}\right)f_{n'}(\rho) = 0$$

Outline

Introduction

Integral relations

HA method

*Motivation

*Results

*Conclusions

NCSM/RGM *n+n+4He

*Summary

Adiabatic Approximation

$$\psi^{(i)} = \frac{1}{\rho^{5/2}} \sum_{n} f_n(\rho) \phi_n^{(i)}(\rho, \Omega_i)$$

Angular Equation

$$\hat{\Lambda}^{2}\phi_{n}^{(i)} + \frac{2m\rho^{2}}{\hbar^{2}}V_{jk}(x_{i})\left(\phi_{n}^{(i)} + \phi_{n}^{(j)} + \phi_{n}^{(k)}\right) = \lambda_{n}(\rho)\phi_{n}^{(i)}$$

Radial Equation

$$\left[-\frac{d^2}{d\rho^2} - \frac{2m}{\hbar^2}E + \frac{1}{\rho^2}\left(\lambda_n(\rho) + \frac{15}{4}\right)\right]f_n(\rho) + \sum_{n'}\left(-2P_{nn'}\frac{d}{d\rho} - Q_{nn'}\right)f_{n'}(\rho) = 0$$

Outline

Introduction

Integral relations

HA method

*Motivation

*Results

*Conclusions

NCSM/RGM *n+n+4He *Summary

Carolina Romero-Redondo TRIUMF February 25th, 2012

Motivation

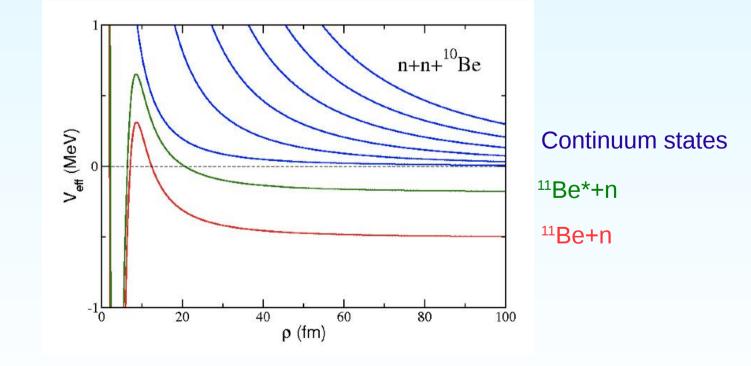
<u>Why</u> is it interesting to study reactions with this method?

