Green's function theory in the mid mass region: toward an ab-initio approach for the open shells

C. Barbieri

unverstrof SURREY

Towards a unified description of nuclei

Ab-initio approaches (CC, SCGF, IM-SRG)

SR and MR energy density functionals

Towards a unified description of nuclei

The present status @ mid masses is:
\rightarrow Still in need of good nuclear Hamiltonians (3N forces mostly!)
\rightarrow Only structure calculations and limited to closed-shells or $\mathrm{A} \pm 1, \mathrm{~A} \pm 2$
(BUT calculations are GOOD!!!)
However, Green's functions can be extended to: Scattering observables Open shell nuclei

Green's functions in many-body theory

One-body Green's function (or propagator) describes the motion of quasiparticles and holes:

$$
g_{\alpha \beta}(E)=\sum_{n} \frac{\left\langle\Psi_{0}^{A}\right| c_{\alpha}\left|\Psi_{n}^{A+1}\right\rangle\left\langle\Psi_{n}^{A+1}\right| c_{\beta}^{\dagger}\left|\Psi_{0}^{A}\right\rangle}{E-\left(E_{n}^{A+1}-E_{0}^{A}\right)+i \eta}+\sum_{k} \frac{\left\langle\Psi_{0}^{A}\right| c_{\beta}^{\dagger}\left|\Psi_{k}^{A-1}\right\rangle\left\langle\Psi_{k}^{A-1}\right| c_{\alpha}\left|\Psi_{0}^{A}\right\rangle}{E-\left(E_{0}^{A}-E_{k}^{A-1}\right)-i \eta}
$$

...this contains all the structure information probed by nucleon transfer (spectral function):

Faddeev-RPA in two words...

Self-energy
 (optical potential):

Faddeev-RPA:

Phys.Rev.C63,

- A complete expansion requires all types of particle-vibration coupling: $\checkmark \quad g^{\text {II }}(\omega) \rightarrow$ pairing effects, two-nucleon transfer
$\checkmark \Pi^{(\mathrm{ph})}(\omega) \rightarrow$ collective motion, using RPA or beyond
\checkmark Pauli exchange effects
- The Self-energy $\Sigma^{\star}(\omega)$ yields both single-particle states and scattering
- Finite nuclei: \rightarrow require high-performance computing

Dyson equation

* Propagators solves the Dyson equations

$$
g_{a b}(\omega)=g_{a b}^{0}(\omega)+\sum_{c d} g_{a c}^{0}(\omega) \Sigma_{c d}(\omega) g_{d b}(\omega)
$$

类 (Hole) single particle spectral function
$S_{a b}^{h}(\omega)=\frac{1}{\pi} \operatorname{Im} g_{a b}(\omega)=\sum_{k}\left\langle\Psi_{k}^{A-1}\right| c_{b}\left|\Psi_{0}^{A}\right\rangle\left\langle\Psi_{0}^{A}\right| c_{a}^{\dagger}\left|\Psi_{k}^{A-1}\right\rangle \delta\left(\omega-\left(E_{0}^{A}-E_{k}^{A-1}\right)\right)$

粦 Koltun sum rule (for 2 N interactions):

$$
\frac{1}{2} \sum_{a b} \int_{-\infty}^{E_{F}}\left(t_{a b}+\delta_{a b} \omega\right) S_{a b}^{h}(\omega) d \omega=\langle T\rangle+\left\langle V^{N N}\right\rangle
$$

Dyson equation

* Propagators solves the Dyson equations

$$
g_{a b}(\omega)=g_{a b}^{0}(\omega)+\sum_{c d} g_{a c}^{0}(\omega) \Sigma_{c d}(\omega) g_{d b}(\omega)
$$

粦 (Hole) single particle spectral function
$S_{a b}^{h}(\omega)=\frac{1}{\pi} \operatorname{Im} g_{a b}(\omega)=\sum_{k}\left\langle\Psi_{k}^{A-1}\right| c_{b}\left|\Psi_{0}^{A}\right\rangle\left\langle\Psi_{0}^{A}\right| c_{a}^{\dagger}\left|\Psi_{k}^{A-1}\right\rangle \delta\left(\omega-\left(E_{0}^{A}-E_{k}^{A-1}\right)\right)$

