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             NN 3N  4N

long (2π)        intermediate (π)     short-range

c1, c3, c4 terms cD term cE term

1.5

large uncertainties in coupling 
constants at present:

Chiral EFT for nuclear forces, leading order 3N forces

lead to theoretical uncertainties in
many-body observables 



Chiral 3N interaction as density-dependent two-body interaction

π π π ππ ππ ππ ππ π= - - - + +

V NNV = + 1/ccombinatorial factor c depends 
on type of diagram

(1) calculate antisymmetrized 3N interaction

(2) construct effective density-dependent NN interaction

(3) combine with free-space NN interaction

V3N

k3σ3V3NV3N

V3N

Basic idea: 
Sum one particle over occupied 
states in the Fermi sea, normal ordering



• elimination of coupling between low- and high momentum components
             simplified calculations

• observables unaffected by resolution change (for exact calculations)

• residual resolution dependences can be used as tool to test calculations

• RG transformation also changes many-body interactions

Changing the resolution: 
The (Similarity) Renormalization Group



VNN V3N

V3N

V3N

Equation of state: Many-body perturbation theory

E =

+ +

+ +

central quantity of interest: energy per particle E/N

• “hard” interactions require non-perturbative summation of diagrams

• with low-resolution interactions much more perturbative

• inclusion of 3N interaction contributions crucial

• use chiral interactions as initial input for RG evolution 

+ . . .

Hartree-Fock

VNN

VNN

++ +
V3N

V3N

V3N

VNN

VNN

V3N

2nd-order

Hartree-Fock

kinetic energy

3rd-order 
and beyond

H(λ) = T + VNN(λ) + V3N(λ) + ...



RG evolution of 3N interactions

c1, c3, c4 terms cD term cE term

• So far: 
intermediate (cD) and short-range 
(cE) 3NF couplings fitted to few-body 
systems at different resolution scales: 

E3H = −8.482 MeV r4He = 1.95− 1.96 fmand

• Ideal case: evolve 3NF consistently with NN to lower resolution using the RG

• has been achieved in oscillator basis (Jurgenson, Roth)

• promising results in very light nuclei 

• problems in heavier nuclei

• not suitable for infinite systems

coupling constants of natural size

in neutron matter contributions from      ,       and     terms vanishcD cE c4



•  significantly reduced cutoff dependence at 2nd order perturbation theory

• small resolution dependence indicates converged calculation

• variation due to 3N input uncertainty much larger than resolution dependence

Equation of state of pure neutron matter
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•  significantly reduced cutoff dependence at 2nd order perturbation theory

• small resolution dependence indicates converged calculation

• variation due to 3N input uncertainty much larger than resolution dependence

Equation of state of pure neutron matter
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• good agreement with other approaches (different NN interactions)

Hartree-Fock 2nd-order
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Overview RG Summary Extras Physics Resolution Forces Filter Coupling

Why is textbook nuclear physics so hard?

VL=0(k , k ′) ∝
∫

r2 dr j0(kr) V (r) j0(k ′r) = 〈k |VL=0|k ′〉 =⇒ Vkk ′ matrix

Momentum units (! = c = 1): typical relative momentum
in large nucleus ≈ 1 fm−1 ≈ 200 MeV but . . .

Repulsive core =⇒ large high-k (! 2 fm−1) components
Dick Furnstahl RG in Nuclear Physics

l̄S

• nuclear saturation delicate due to cancellations of large kinetic and
potential energy contributions

Overview RG Summary Extras Physics Resolution Forces Filter Coupling

Why is textbook nuclear physics so hard?

VL=0(k , k ′) ∝
∫

r2 dr j0(kr) V (r) j0(k ′r) = 〈k |VL=0|k ′〉 =⇒ Vkk ′ matrix

Momentum units (! = c = 1): typical relative momentum
in large nucleus ≈ 1 fm−1 ≈ 200 MeV but . . .

Repulsive core =⇒ large high-k (! 2 fm−1) components
Dick Furnstahl RG in Nuclear Physics

l̄S

• 3N forces are essential! 3N interactions fitted to       and        properties3H 4He

Equation of state of symmetric nuclear matter,
Nuclear saturation

KH, Bogner, Furnstahl, Nogga, PRC(R) 83, 031301 (2011)



• saturation point consistent with experiment, without free parameters

• cutoff dependence at 2nd order significantly reduced

• 3rd order contributions small

• cutoff dependence consistent with expected size of 4N force contributions
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Hierarchy of many-body contributions 

0.05 0.1 0.15 0.2 0.25 0.3
! [fm-3]

-60

-40

-20

0

20

40

En
er

gy
/n

uc
le

on
 [M

eV
]

Ekinetic

0 0.05 0.1 0.15
! [fm-3]

-40

-20

0

20

40

En
er

gy
/n

uc
le

on
 [M

eV
]

Ekinetic

• binding energy results from cancellations of much larger kinetic and potential 
energy contributions