Outline Introduction

Integral relations

HA method

*Motivation


*Results

*Conclusions

NCSM/RGM *n+n+4He *Summary

Carolina Romero-Redondo TRIUMF February 25th, 2012

Motivation

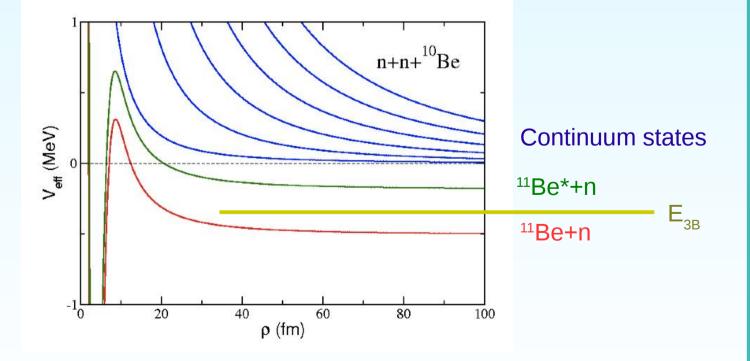
Outline Introduction

Introduction

Integral relations

HA method

*Motivation


*Results

*Conclusions

NCSM/RGM *n+n+4He *Summary

Carolina Romero-Redondo TRIUMF February 25th, 2012

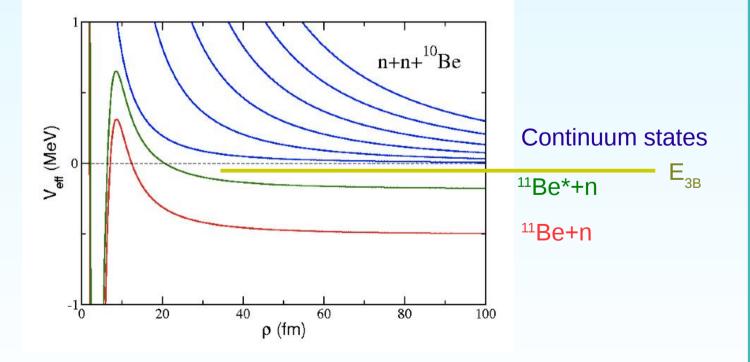
Motivation

Outline Introduction

Integral relations

HA method

*Motivation


*Results

*Conclusions

NCSM/RGM *n+n+4He *Summary

Carolina Romero-Redondo TRIUMF February 25th, 2012

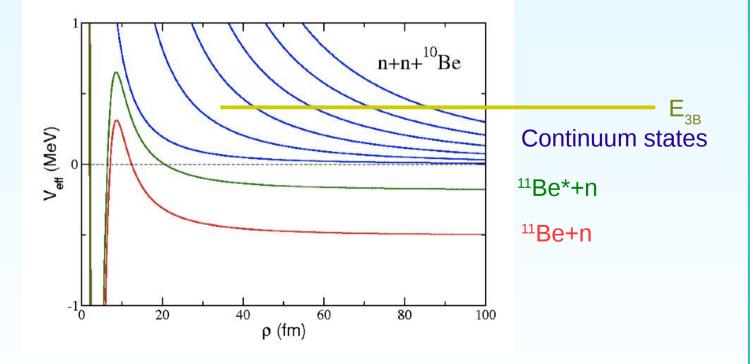
Motivation

Outline Introduction

Integral relations

HA method

*Motivation


*Results

*Conclusions

NCSM/RGM *n+n+4He *Summary

Carolina Romero-Redondo TRIUMF February 25th, 2012

Motivation

Outline

Introduction

Integral relations

HA method

*Motivation

*Results

*Conclusions

NCSM/RGM *n+n+4He

*Summary

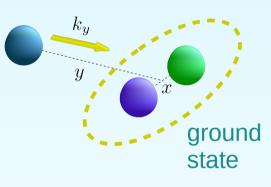
Carolina Romero-Redondo TRIUMF February 25th, 2012

Which processes could occur?