粦 Koltun sum rule (with NNN interactions):

$$
\begin{array}{r}
\frac{1}{2} \sum_{a b} \int_{-\infty}^{E_{F}}\left(t_{a b}+\delta_{a b} \omega\right) S_{a b}^{h}(\omega) d \omega=\langle T\rangle+\left\langle V^{N N}\right\rangle+\frac{2}{2}\left\langle V^{N N N}\right\rangle \\
\left\langle\left\langle V^{N N N}\right\rangle \approx \frac{1}{6}\right.
\end{array}
$$

Binding Energy - 4He Case
 [C. B., arXiv:0909.0336:

\rightarrow Self-consistent FRPA compares well with benchmark calculations on ${ }^{4} \mathrm{He}$
FRPA/sc0
$V_{\text {low-k: }}$
self-consistency in the
mean field only

FRPA/sc
-29.2 ± 0.15 Exact:
-29.19(5) (Fadd.-Yak.)
[Nogga et al., Phys. Rev. C70, 061002 (2004)]
estimates from different approx. to self-consistency

Applications to doubly-magic nuclei

粦 Successful in medium-mass doubly-magic systems

Applications to doubly-magic nuclei

粦 Successful in medium-mass doubly-magic systems
Expansion breaks down when pairing instabilities appear

Explicit configuration mixing

Going to open-shells: Gorkov ansatz [V. Somà, T. Duguet, CB, Pys. Rev. C84, 046317 (2011)]

* 粦 Ansatz

$$
\ldots \approx E_{0}^{N+2}-E_{0}^{N} \approx E_{0}^{N}-E_{0}^{N-2} \approx \ldots \approx 2 \mu
$$

米 Auxiliary many-body state $\left|\Psi_{0}\right\rangle \equiv \sum_{N}^{\text {even }} c_{N}\left|\psi_{0}^{N}\right\rangle$
\longrightarrow Mixes various particle numbers
\longrightarrow Introduce a "grand-canonical" potential $\Omega=H-\mu N$

$$
\begin{aligned}
& \Longrightarrow \quad\left|\Psi_{0}\right\rangle \text { minimizes } \quad \Omega_{0}=\left\langle\Psi_{0}\right| \Omega\left|\Psi_{0}\right\rangle \\
& \text { under the constraint } N=\left\langle\Psi_{0}\right| N\left|\Psi_{0}\right\rangle \\
& \Longrightarrow \Omega_{0}=\sum_{N^{\prime}}\left|c_{N^{\prime}}\right|^{2} \Omega_{0}^{N^{\prime}} \approx E_{0}^{N}-\mu N
\end{aligned}
$$

Gorkov Green's functions and equations

[V. Somà, T. Duguet, CB, Pys. Rev. C84, 046317 (2011)]

类 Set of 4 Green's functions

$$
\begin{array}{ll}
i G_{a b}^{11}\left(t, t^{\prime}\right) \equiv\left\langle\Psi_{0}\right| T\left\{a_{a}(t) a_{b}^{\dagger}\left(t^{\prime}\right)\right\}\left|\Psi_{0}\right\rangle \equiv \overbrace{a b}^{21}\left(t, t^{\prime}\right) \equiv\left\langle\Psi_{0}\right| T\left\{\bar{a}_{a}^{\dagger}(t) a_{b}^{\dagger}\left(t^{\prime}\right)\right\}\left|\Psi_{0}\right\rangle \equiv \\
i G_{a b}^{12}\left(t, t^{\prime}\right) \equiv\left\langle\Psi_{0}\right| T\left\{a_{a}(t) \bar{a}_{b}\left(t^{\prime}\right)\right\}\left|\Psi_{0}\right\rangle \equiv{ }_{\bar{b}}^{a} & i G_{a b}^{22}\left(t, t^{\prime}\right) \equiv\left\langle\Psi_{0}\right| T\left\{\bar{a}_{a}^{\dagger}(t) \bar{a}_{b}\left(t^{\prime}\right)\right\}\left|\Psi_{0}\right\rangle \equiv
\end{array}
$$

