Momentum space evolution of chiral three-nucleon forces

Kai Hebeler (OSU)

Perspectives of the Ab Initio No-Core Shell Model

Vancouver, February 23, 2012

Chiral EFT for nuclear forces, leading order 3N forces

Chiral 3N interaction as density-dependent two-body interaction

(2) construct effective density-dependent NN interaction

Basic idea: Sum one particle over occupied states in the Fermi sea, normal ordering

(3) combine with free-space NN interaction

combinatorial factor c depends on type of diagram

Changing the resolution: The (Similarity) Renormalization Group

- elimination of coupling between low- and high momentum components
 —— simplified calculations
- observables unaffected by resolution change (for exact calculations)
- residual resolution dependences can be used as tool to test calculations
- RG transformation also changes many-body interactions

Equation of state: Many-body perturbation theory

central quantity of interest: energy per particle E/N $H(\lambda) = T + V_{NN}(\lambda) + V_{3N}(\lambda) + ...$

- "hard" interactions require non-perturbative summation of diagrams
- with low-resolution interactions much more perturbative
- inclusion of 3N interaction contributions crucial
- use chiral interactions as initial input for RG evolution

RG evolution of 3N interactions

• So far:

intermediate (c_D) and short-range (c_E) 3NF couplings fitted to few-body systems at different resolution scales:

 $E_{^{3}\text{H}} = -8.482 \,\text{MeV}$ and $r_{^{4}\text{He}} = 1.95 - 1.96 \,\text{fm}$

coupling constants of natural size

in neutron matter contributions from c_D , c_E and c_4 terms vanish

• Ideal case: evolve 3NF consistently with NN to lower resolution using the RG

- has been achieved in oscillator basis (Jurgenson, Roth)
- promising results in very light nuclei
- problems in heavier nuclei
- not suitable for infinite systems

Equation of state of pure neutron matter

- significantly reduced cutoff dependence at 2nd order perturbation theory
- small resolution dependence indicates converged calculation
- variation due to 3N input uncertainty much larger than resolution dependence

Equation of state of pure neutron matter

- significantly reduced cutoff dependence at 2nd order perturbation theory
- small resolution dependence indicates converged calculation
- variation due to 3N input uncertainty much larger than resolution dependence
- good agreement with other approaches (different NN interactions)

Equation of state of symmetric nuclear matter, Nuclear saturation

- nuclear saturation delicate due to cancellations of large kinetic and potential energy contributions
- 3N forces are essential! 3N interactions fitted to $^{3}\mathrm{H}$ and $^{4}\mathrm{He}$ properties

Equation of state of symmetric nuclear matter, Nuclear saturation

- saturation point consistent with experiment, without free parameters
- cutoff dependence at 2nd order significantly reduced
- 3rd order contributions small
- cutoff dependence consistent with expected size of 4N force contributions

Hierarchy of many-body contributions

- binding energy results from cancellations of much larger kinetic and potential energy contributions
- chiral hierarchy of many-body terms preserved for considered density range
- ullet resol. dependence of natural size, consistent with chiral exp. parameter $\sim 1/3$

Hierarchy of many-body contributions

- binding energy results from cancellations of much larger kinetic and potential energy contributions
- chiral hierarchy of many-body terms preserved for considered density range
- ullet resol. dependence of natural size, consistent with chiral exp. parameter $\sim 1/3$

Hierarchy of many-body contributions

- binding energy results from cancellations of much larger kinetic and potential energy contributions
- chiral hierarchy of many-body terms preserved for considered density range
- ullet resol. dependence of natural size, consistent with chiral exp. parameter $\sim 1/3$

RG evolution of 3N interactions in momentum space

Three-body Faddeev basis:

$$|pq\alpha\rangle_i \equiv |p_iq_i; [(LS)J(ls_i)j] \mathcal{J}\mathcal{J}_z(Tt_i)\mathcal{T}\mathcal{T}_z\rangle$$

Faddeev bound state equations:

 $|\psi_i\rangle = G_0 \left[2t_i P + (1 + t_i G_0) V_{3N}^i (1 + 2P) \right] |\psi_i\rangle$ $_i \langle pq\alpha | P | p'q'\alpha' \rangle_i =_i \langle pq\alpha | p'q'\alpha' \rangle_i$

SRG flow equations of NN and 3N forces in Faddeev basis

$$\frac{dH_s}{ds} = [\eta_s, H_s] \qquad \eta_s = [T_{\rm rel}, H_s]$$

$$H = T_{\rm rel} + V_{12} + V_{13} + V_{23} + V_{123}$$

- \bullet spectators correspond to delta functions, matrix representation of H_s ill-defined
- solution: explicit separation of NN and 3N flow equations

$$\begin{aligned} \frac{dV_{ij}}{ds} &= \left[\left[T_{ij}, V_{ij} \right], T_{ij} + V_{ij} \right], \\ \frac{dV_{123}}{ds} &= \left[\left[T_{12}, V_{12} \right], V_{13} + V_{23} + V_{123} \right] \\ &+ \left[\left[T_{13}, V_{13} \right], V_{12} + V_{23} + V_{123} \right] \\ &+ \left[\left[T_{23}, V_{23} \right], V_{12} + V_{13} + V_{123} \right] \\ &+ \left[\left[T_{rel}, V_{123} \right], H_s \right] \end{aligned}$$

• only connected terms remain in $\frac{dV_{123}}{ds}$, 'dangerous' delta functions cancel

see Bogner, Furnstahl, Perry PRC 75, 061001(R) (2007)

RG evolution of 3N interactions in momentum space

First implementation:

Invariance of $E_{gs}^{^{3}\!H}$ within $16\,\mathrm{keV}$ for consistent chiral interactions at $\mathrm{N}^{2}\mathrm{LO}$

Unitarity of SRG evolution

- Faddeev basis not complete under permutation of particles
- embedding of NN forces in 3N basis not exact for bases $V_{12} = PV_{23}P^{-1}, ...$

violation of unitarity can be systematically reduced by increasing the model space

Decoupling of matrix elements

same decoupling patterns like in NN interactions

Universality in 3N inte

To what extent are 3N interactions constrained at low resolution?

- only two low-energy constants c_D and c_E
- 3N interactions give only subleading contributions to observables

Universality in 3N interactions at low resolution

- remarkably reduced model dependence for typical momenta $\sim 1 \, {\rm fm}^{-1}$, matrix elements with significant phase space well constrained at low resolution
- new momentum structures induced at low resolution
- \bullet study based on $\rm N^2LO$ chiral interactions, improved universality at $\rm N^3LO$?

Future applications

- application to infinite systems
 - equation of state
 - systematic study of induced many-body contributions
- transformation of evolved interactions to oscillator basis
 - application to finite nuclei, complimentary to HO evolution (no core shell model, coupled cluster)
- study of alternative generators
 - different decoupling patterns (e.g. V_{low k})
 - improved efficiency of evolution
 - suppression of many-body forces

Anderson et al., PRC 77, 037001 (2008)

- explicit calculation of unitary 3N transformation
 - ▶ RG evolution of operators
 - \blacktriangleright study of correlations in nuclear systems \longrightarrow factorization