Outline Introduction Integral relations

HA method

*Motivation


*Results

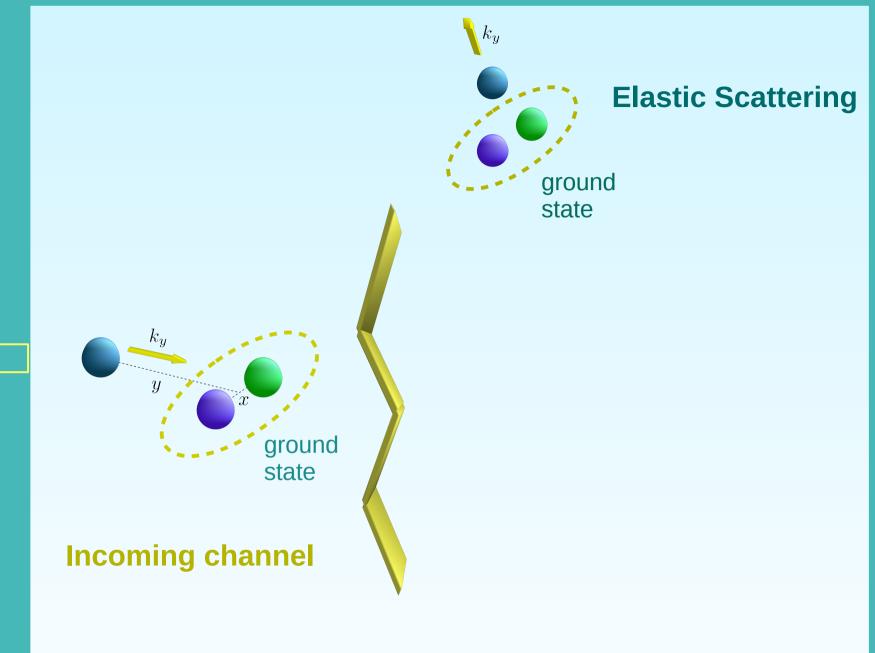
*Conclusions

NCSM/RGM *n+n+4He

*Summary

Carolina Romero-Redondo TRIUMF February 25th, 2012

Incoming channel

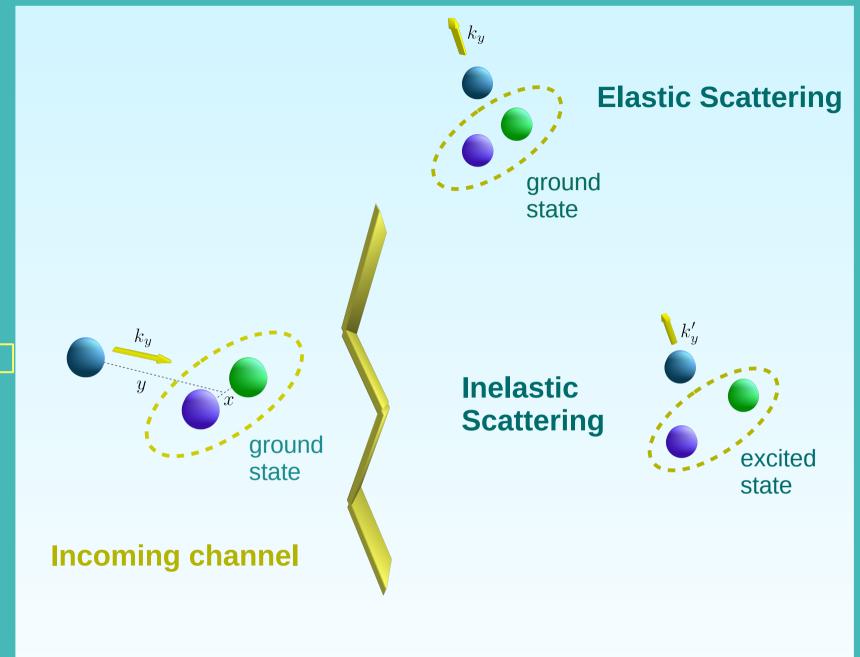

Outline Introduction Integral relations HA method

*Motivation

*Results

*Conclusions

NCSM/RGM *n+n+4He *Summary

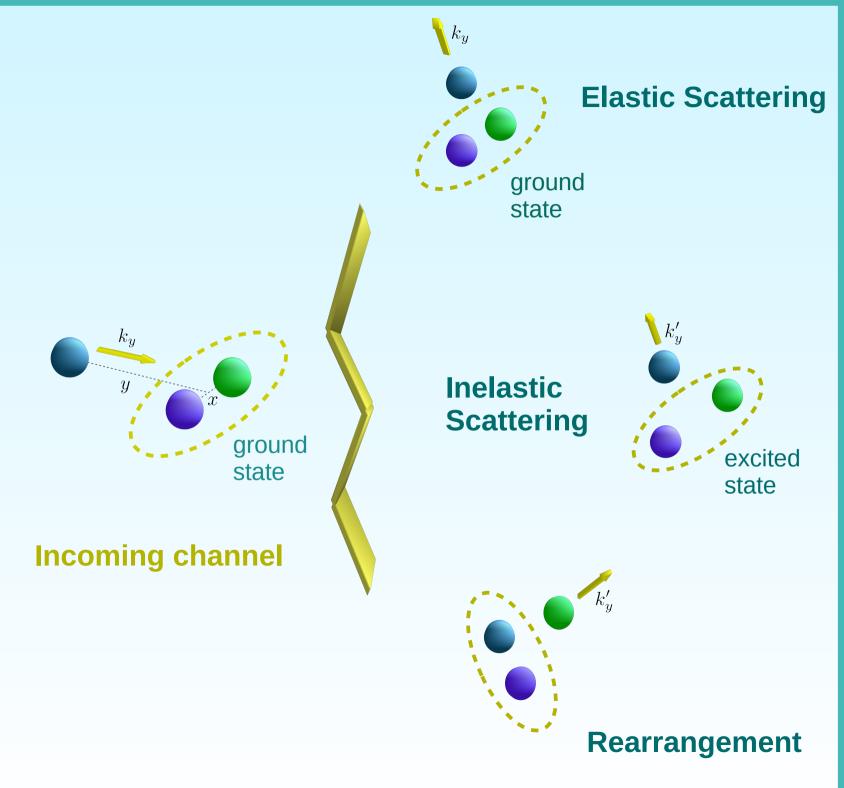

Outline Introduction Integral relations HA method

*Motivation

*Results

*Conclusions

NCSM/RGM *n+n+4He *Summary

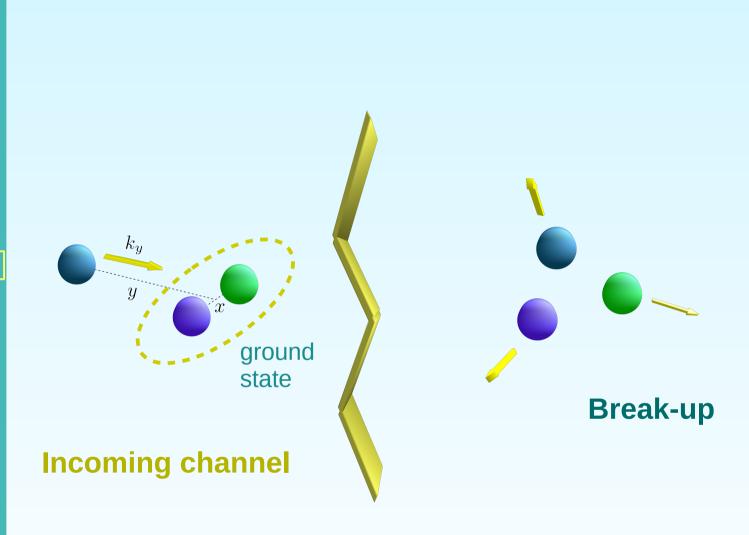

Outline Introduction Integral relations HA method

*Motivation

*Results

*Conclusions

NCSM/RGM *n+n+4He *Summary


Outline Introduction Integral relations HA method

*Motivation

*Results

*Conclusions

NCSM/RGM *n+n+4He *Summary

Outline Introduction

Integral relations

HA method

*Motivation

*Results

*Conclusions

NCSM/RGM *n+n+4He *Summary

Carolina Romero-Redondo TRIUMF February 25th, 2012

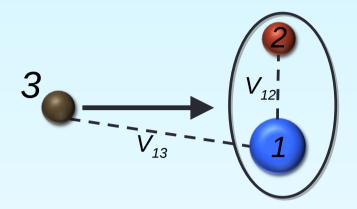
Particular Cases

Outline Introduction

Integral relations

HA method

*Motivation


*Results

*Conclusions

NCSM/RGM *n+n+4He *Summary

Carolina Romero-Redondo TRIUMF February 25th, 2012

A test case

Particles 2 and 3 do not interact Particle 1 with infinite mass Only 1 and 2 form a bound state

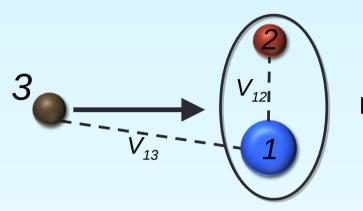
The process is equivalent to a two-body collision between particles 1 and 3

Outline Introduction

Integral relations

HA method

*Motivation


*Results

*Conclusions

NCSM/RGM *n+n+4He *Summary

Carolina Romero-Redondo TRIUMF February 25th, 2012

A test case

E₂₈=-6.28 MeV

E _{incident} = 3 MeV (only elas	stic process allowed)
--	-----------------------