[Gorkov 1958]

$$
\mathbf{G}_{a b}(\omega)=\mathbf{G}_{a b}^{(0)}(\omega)+\sum_{c d} \mathbf{G}_{a c}^{(0)}(\omega) \boldsymbol{\Sigma}_{c d}^{\star}(\omega) \mathbf{G}_{d b}(\omega)
$$

$$
\boldsymbol{\Sigma}_{a b}^{\star}(\omega) \equiv\left(\begin{array}{cc}
\Sigma_{a b}^{\star 11}(\omega) & \Sigma_{a b}^{\star 12}(\omega) \\
\Sigma_{a b}^{\star 21}(\omega) & \Sigma_{a b}^{\star 22}(\omega)
\end{array}\right)
$$

Gorkov equations

$$
\boldsymbol{\Sigma}_{a b}^{\star}(\omega) \equiv \boldsymbol{\Sigma}_{a b}(\omega)-\mathbf{U}_{a b}
$$

$1^{\text {st }} \& 2^{\text {nd }}$ order diagrams

［V．Somà，T．Duguet，CB，Pys．Rev．C84， 046317 （2011）］

米 $1^{\text {st }}$ order ${ }^{~} \mathrm{l} \rightarrow$ energy－independent self－energy

$$
\Sigma_{a b}^{12(1)}=
$$

米 $2^{\text {nd }}$ order $" \rightarrow$ energy－dependent self－energy

米 Gorkov equations

\longrightarrow eigenvalue problem

$$
\left.\sum_{b}\left(\begin{array}{cc}
t_{a b}-\mu_{a b}+\Sigma_{a b}^{11}(\omega) & \Sigma_{a b}^{12}(\omega) \\
\Sigma_{a b}^{21}(\omega) & -t_{a b}+\mu_{a b}+\Sigma_{a b}^{22}(\omega)
\end{array}\right)\right|_{\omega_{k}}\binom{\mathcal{U}_{b}^{k}}{\mathcal{V}_{b}^{k}}=\omega_{k}\binom{\mathcal{U}_{a}^{k}}{\mathcal{V}_{a}^{k}} \quad \begin{aligned}
& \mathcal{U}_{a}^{k *} \equiv\left\langle\Psi_{k}\right| \bar{a}_{a}^{\dagger}\left|\Psi_{0}\right\rangle \\
& \mathcal{V}_{a}^{k *} \equiv\left\langle\Psi_{k}\right| a_{a}\left|\Psi_{0}\right\rangle
\end{aligned}
$$

Ab INITIO SELECONSISTENT GORKOV-GREEN's
It is interesting to note that the first-order al with a $J=0$ many-body state. The other :

$$
\begin{aligned}
& \Sigma_{a b}^{21(1)}=\frac{1}{2} \sum_{c, k} \bar{V}_{c a b} \overline{\mathcal{U}} \\
& =-\frac{1}{2} \sum_{n, N \sim 0} \sum_{\gamma} \\
& =\delta_{a s} \delta_{n e m, m} \frac{1}{2} \text {. } \\
& \equiv \delta_{a p} \delta_{r e}, \Sigma_{n_{0}}^{21} \\
& =\delta_{a p} \delta_{n, 0, m} \tilde{h}_{n o n}^{[\alpha]}
\end{aligned}
$$

[V. Somà, T. Duguet, CB, Pys. Rev. C84, 046317 (2011)]

5. Block-diagonal structu
a. First ord
sk-diagona

The goal of this subsection is to discuss how the block-diagona
reflects in the various self-energy contributions, starting with the fir reflects in the various self-energy contributions, starting
and (C19) into Eq. (B7), and introducing the factor

$$
f_{\alpha \beta, \gamma \delta}^{n, n_{n}, \ell_{0}} \equiv \sqrt{1+\delta_{\alpha p} \delta_{n, n}}
$$

one obtains
$\Sigma_{a b}^{1(1)}=\sum_{c, i, k} \nabla_{a t a d} D_{d}^{+} \nu_{c}^{t}$

$\equiv \delta_{a \rho} \delta_{n,-m,} \Sigma_{n, 0}^{11(1)(1)}$

here the block-diagonal normal density matrix is introduced throu
and properties of Clebsch-Goedan coefficients has been used. The

$$
\Sigma_{a b}^{22(1)}=-\sum_{c d, k} v_{b c a d} \bar{v}_{c}^{+} \bar{\nu}_{d}^{*}
$$

