

7 fm

3NF effects in few-body electromagnetic observables

Sonia Bacca | Theory Group | TRIUMF

In collaboration with: N. Barnea, W. Leidemann, G.Orlandini and A. Schwenk

Owned and operated as a joint venture by a consortium of Canadian universities via a contribution through the National Research Council Canada Propriété d'un consortium d'universités canadiennes, géré en co-entreprise à partir d'une contribution administrée par le Conseil national de recherches Canada

Nuclear Reactions

Outline

- •The LIT/HH approach
- Electron scattering off ⁴He
- Halo nuclei: the case of ⁶He
- Outlook

Feb 24 2012

Sonia Bacca

Hyper-spherical Harmonics

• Few-body method - uses relative coordinates

 $|\psi(\vec{r}_1, \vec{r}_2, \dots, \vec{r}_A)\rangle = |\varphi(\vec{R}_{CM})\Psi(\vec{\eta}_1, \vec{\eta}_2, \dots, \vec{\eta}_{A-1})\rangle$

Recursive definition of hyper-spherical coordinates

$$\rho, \Omega \qquad \rho^2 = \sum_{i=1}^A r_i^2 = \sum_{i=1}^{A-1} \eta_i^2$$

Feb 24 2012

• Few-body method - uses relative coordinates

 $|\psi(\vec{r}_1, \vec{r}_2, \dots, \vec{r}_A)\rangle = |\varphi(\vec{R}_{CM})\Psi(\vec{\eta}_1, \vec{\eta}_2, \dots, \vec{\eta}_{A-1})\rangle$

Recursive definition of hyper-spherical coordinates

$$\rho, \Omega \qquad \rho^2 = \sum_{i=1}^{A} r_i^2 = \sum_{i=1}^{A-1} \eta_i^2$$

A=3
$$\begin{cases} \vec{\eta}_1 = \{\eta_1, \theta_1, \phi_1\} \\ \vec{\eta}_2 = \{\eta_2, \theta_2, \phi_2\} \end{cases} \begin{cases} \rho = \sqrt{\eta_1^2 + \eta_2^2} \\ \sin \alpha_2 = \frac{\eta_2}{\rho} \end{cases}$$

TRIUMF

Hyper-spherical Harmonics

• Few-body method - uses relative coordinates

 $|\psi(\vec{r}_1, \vec{r}_2, \dots, \vec{r}_A)\rangle = |\varphi(\vec{R}_{CM})\Psi(\vec{\eta}_1, \vec{\eta}_2, \dots, \vec{\eta}_{A-1})\rangle$

Recursive definition of hyper-spherical coordinates

$$\rho, \Omega \qquad \rho^2 = \sum_{i=1}^A r_i^2 = \sum_{i=1}^{A-1} \eta_i^2$$

A=3
$$\begin{cases} \vec{\eta}_1 = \{\eta_1, \theta_1, \phi_1\} \\ \vec{\eta}_2 = \{\eta_2, \theta_2, \phi_2\} \end{cases} \begin{cases} \rho = \sqrt{\eta_1^2 + \eta_2^2} \\ \sin \alpha_2 = \frac{\eta_2}{\rho} \end{cases}$$

A=4
$$\begin{cases} \vec{\eta}_1 = \{\eta_1, \theta_1, \phi_1\} \\ \vec{\eta}_2 = \{\eta_2, \theta_2, \phi_2\} \\ \vec{\eta}_3 = \{\eta_3, \theta_3, \phi_3\} \end{cases} \begin{cases} \rho = \sqrt{\eta_1^2 + \eta_2^2 + \eta_3^2} \\ \sin \alpha_2 = \frac{\eta_2}{\rho} \\ \sin \alpha_3 = \frac{\eta_3}{\rho} \end{cases}$$

Feb 24 2012

TRIUMF

Hyper-spherical Harmonics

 $|\psi(\vec{r}_1, \vec{r}_2, \dots, \vec{r}_A)\rangle = |\varphi(\vec{R}_{CM})\Psi(\vec{\eta}_1, \vec{\eta}_2, \dots, \vec{\eta}_{A-1})\rangle$ • Few-body method - uses relative coordinates Recursive definition of hyper-spherical coordinates $\rho, \Omega \qquad \rho^2 = \sum_{i=1}^A r_i^2 = \sum_{i=1}^{A-1} \eta_i^2$ $\vec{\eta_0} = \sqrt{A}\vec{R}_{CM}$ $\vec{\eta_1}, ..., \vec{\eta_{A-1}}$ $H(\rho, \Omega) = T_{\rho} - \frac{K^2(\Omega)}{\rho^2}$ $\Psi = \sum_{\nu}^{K_{max},\nu_{max}} c_{\nu}^{[K]} e^{-\rho/2b} p^{n/2} L_{\nu}^{n}(\frac{\rho}{b}) [\mathcal{Y}_{[K]}^{\mu}(\Omega)\chi_{ST}^{\bar{\mu}}]_{JT}^{a}$ $[K],\nu$ $e^{-a\rho}$ $ho
ightarrow \infty$ Asymptotic