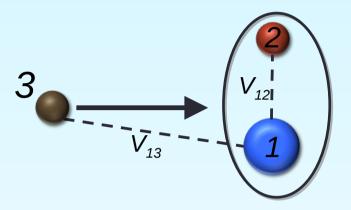
n _A	$\delta_{\! m s}$	$\delta_{\!p}$	δ_{d}
1	40.554	0.6658	0.0136
2	38.988	0.6892	0.0113
3	38.642	0.6921	0.0121
5	38.693	0.6911	0.0119
8	38.702	0.6918	0.0118
10	38.701	0.6918	0.0118
two-body	38.699	0.6917	0.0117

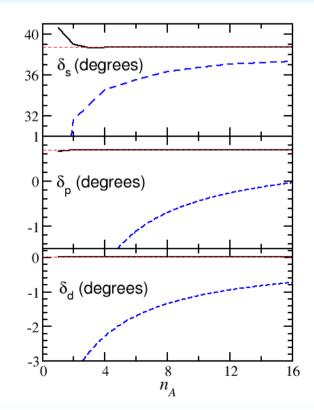
Outline Introduction

Integral relations

HA method

*Motivation


*Results


*Conclusions

NCSM/RGM *n+n+4He *Summary

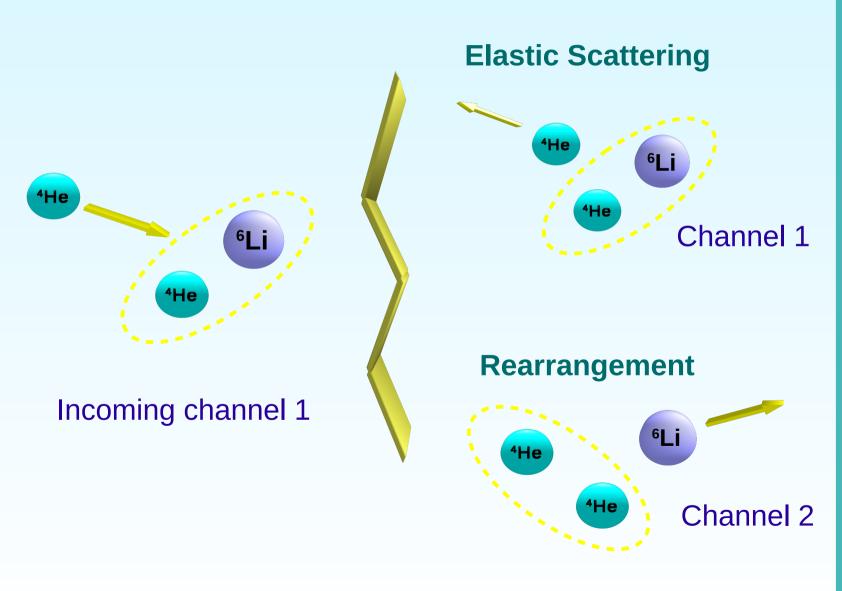
Carolina Romero-Redondo TRIUMF February 25th, 2012

A test case

Outline Introduction

Integral relations

HA method


*Motivation

*Results

*Conclusions

NCSM/RGM *n+n+4He *Summary

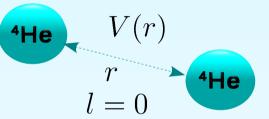
A multichannel collision: ⁴He - ⁶Li - ⁴He

Outline Introduction

Integral relations

HA method

*Motivation


*Results

*Conclusions

NCSM/RGM *n+n+4He *Summary

A multichannel collision: ⁴He - ⁶Li - ⁴He

The two body potentials

 $V_{(^{4}He^{-4}He)}(r) = -1.227K \cdot e^{-r^{2}/(10.03a.u.)^{2}}$

Bound state: E_{2B} = -1.2959mK

 $V_{(^{6}Li-^{4}He)}^{\star}(r) = -0.27368K \cdot e^{-r^{2}/(20.14a.u.)^{2}}$ ⁶Li V(r)r l=0 ⁴He

Bound state: E_{2B} = -1.4225mK

*The parameters have been adjusted to give a scattering length of -173.5 a.u. and an effective range of 26.475 a.u. in agreement with the values obtained in U. Kleinekathöfer et al., Phys. Rev. Lett. 83, 4717 (1999)

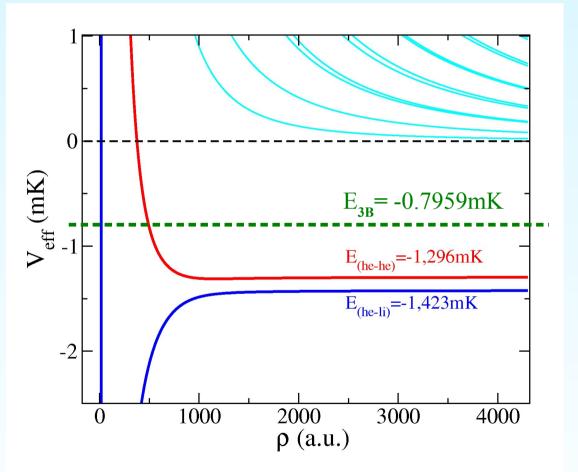
Outline

Introduction

Integral relations

HA method

*Motivation


*Results

*Conclusions

NCSM/RGM *n+n+4He *Summary

A multichannel collision: ⁴He - ⁶Li - ⁴He

Results

Incident energy with Incident energy with Incoming channel 1: 0.6266mK incoming channel 2: 0.5mK