$=-\delta_{a p} \delta_{n, w_{0}} \sum_{n \in d} \sum_{\gamma} \sum_{J} f_{a \gamma}^{n_{i}}$
$\equiv \delta_{0 p} \delta_{m, m_{0}}, \Sigma_{n, n}^{22(a)(1)}$
$=-\delta_{a \beta} \delta_{R_{0}, m_{i}} \Lambda_{n, 1}^{[0]}$

derives
$\Sigma_{a b}^{12(1)}=\frac{1}{2} \sum_{c u, k} v_{a k e d} D_{c}^{e} \cdot \bar{u}_{b}^{k}$

$\equiv \delta_{a p} \delta_{n, 0, m} \Sigma_{n, n+1}^{121}$
$\equiv \delta_{a p} \delta_{n, w, m} h_{n, n, n}^{(\alpha)}$,

Block-diagonal forms of second-order s angular momentum couplings of the three \mathcal{Q}, \mathcal{R}, and \mathcal{S}. One proceeds first coupling give $J_{\text {bec }}$. The recoupled \mathcal{M} term is compu

$=\sum_{m_{1}, w_{2}, M_{1}, M_{1}} \sum_{j, M_{1}} \delta_{x_{1} \rho} \delta_{m_{1},}$,
 $=\sum_{m_{1} m_{2} m_{1} M_{1}} \sum_{n_{n}, n_{1}, N_{1}} \sum_{J_{t}, M_{k}} \eta_{k_{k}} f_{\sigma_{k}}^{\approx}$

where general properties of Clebsch-Gord

$\equiv \delta_{S_{x \sim} / j_{\alpha}} \delta_{M_{m} m_{\sim}}, \mathcal{N}_{r}$
One can show that the same result is obtai

Gorkov equations

[V. Somà, T. Duguet, CB, Pys. Rev. C84, 046317 (2011)]

$$
\left.\sum_{b}\left(\begin{array}{cc}
t_{a b}-\mu_{a b}+\Sigma_{a b}^{11}(\omega) & \Sigma_{a b}^{12}(\omega) \\
\Sigma_{a b}^{21}(\omega) & -t_{a b}+\mu_{a b}+\Sigma_{a b}^{22}(\omega)
\end{array}\right)\right|_{\omega_{k}}\binom{\mathcal{U}_{b}^{k}}{\mathcal{V}_{b}^{k}}=\omega_{k}\binom{\mathcal{U}_{a}^{k}}{\mathcal{V}_{a}^{k}}
$$

Energy independenteigenvalue problem
with the normalization condition $\sum_{a}\left[\left|\mathcal{U}_{a}^{k}\right|^{2}+\left|\mathcal{V}_{a}^{k}\right|^{2}\right]+\sum_{k_{1} k_{2} k_{3}}\left[\left|\mathcal{W}_{k}^{k_{1} k_{2} k_{3}}\right|^{2}+\left|\mathcal{Z}_{k}^{k_{1} k_{2} k_{3}}\right|^{2}\right]=1$

Lanczos reduction of self-energy

$$
\left(\begin{array}{cccc}
T-\mu+\Lambda & \tilde{h} & \mathcal{C} & -\mathcal{D}^{\dagger} \\
\tilde{h}^{\dagger} & -T+\mu-\Lambda & -\mathcal{D}^{\dagger} & \mathcal{C} \\
\mathcal{C}^{\dagger} & -\mathcal{D} & E & 0 \\
-\mathcal{D} & \mathcal{C}^{\dagger} & 0 & -E
\end{array}\right)\left(\begin{array}{c}
\mathcal{U}^{k} \\
\mathcal{V}^{k} \\
\mathcal{W}_{k} \\
\mathcal{Z}_{k}
\end{array}\right)=\omega_{k}\left(\begin{array}{c}
\mathcal{U}^{k} \\
\mathcal{V}^{k} \\
\mathcal{W}_{k} \\
\mathcal{Z}_{k}
\end{array}\right)
$$

HFB

Application of Lanczos (example)

\rightarrow \# of poles of the self-energy (== optical potential) are reduced without altering spectroscopic strength.

Volume integral of ${ }^{40} \mathrm{Ca} \pm n$ optical potential in $f_{7 / 2}$ part. wave

\rightarrow Ground state energies converge with ≥ 200 Lanczos vectors (10 osc. shells).