Model space truncation $K \leq K_{max}$, Matrix Diagonalization

 $\langle \psi | H_{(2)} | \psi \rangle = \frac{A(A-1)}{2} \langle \psi | H_{(A,A-1)} | \psi \rangle$

Can use non-local interactions

Most applications in few-body; challenge in A>4 Barn

Barnea and Novoselsky, Ann. Phys. 256 (1997) 192

Feb 24 2012

RIUMF

Sonia Bacca

RIUMF The Lorentz Integral Transform Metohd

Efros et al, PLB 338 (1994) 130

Response in the continuum

$$R(\omega) = \sum_{f} \left| \left\langle \psi_{f} \left| \hat{O} \right| \psi_{0} \right\rangle \right|^{2} \delta(E_{f} - E_{0} - \omega)$$

Feb 24 2012

Efros et al, PLB 338 (1994) 130

Response in the continuum

$$R(\omega) = \sum_{f} \left| \left\langle \psi_{f} \left| \hat{O} \right| \psi_{0} \right\rangle \right|^{2} \delta(E_{f} - E_{0} - \omega)$$

$$L(\sigma,\Gamma) = \int d\omega \frac{R(\omega)}{(\omega-\sigma)^2 + \Gamma^2} = \langle \tilde{\psi} | \tilde{\psi} \rangle$$

Feb 24 2012

TRIUMF The Lorentz Integral Transform Metohd

Efros et al, PLB 338 (1994) 130

Response in the continuum

$$R(\omega) = \sum_{f} \left| \left\langle \psi_{f} \left| \hat{O} \right| \psi_{0} \right\rangle \right|^{2} \delta(E_{f} - E_{0} - \omega)$$

$$L(\sigma,\Gamma) = \int d\omega \frac{R(\omega)}{(\omega-\sigma)^2 + \Gamma^2} = \langle \tilde{\psi} | \tilde{\psi} \rangle$$

$$(H - E_0 - \sigma + i\Gamma) \mid \tilde{\psi} \rangle = \hat{O} \mid \psi_0 \rangle$$

- Due to imaginary part $\,\Gamma\,$ the solution $| ilde{\psi}
 angle\,$ is unique
- Since the r.h.s. is finite, then $|\psi
 angle$ has bound state asymptotic behaviour

Feb 24 2012

TRIUMF The Lorentz Integral Transform Metohd

Efros et al, PLB 338 (1994) 130

Response in the continuum

$$R(\omega) = \sum_{f} \left| \left\langle \psi_{f} \left| \hat{O} \right| \psi_{0} \right\rangle \right|^{2} \delta(E_{f} - E_{0} - \omega)$$

$$L(\sigma,\Gamma) = \int d\omega \frac{R(\omega)}{(\omega-\sigma)^2 + \Gamma^2} = \langle \tilde{\psi} | \tilde{\psi} \rangle$$

$$(H - E_0 - \sigma + i\Gamma) \mid \tilde{\psi} \rangle = \hat{O} \mid \psi_0 \rangle$$

- Due to imaginary part $\,\Gamma\,$ the solution $| ilde{\psi}
 angle\,$ is unique
- Since the r.h.s. is finite, then $|\psi
 angle$ has bound state asymptotic behaviour

 $L(\sigma,\Gamma) \quad \xleftarrow{\text{inversion}} \quad R(\omega) \text{ with the exact final state interaction}$

The Lorentz Integral Transform Metohd

Efros et al, PLB 338 (1994) 130

1	
K	
-C	2
100	F

Response in the continuum

$$R(\omega) = \sum_{f} \left| \left\langle \psi_{f} \left| \hat{O} \right| \psi_{0} \right\rangle \right|^{2} \delta(E_{f} - E_{0} - \omega)$$

$$L(\sigma,\Gamma) = \int d\omega \frac{R(\omega)}{(\omega-\sigma)^2 + \Gamma^2} = \langle \tilde{\psi} | \tilde{\psi} \rangle$$

$$\sigma^{\Gamma}$$

$$(H - E_0 - \sigma + i\Gamma) \mid \tilde{\psi} \rangle = \hat{O} \mid \psi_0 \rangle$$

- Due to imaginary part $\,\Gamma\,$ the solution $| ilde{\psi}
 angle\,$ is unique
- Since the r.h.s. is finite, then $|\psi
 angle$ has bound state asymptotic behaviour