Outline

Introduction

Integral relations

HA method

*Motivation

*Results

*Conclusions

NCSM/RGM *n+n+4He *Summary

A multichannel collision: ⁴He - ⁶Li - ⁴He

Results

K – matrix elements

n_A	\mathcal{K}_{11}	\mathcal{K}_{12}	\mathcal{K}_{21}	\mathcal{K}_{22}
2	-2.460	-0.650	-0.648	-1.411
3	-2.765	-0.821	-0.801	-1.496
4	-2.691	-0.775	-0.776	-1.468
6	-2.699	-0.781	-0.781	-1.471
8	-2.702	-0.783	-0.783	-1.471
10	-2.710	-0.787	-0.787	-1.473
14	-2.714	-0.790	-0.789	-1.474
18	-2.712	-0.791	-0.790	-1.474

 $\mathcal{K} = -A^{-1}B$

Outline

Introduction

Integral relations

HA method

*Motivation

*Results

*Conclusions

NCSM/RGM *n+n+4He *Summary

Carolina Romero-Redondo TRIUMF February 25th, 2012

A multichannel collision: ⁴He - ⁶Li - ⁴He

Results

K – matrix elements

n_A	\mathcal{K}_{11}	\mathcal{K}_{12}	\mathcal{K}_{21}	\mathcal{K}_{22}
2	-2.460	-0.650	-0.648	-1.411
3	-2.765	-0.821	-0.801	-1.496
4	-2.691	-0.775	-0.776	-1.468
6	-2.699	-0.781	-0.781	-1.471
8	-2.702	-0.783	-0.783	-1.471
10	-2.710	-0.787	-0.787	-1.473
14	-2 714	-0 790	-0 789	-1 474
18	-2.712	-0.791	-0.790	-1.474

 $\mathcal{K} = -A^{-1}B$

Outline

Introduction

Integral relations

HA method

*Motivation

*Results

*Conclusions

NCSM/RGM *n+n+4He *Summary

Carolina Romero-Redondo TRIUMF February 25th, 2012

A multichannel collision: ⁴He - ⁶Li - ⁴He

Results

S – matrix

$$\mathcal{S} = (1+i\mathcal{K})(1-i\mathcal{K})^{-1}$$

Outline

Introduction

Integral relations

HA method

*Motivation

*Results

*Conclusions

NCSM/RGM *n+n+4He

*Summary

Carolina Romero-Redondo TRIUMF February 25th, 2012

A multichannel collision: ⁴He - ⁶Li - ⁴He

Results

S – matrix

$$\mathcal{S} = (1+i\mathcal{K})(1-i\mathcal{K})^{-1}$$

Elastic scattering probability: $|S_{11}|^2 = |S_{22}|^2 = 0.892$

Rearrangement probability: $|S_{12}|^2 = |S_{21}|^2 = 0.108$

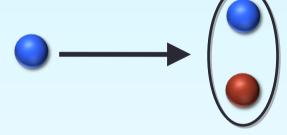
Outline

Introduction

Integral relations

HA method

*Motivation


*Results

*Conclusions

NCSM/RGM *n+n+4He *Summary

Carolina Romero-Redondo TRIUMF February 25th, 2012

A break-up process: n+d

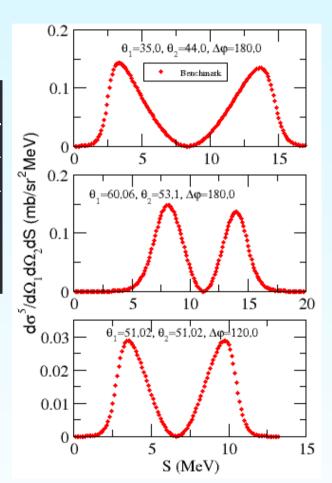
s-waves. S=3/2

J.L. Friar et al., PRC 42 (1990) 1838, PRC 51 (1995) 2356

$$V(r) = (-626.885e^{-1.55r} + 1438.72e^{-3.11r})/r$$

 $E_d = -2.2307 \text{MeV}$

Outline


- Introduction
- Integral relations
- HA method
- *Motivation
- *Results
- *Conclusions
- NCSM/RGM *n+n+4He *Summary

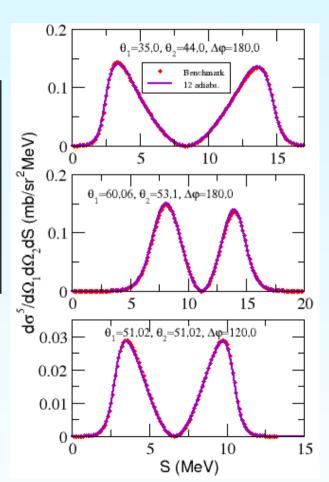
A break-up process: n+d

s-waves. S=3/2

E _{lab} =14.1 MeV	IS ₁₁ I	Re(ठ ₁₁)
4 adiabs.	0.979	68.77
8 adiabs.	0.978	68.85
12 adiabs.	0.978	68.86
16 adiabs.	0.978	68.86
Benchmark	0.978	68.95

$$S_{11} = e^{2i\delta_{11}}$$

Outline


- Introduction
- Integral relations
- HA method
- *Motivation
- *Results
- *Conclusions
- NCSM/RGM *n+n+4He *Summary