Preliminary Gorgov results

[V. Somà, T. Duguet, CB, Pys. Rev. C84, 046317 (2011) and in preparation]

Binding energies

粦 Systematic along isotopic/isotonic chains has become available

\rightarrow Correlation energy close to CCSD and FRPA (thorough comparison needed)
\rightarrow Overbinding with A: traces need for (at least) NNN forces
\rightarrow Effect of self-consistency significant; i.e. less bound than MBPT2

Spectral function

Dyson $2^{\text {nd }}$ order Dynamical fluctuations
Gorkov $2^{\text {nd }}$ order

Shell structure evolution

类 ESPE collect fragmentation of "single-particle" strengths from both $N \pm 1$

$$
\epsilon_{a}^{c e n t} \equiv h_{a b}^{c e n t} \delta_{a b}=t_{a a}+\sum_{c d} \bar{V}_{a c a d}^{N N} \rho_{d c}^{[1]}+\sum_{c d e f} \bar{V}_{a c d a e f}^{N N N} \rho_{e f c d}^{[2]} \equiv \sum_{k} \mathcal{S}_{k}^{+a} E_{k}^{+}+\sum_{k} \mathcal{S}_{k}^{-a} E_{k}^{-}
$$

[Baranger 1970, Duguet, CB, et al. 2011]

$\rightarrow \rightarrow$ ESPE not to be confused with quasiparticle peak
\rightarrow Particularly true for low-lying state in open-shell due to pairing

Natural single－particle occupation

类 Natural orbit $a: \rho_{a b}{ }^{[1]}=n_{a}{ }^{\text {nat }} \delta_{a b}$
类 Associated energy：$\varepsilon_{a}{ }^{\text {nat }}=h_{a a}{ }^{\text {cent }}$

粦 Dynamical correlations similar for doubly－magic and semi－magic
粦 Static pairing essential to open－shells

Modern realistic nuclear forces

Need at LEAST 3NF!!!
("cannot" do RNB physics without...)

Chiral EFT for nuclear forces:

3 N forces
4 N forces

Single particle spectrum at $E_{\text {fermi }}$:

Inclusion of NNN forces

A. Cipollone, CB, P. Navratil

米 NNN forces can enter diagrams in three different ways:

Correction to external 1-Body interaction

Correction to non-contracted 2-Body interaction

pure 3-Body contribution

- Contractions are with fully correlated density matices (NOT a normal ordering...)

Inclusion of NNN forces

A. Cipollone, CB, P. Navratil

粦 NNN forces can enter diagrams in three different ways:

Correction to external 1-Body interaction

Correction to non-contracted 2-Body interaction

pure 3-Body contribution

- Contractions are with fully correlated density matices (NOT a normal ordering...)

Inclusion of NNN forces

A. Cipollone, CB, P. Navratil

粦 NNN forces can enter diagrams in three different ways:

Correction to external 1-Body interaction

Correction to non-contracted 2-Body interaction
pure 3-Body contribution

Inclusion of NNN forces

A. Cipollone, CB, P. Navratil

粦 NNN forces can enter diagrams in three different ways:

Correction to external 1-Body interaction

Correction to non-contracted 2-Body interaction

pure 3-Body contribution

BEWARE that defining:

and then:

would double count the 1-body term.

Summary

- Self-Consistent Green's Functions (SCGF), is a microscopic ab-initio method applicable to medium mass nuclei.
-The greatest advantage is the link to experimental information (\rightarrow spectroscopy)
- The bigger challenges are:
- Approach open-shells
- Consistent description of structure and reactions

- SCGF are the optimal choice
- extension to Gorkov-formalism
\rightarrow Open-shell nuclei
\rightarrow Reactions at driplines
\rightarrow structure of next generation EDF
- Proof of principle calculations Gorgov theory and three nucleon forces (3NF) are underway.

Collaborators

TECHNISCHE UNIVERSITAT DARMSTADT

V. Somà
A. Cipollone
T. Duguet
P. Navratil

M TRIUMF

Washington
University in St.Louis
AN Center for Malecular Modeling
UNIVERSITY OF
W.H. Dickhoff, S. Waldecker
D. Van Neck, M. Degroote
M. Hjorth-Jensen
C. Giusti, F.D. Pacati