• chiral hierarchy of many-body terms preserved for considered density range

• resol. dependence of natural size, consistent with chiral exp. parameter ∼ 1/3

neutron matter nuclear matter
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Hierarchy of many-body contributions 
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• binding energy results from cancellations of much larger kinetic and potential 
energy contributions

• chiral hierarchy of many-body terms preserved for considered density range

• resol. dependence of natural size, consistent with chiral exp. parameter ∼ 1/3

neutron matter nuclear matter



RG evolution of 3N interactions in momentum space

|pqα〉 i ≡ |piqi; [(LS)J(lsi)j]JJz(Tti)T Tz〉

p
q

Three-body Faddeev basis:

p

q
p

q

|pqα〉1 |pqα〉2 |pqα〉3

|ψi〉 = G0

[
2tiP + (1 + tiG0)V i

3N (1 + 2P )
]

|ψi〉

Faddeev bound state equations:

i〈pqα|P |p′q′α′〉i =i〈pqα|p′q′α′〉j



dVij

ds
= [[Tij , Vij ] , Tij + Vij ] ,

dV123

ds
= [[T12, V12] , V13 + V23 + V123]

+ [[T13, V13] , V12 + V23 + V123]
+ [[T23, V23] , V12 + V13 + V123]
+ [[Trel, V123] , Hs]

SRG flow equations of NN and 3N forces in Faddeev basis

ηs = [Trel, Hs]
dHs

ds
= [ηs, Hs]

• spectators correspond to delta functions, matrix representation of      ill-defined

• solution: explicit separation of NN and 3N flow equations

H = Trel + V12 + V13 + V23 + V123

see Bogner, Furnstahl, Perry PRC 75, 061001(R) (2007)

• only connected terms remain in           , ‘dangerous’ delta functions cancel dV123

ds

Hs



RG evolution of 3N interactions in momentum space
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               First implementation:
Invariance of        within            for consistent chiral interactions at            E

3H
gs 16 keV N2LO



Unitarity of SRG evolution
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• Faddeev basis not complete under permutation of particles

• embedding of NN forces in 3N basis not exact for bases 

violation of unitarity can be systematically reduced by increasing the model space 

V12 = PV23P
−1, ...

KH, arXiv:1201.0169 (2012)



Decoupling of matrix elements

450/500 MeV

KH, arXiv:1201.0169 (2012)

ξ2 = p2 +
3
4
q2 tan θ =

2 p√
3 q

hyperradius: hyperangle:

Λ/Λ̃

550/600 MeV

 same decoupling patterns like in NN interactions

θ =
π

12



Universality in 3N interactions at low resolution
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Figure 17: Diagonal (left) and off-diagonal (right) momentum-space matrix elements for various phe-
nomenological NN potentials initially (upper figures) and after RG evolution to low-momentum inter-
actions Vlow k [5, 6] (lower figures) for a smooth regulator with Λ = 2.0 fm−1 and nexp = 4.
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Figure 18: Diagonal (left) and off-diagonal (right) momentum-space matrix elements of different N3LO
NN interactions (EM [20] and EGM [44]) initially (upper figures) and after RG evolution to low-
momentum interactions Vlow k [5,6] (lower figures) for a smooth regulator withΛ = 2.0 fm−1 and nexp = 4.

18

phase-shift 
equivalence

common long-
range physics

(approximate) universality of 
low-resolution NN interactions

To what extent are 3N interactions constrained at low resolution?

• only two low-energy constants 

• 3N interactions give only subleading contributions to observables

cD and cE



Universality in 3N interactions at low resolution
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• remarkably reduced model dependence for typical momenta               ,

matrix elements with significant phase space well constrained at low resolution

• new momentum structures induced at low resolution

• study based on          chiral interactions, improved universality at          ?     

∼ 1 fm−1

N2LO N3LO



‣ different decoupling patterns (e.g. Vlow k)

‣ improved efficiency of evolution

‣ suppression of many-body forces

Future applications

k2

k′2

• transformation of evolved interactions to oscillator basis

‣ application to finite nuclei, complimentary to HO evolution 
(no core shell model, coupled cluster)

• study of alternative generators

• application to infinite systems

‣ equation of state
‣ systematic study of induced many-body contributions

Overview RG Summary Extras Flow Results History Eqs. Problem

Two ways to decouple with RG equations
“Vlow k ”

Λ
0

Λ
1

Λ
2

k’

k

Lower a cutoff Λi in k , k ′,
e.g., demand
dT (k , k ′; k2)/dΛ = 0

Similarity RG

λ
0

λ
1

λ
2

k’

k

Drive the Hamiltonian toward
diagonal with “flow equation”
[Wegner; Glazek/Wilson (1990’s)]

Dick Furnstahl RG in Nuclear Physics

Anderson et al. , PRC 77, 037001 (2008)

• explicit calculation of unitary 3N transformation

‣ RG evolution of operators

‣ study of correlations in nuclear systems            factorization 