A break-up process: n+d

s-waves. S=3/2

E _{lab} =14.1 MeV	I S ₁₁ I	Re(ठ ₁₁)
4 adiabs.	0.979	68.77
8 adiabs.	0.978	68.85
12 adiabs.	0.978	68.86
16 adiabs.	0.978	68.86
Benchmark	0.978	68.95

$$S_{11} = e^{2i\delta_{11}}$$

Outline Introduction

Integral relations

HA method

*Motivation

*Results

*Conclusions

NCSM/RGM *n+n+4He *Summary

Carolina Romero-Redondo TRIUMF February 25th, 2012

Conclusions (Integral Relations)

The integral relations derived from Kohn's variational principle permit obtaining the S-matrix from the internal part of the wave function

They can be applied to wave functions calculated with different methods. In particular, they permit using the HA method

We have tested the method in different cases below and over the breakup energy finding it to be a powerful tool to study reactions.

Outline Introduction

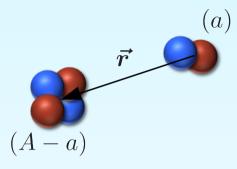
Integral relations

HA method

*Motivation

*Results

*Conclusions


NCSM/RGM

*n+n+4He *Summary

Carolina Romero-Redondo TRIUMF February 25th, 2012

NCSM/RGM

Binary cluster

S. Quaglioni and P. Navratil - PRL 101, 092501 (2008) - PRC 79, 044606 (2009)

Outline Introduction

Integral relations

HA method

*Motivation

*Results

*Conclusions

NCSM/RGM


*n+n+4He

*Summary

Carolina Romero-Redondo TRIUMF February 25th, 2012

NCSM/RGM

Three-body cluster

Outline Introduction

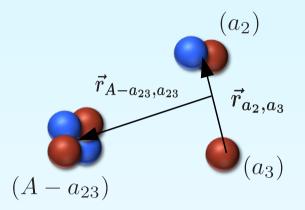
Integral relations

HA method

*Motivation

*Results

*Conclusions


NCSM/RGM *n+n+4He

*Summary

Carolina Romero-Redondo TRIUMF February 25th, 2012

NCSM/RGM

Three-body cluster

$$|\Psi^{J^{\pi}T}\rangle = \sum_{\nu} \int dx x^2 \int dy y^2 \hat{A}_{\nu} |\Phi_{\nu xy}^{J^{\pi}T}\rangle G_{\nu}^{J^{\pi}T}(x,y)$$

$$|\Phi_{\nu xy}^{J^{\pi}T}\rangle = \left\{ \left[|A - a_{23}\alpha_1 I_1^{\pi_1} T_1\rangle \left(|a_2\alpha_2 I_2^{\pi_2} T_2\rangle |a_3\alpha_3 I_3^{\pi_3} T_3\rangle \right)^{S_{23}T_{23}} \right]^{sT} \right\}$$

$$\left(Y_{\ell_x}(\hat{r}_{a_2,a_3})Y_{\ell_x}(\hat{r}_{A-a_{23},a_{23}})\right)^L \right\}^{J^{\pi}T} \frac{\delta(x-r_{a_2,a_3})}{xr_{a_2,a_3}} \frac{\delta(y-r_{A-a_{23},a_{23}})}{yr_{A-a_{23},a_{23}}}$$

Outline Introduction

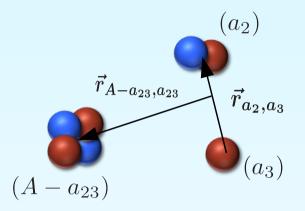
Integral relations

HA method

*Motivation

*Results

*Conclusions


NCSM/RGM

*n+n+4He *Summary

Carolina Romero-Redondo TRIUMF February 25th, 2012

NCSM/RGM

Three-body cluster

$$|\Psi^{J^{\pi}T}\rangle = \sum_{\nu} \int dx x^2 \int dy y^2 \hat{A}_{\nu} |\Phi^{J^{\pi}T}_{\nu xy}\rangle G^{J^{\pi}T}_{\nu}(x,y)$$

$$|\Phi_{\nu xy}^{J^{\pi}T}\rangle = \left\{ \left[A - a_{23}\alpha_1 I_1^{\pi_1} T_1 \right] \left(a_2 \alpha_2 I_2^{\pi_2} T_2 \right) a_3 \alpha_3 I_3^{\pi_3} T_3 \right) S_{23} T_{23} \right]^{sT}$$

$$\left(Y_{\ell_x}(\hat{r}_{a_2,a_3})Y_{\ell_x}(\hat{r}_{A-a_{23},a_{23}})\right)^L \right\}^{J-1} \frac{\delta(x-r_{a_2,a_3})}{xr_{a_2,a_3}} \frac{\delta(y-r_{A-a_{23},a_{23}})}{yr_{A-a_{23},a_{23}}}$$