 $L(\sigma,\Gamma) \quad \xleftarrow{\text{inversion}} \quad R(\omega) \text{ with the exact final state interaction}$

interaction

You can use any good bound state method

Feb 24 2012

Electromagnetic Observables

Feb 24 2012

ATRIUMF

Sonia Bacca

Electromagnetic Observables

 $\nabla \cdot \mathbf{J} = -i[H, \rho]$

The current should be consistent with the Hamiltonian

TRIUMF

RTRIUMF

Electron scattering reaction

 k^{μ} P_{f}^{μ} P_{f}^{μ} k^{μ} $q^{\mu} = k^{\mu} - k^{\mu}$ P_{0}^{μ} P_{0}^{μ}

Virtual photon exchange: one can vary the energy and momentum transfer independently Inclusive cross section A(e,e')X

$$\frac{d^2\sigma}{d\Omega d\omega} = \sigma_M \left[\frac{Q^4}{\mathbf{q}^4} R_L(\omega, \mathbf{q}) + \left(\frac{Q^2}{2\mathbf{q}^2} + \tan^2 \frac{\theta}{2} \right) R_T(\omega, \mathbf{q}) \right]$$

Mott cross section
Response Functions, can be studied with the LIT method
$$R_L(\omega, \mathbf{q}) = \sum_f |\langle \Psi_f | \rho(\mathbf{q}) | \Psi_0 \rangle|^2 \delta \left(E_f - E_0 - \omega + \frac{\mathbf{q}^2}{2M} \right)$$
$$R_T(\omega, \mathbf{q}) = \sum_f |\langle \Psi_f | J_T(\mathbf{q}) | \Psi_0 \rangle|^2 \delta \left(E_f - E_0 - \omega + \frac{\mathbf{q}^2}{2M} \right)$$

RIUMF

Electron scattering reaction

Virtual photon exchange: one can vary the energy and momentum transfer independently Inclusive cross section A(e,e')X

$$\frac{d^2\sigma}{d\Omega d\omega} = \sigma_M \left[\frac{Q^4}{\mathbf{q}^4} R_L(\omega, \mathbf{q}) + \left(\frac{Q^2}{2\mathbf{q}^2} + \tan^2 \frac{\theta}{2} \right) R_T(\omega, \mathbf{q}) \right]$$

Mott cross section
Response Functions, can be studied with the LIT method
$$R_L(\omega, \mathbf{q}) = \sum_f |\langle \Psi_f | \rho(\mathbf{q}) | \Psi_0 \rangle|^2 \delta \left(E_f - E_0 - \omega + \frac{\mathbf{q}^2}{2M} \right)$$
$$R_T(\omega, \mathbf{q}) = \sum_f |\langle \Psi_f | J_T(\mathbf{q}) | \Psi_0 \rangle|^2 \delta \left(E_f - E_0 - \omega + \frac{\mathbf{q}^2}{2M} \right)$$

Study R_L for ⁴He (no exchange currents up to N³LO) to investigate the effect of 3NF and help understand the predictive power of the Hamiltonian

$$ho(\mathbf{q}) = \sum_{k} \left(\frac{1 + \tau_k^3}{2}
ight) \exp[i\mathbf{q} \cdot \mathbf{r}_k]$$

Expand the charge operator into multipoles and use the LIT/HH method for each multipole

Feb 24 2012

With the LIT/HH method

With the LIT/HH method

Sonia Bacca

With the LIT/HH method

With the LIT/HH method

RIUMF

Electron scattering from EFT potentials

 P_f^{μ}

k'^μ

 $q^{\mu} = k^{\mu} - k^{\mu}$

Halo Nuclei

one proton halo Ne 10 Ne Ne 18 19 two proton halo F F F 9 15 16 17 18 14 0 0 0 0 0 0 14 13 15 16 17 N N N Ν N 15 12 13 14 16 11 C C C C 6 C C C Z 12 10 11 13 ы 15 в 5 в в в в в в 10 2 14 Be Be Be Be 4 Be Be Be 9 10 3 Li Li Li Li Li 4 8 7 2 He He He $^{2}\mathrm{H}$ 3 4 5 one neutron halo 6 Η Н 1 2 0 two neutron halo n 0 1 four neutron halo -N

20

19

Feb 24 2012

Z

Halo Nuclei

Feb 24 2012

6

5

4

3

Н

2

4

He He

 $^{2}\mathrm{H}$

n

1

2

0

1 Η

0

Sonia Bacca

⁸твіцияғ ⁶He from hyper-spherical harmonics

Friday, 24 February, 12

 P_a

 $P_a H^a_{eff}$

 $Q_a 0$

 Q_a

0

 $Q_a X_a H X_a^{-1} Q_a$

®твіцимь 8 He from hyper-spherical harmonics

Feb 24 2012

[®]TRIUMF ⁶He from hyper-spherical harmonics

Signatures of the halo

Sonia Bacca

Comparison with experiment

Outlook

- EM observables show sensitivity to the 3NF
- Hyper-spherical harmonics (together with the LIT) provide a tool to perform accurate studies of bound (and continuum) observables for light nuclei

Future:

 Room to study further 3NF effects and to add exchange currents for consistent EFT calculations

Feb 24 2012

Sonia Bacca