Outline

Introduction

- Integral relations
- HA method
- *Motivation
- *Results
- *Conclusions

ν

NCSM/RGM *n+n+4He *Summary

Carolina Romero-Redondo TRIUMF February 25th, 2012

NCSM/RGM

$$|\Psi^{J^{\pi}T}\rangle = \sum_{\nu} \int dx x^{2} \int dy y^{2} \hat{A}_{\nu} |\Phi_{\nu xy}^{J^{\pi}T}\rangle G_{\nu}^{J^{\pi}T}(x,y)$$
$$\sum_{\nu} \int dx dy x^{2} y^{2} \left[\mathcal{H}_{\nu'\nu}(x,y,x',y') - E\mathcal{N}_{\nu'\nu}(x,y,x',y')\right] G_{\nu}^{J^{\pi}T}(x,y) = 0$$

$$\mathcal{N}_{\nu'\nu}(x,y,x',y') = \langle \Phi^{J^{\pi}T}_{\nu'x'y'} | \hat{A}^2 | \Phi^{J^{\pi}T}_{\nuxy} \rangle$$
$$\mathcal{H}_{\nu'\nu}(x,y,x',y') = \langle \Phi^{J^{\pi}T}_{\nu'x'y'} | \hat{A}_{\nu'} \mathcal{H} \hat{A}_{\nu} | \Phi^{J^{\pi}T}_{\nuxy} \rangle$$

Outline Introduction

- Integral relations
- HA method
- *Motivation
- *Results
- *Conclusions

NCSM/RGM *n+n+4He *Summary

NCSM/RGM

$$\begin{split} |\Psi^{J^{\pi}T}\rangle &= \sum_{\nu} \int dx x^2 \int dy y^2 \hat{A}_{\nu} |\Phi^{J^{\pi}T}_{\nu xy}\rangle G^{J^{\pi}T}_{\nu}(x,y) \\ & \swarrow \\ \sum_{\nu} \int dx dy x^2 y^2 \left[\mathcal{H}_{\nu'\nu}(x,y,x',y') - E\mathcal{N}_{\nu'\nu}(x,y,x',y')\right] G^{J^{\pi}T}_{\nu}(x,y) = 0 \\ & \swarrow \\ & \mathsf{Orthogonalization} \\ \sum_{\nu} \int dx dy x^2 y^2 \left[\mathbb{H}_{\nu'\nu}(x,y,x',y') - E\delta\nu'\nu \frac{\delta(x'-x)}{x'x} \frac{\delta(y'-y)}{y'y}\right] \chi^{J^{\pi}T}_{\nu}(x,y) = 0 \end{split}$$

Outline

Introduction

Integral relations

HA method

*Motivation

*Results

*Conclusions

NCSM/RGM

*n+n+4He

*Summary

Carolina Romero-Redondo TRIUMF February 25th, 2012

NCSM/RGM

$$\sum_{\nu} \int dx dy x^2 y^2 \left[\mathbb{H}_{\nu'\nu}(x, y, x', y') - E\delta\nu'\nu \frac{\delta(x'-x)}{x'x} \frac{\delta(y'-y)}{y'y} \right] \chi_{\nu}^{J^{\pi}T}(x, y) = 0$$

Hyperspherical coordinates: $\rho = \sqrt{x^2 + y^2}$, $\alpha = \arctan(x/y)$

Outline

Introduction

Integral relations

HA method

*Motivation

*Results

*Conclusions

NCSM/RGM

*n+n+4He *Summary

Carolina Romero-Redondo TRIUME February 25th, 2012

NCSM/RGM

$$\sum_{\nu} \int dx dy x^2 y^2 \left[\mathbb{H}_{\nu'\nu}(x, y, x', y') - E\delta\nu'\nu \frac{\delta(x'-x)}{x'x} \frac{\delta(y'-y)}{y'y} \right] \chi_{\nu}^{J^{\pi}T}(x, y) = 0$$

Hyperspherical coordinates: $\rho = \sqrt{x^2 + y^2}$, $\alpha = \arctan(x/y)$

$$\chi_{\nu}^{J^{\pi}T}(x,y) = \sum_{k} C_{k\nu}(\rho) \phi_{k}^{\ell_{x}\ell_{y}}(\alpha) \blacktriangleleft$$

$$\phi_k^{\ell_x \ell_y}(\alpha) = N_k \sin^{\ell_x}(\alpha) \cos^{\ell_y}(\alpha) P_{k/2}^{\ell_x + 1/2, \ell_y + 1/2}(\cos 2\alpha)$$

Outline

Introduction

Integral relations

HA method

*Motivation

*Results

*Conclusions

NCSM/RGM

*n+n+4He *Summary

Carolina Romero-Redondo TRIUMF February 25th, 2012

NCSM/RGM

$$\sum_{\nu} \int dx dy x^2 y^2 \left[\mathbb{H}_{\nu'\nu}(x, y, x', y') - E\delta\nu'\nu \frac{\delta(x'-x)}{x'x} \frac{\delta(y'-y)}{y'y} \right] \chi_{\nu}^{J^{\pi}T}(x, y) = 0$$

Hyperspherical coordinates: $\rho = \sqrt{x^2}$ –

$$\overline{+y^2}, \quad \alpha = \arctan(x/y)$$

$$\chi_{\nu}^{J^{\pi}T}(x,y) = \sum_{k} C_{k\nu}(\rho) \phi_{k}^{\ell_{x}\ell_{y}}(\alpha) \blacktriangleleft$$

After changing to hyperspherical coordinates and integrating in α , α ':

$$\sum_{\nu k} \int d\rho \rho^5 \left[\bar{\mathcal{H}}_{\nu'\nu}^{k'k}(\rho',\rho) - E \frac{\delta(\rho-\rho')}{\rho^5} \delta_{\nu'\nu} \delta_{k'k} \right] C_{k\nu}^{J^{\pi}T}(\rho) = 0$$

Outline

Introduction

Integral relations

HA method

*Motivation

*Results

*Conclusions

NCSM/RGM

*n+n+4He *Summary

Carolina Romero-Redondo TRIUMF February 25th, 2012

NCSM/RGM

$$\sum_{\nu} \int dx dy x^2 y^2 \left[\mathbb{H}_{\nu'\nu}(x, y, x', y') - E\delta\nu'\nu \frac{\delta(x'-x)}{x'x} \frac{\delta(y'-y)}{y'y} \right] \chi_{\nu}^{J^{\pi}T}(x, y) = 0$$

Hyperspherical coordinates: $\rho = \sqrt{x^2 + c^2}$

$$\overline{y^2}, \quad \alpha = \arctan(x/y)$$

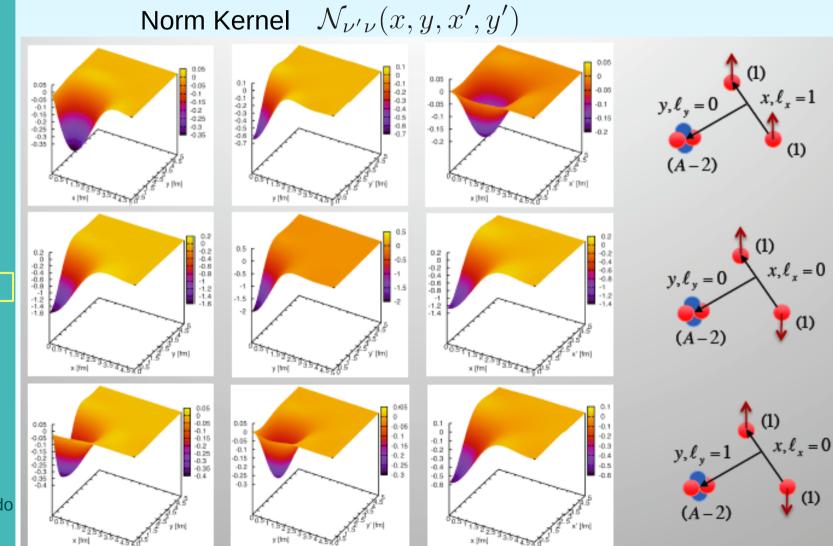
$$\chi_{\nu}^{J^{\pi}T}(x,y) = \sum_{k} C_{k\nu}(\rho) \phi_{k}^{\ell_{x}\ell_{y}}(\alpha) \blacktriangleleft$$

After changing to hyperspherical coordinates and integrating in α , α ':

$$\sum_{\nu k} \int d\rho \rho^5 \left[\bar{\mathcal{H}}_{\nu'\nu}^{k'k}(\rho',\rho) - E \frac{\delta(\rho-\rho')}{\rho^5} \delta_{\nu'\nu} \delta_{k'k} \right] C_{k\nu}^{J^{\pi}T}(\rho) = 0$$

Coupled-channel microscopic R-matrix method on a Lagrange mesh

NCSM/RGM


Work in progress: n+n+⁴He

Outline Introduction

- Integral relations
- HA method
- *Motivation
- *Results
- *Conclusions

NCSM/RGM *n+n+4He

*Summary

Outline Introduction

- Integral relations
- HA method

*Motivation

*Results

*Conclusions

NCSM/RGM

*n+n+4He

*Summary

Carolina Romero-Redondo TRIUMF

TRIUMF February 25th, 2012

Summary

NCSM/RGM

NCSM/RGM is an *Ab initio* many-body approach capable of studying both scattering and bound states

Extension to three-body cluster is in progress and will permit studying a wide range of systems, for example:

- Transfer reactions: ³H(³H,2n)⁴He, ³He(³He,2p)⁴He
- Bound and resonant states in two-neutron halo systems: ⁶He (⁴He+n+n), ¹¹Li (⁹Li+n+n)

Outline Introduction Integral relations HA method *Motivation *Results *Conclusions NCSM/RGM *n+n+4He *Summary

Carolina Romero-Redondo TRIUMF February 25th, 2012

The End

Collaborators

Eduardo Garrido, Alejandro Kievsky Paolo Barletta, Michelle Viviani Petr Navratil, Sofia Quaglioni

Scattering in three-body cluster states	
Outline	
Introduction	
Integral relations	
HA method	
*Motivation	
*Results	
*Conclusions	
NCSM/RGM	
*n+n+4He	
*Summary	
Carolina Romero-Redondo TRIUMF February 25th. 2012	

Outline

Introduction

Integral relations

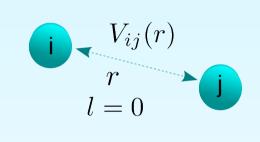
HA method

*Motivation

*Results

*Conclusions

NCSM/RGM *n+n+4He *Summary


Carolina Romero-Redondo TRIUMF February 25th, 2012

A break-up process: Three identical bosons

 $V_{ij}(r) = -51.5 \ e^{-(r/1,6)^2} \ MeV$

 $E_{2B} = -0.397742 \; MeV$

 $\hbar^2/m = 41.4696 \; MeV \; fm^2$

Incident energy of the projectile greater than |E2B|

Break-up may occur