TRIUMF 2012, February 2012, Vancouver, Canada

Recent NCFC results for light nuclei with SRG evolved chiral interactions

Pieter Maris
pmaris@iastate.edu Iowa State University

IOWA STATE
UNIVERSITY

SciDAC project - UNEDF
Pls: Rusty Lusk (ANL), Witek Nazarewicz (ORNL/UT)
http://www.unedf.org
PetaApps award
Pls: Jerry Draayer (LSU), Umit Catalyurek (OSU) Masha Sosonkina, James Vary (ISU)

INCITE award - Computational Nuclear Structure
PI: James Vary (ISU)
NERSC CPU time and Industrial Competitiveness

NeRSC

Configuration Interaction Methods in a nutshell

- Expand wave function in basis states $|\Psi\rangle=\sum a_{i}\left|\psi_{i}\right\rangle$
- Express Hamiltonian in basis $\left\langle\psi_{j}\right| \hat{\mathbf{H}}\left|\psi_{i}\right\rangle=H_{i j}$

$$
\hat{\mathbf{H}}=\hat{\mathbf{T}}_{\mathrm{rel}}+\Lambda_{C M}\left(\hat{\mathbf{H}}_{C M}^{H . O} .-\frac{3}{2} \hbar \omega\right)+\sum_{i<j} V_{i j}+\sum_{i<j<k} V_{i j k}+\ldots
$$

- Pick your favorite potential
- Argonne potentials: AV8, AV18 (plus Illinois NNN interactions)
- Bonn potentials
- Chiral NN plus NNN interactions
- JISP16 (phenomenological NN potential)
 - ...
- Optional: Renormalize V in order to improve convergence

Cl calculation - sparse matrix problem

- Expand wave function in basis states $|\Psi\rangle=\sum a_{i}\left|\psi_{i}\right\rangle$
- Express Hamiltonian in basis $\left\langle\psi_{j}\right| \hat{\mathbf{H}}\left|\psi_{i}\right\rangle=H_{i j}$
- Diagonalize sparse real symmetric matrix $H_{i j}$
- Complete basis \longrightarrow exact result
- caveat: complete basis is infinite dimensional
- In practice
- truncate basis
- study behavior of observables as function of truncation
- infinite basis space limit: No-Core Full Configuration (NCFC)
- Computational challenge
- construct large $\left(10^{10} \times 10^{10}\right)$ sparse symmetric real matrix $H_{i j}$
- obtain lowest eigenvalues \& eigenvectors w. Lanczos algorithm

Intermezzo: Extrapolation Techniques

Challenge: achieve numerical convergence for no-core Full Configuation

 calculations using finite model space calculations- Perform a series of calculations with increasing $N_{\text {max }}$ truncation, while keeping everything else fixed!
- Extrapolate to infinite model space \longrightarrow exact results
- binding energy: exponential in $N_{\max }$

$$
E_{\text {binding }}^{N}=E_{\text {binding }}^{\infty}+a_{1} \exp \left(-a_{2} N_{\max }\right)
$$

- use 3 or 4 consecutive $N_{\max }$ values to determine $E_{\text {binding }}^{\infty}$
- use $\hbar \omega$ and $N_{\text {max }}$ dependence to estimate numerical error bars
- need at least $N_{\text {max }}=8$ for meaningfull extrapolations

PM, Vary, Shirokov, arXiv:0808.3420 [nucl-th], PRC79, 014308 (2009)

Intermezzo: Extrapolation Techniques

Challenge: achieve numerical convergence for no-core Full Configuation calculations using finite model space calculations

- Perform a series of calculations with increasing $N_{\text {max }}$ truncation, while keeping everything else fixed!
- Extrapolate to infinite model space \longrightarrow exact results

PM, Vary, Shirokov, arXiv:0808.3420 [nucl-th], PRC79, 014308 (2009)

Cl calculations - main challenges

- Single most important computational issue: exponential increase of dimensionality with increasing $N_{\max }$
- Additional computational issue:
sparseness of matrix / number of nonzero matrix elements
- Extrapolation to infinite basis requires $N_{\max } \geq 8$

Many Fermion Dynamics - nuclear physics

- Platform-independent, hybrid OpenMP/MPI, Fortran 90
- Can in principle handle arbitrary N-body interactions however input format only specified for 2- and 3-body interactions
- Generate many-body basis space subject to user-defined truncation and symmetry constraints
- Construction of many-body matrix $H_{i j}$
- determine which matrix elements can be nonzero based on quantum numbers of underlying single-particle states
- evaluate and store nonzero matrix elements in compressed row/column format
- Obtain lowest eigenpairs using Lanczos algorithm
- typical use: 10 to 20 lowest eigenvalues and eigenvectors
- typically need ~ 500 to ~ 1000 Lanczos iterations
- Calculate select one- and two-body observables
- One-body density matrices and wavefunctions available as input scattering and reaction calculations

MFDn - 2-dimensional distribution of matrix

- Real symmetric matrix: store only lower (or upper) triangle distributed over $n=d \cdot(d+1) / 2$ processors with d "diagonal" proc's
- In principle, we can deal with arbitrary large dimensions even if we cannot store an entire vector on a single processor
- Communication pattern matrix-vector multiplication
lower triangle

MFDn - communication patterns and processor layout

0				
5	1			
9	6	2		
12	10	7	3	
14	13	11	8	4

original layout

0			11	13
1	3			14
2	4	6		
	5	7	9	
		8	10	12

significantly improved performance (Aktulga 2012)

- SpMV
- Bcast along columns
- Bcast along rows
- local SpMV
- local transpose SpMV
- Reduce along columns
- Reduce along rows
- Orthogonalization
- Scatterv from diags to all procs
- dot-products distributed over all procs Note: vectors and matrix in single precision, but accumulate dot-products in double precision
- Gatherv from all procs to diags

0	1	2	3	4	5	6	7	8	9	10	11	$12 \mid$	13

Strong Scaling of MFDn on Cray XT4

MPI strong scaling, ${ }^{10} \mathrm{~B}, N_{\max }=6$, 2-body interactions

using 4 MPI procs per node on Franklin (NERSC)

$$
\text { speedup }=\frac{T_{28} \text { PE's }}{T_{\#} \text { PE's }}
$$

dimension $10 \cdot 10^{6}$
\# nonzero m.e. $4.4 \cdot 10^{9}$
memory for storing matrix: 36 GB

Hybrid MPI and OpenMP

- Modern supercomputers: multi-core architectures
- Amount of communication and corresponding buffers becomes more demanding with increasing number of MPI procs
- Amount of common data, needed on all processors, increases with model space, in particular for 3-body interactions

\Longrightarrow Need hybrid OpenMP / MPI version of MFDn

- Construction of matrix
- columns distributed over threads using OMP directives
- Lanczos iterations
- SpMV: columns distributed over threads using OMP directives
- special treatment of transpose SpMV necessary in order to avoid race conditions
- orthogonalization distributed using OMP directives
- Evaluation of observables distributed using OMP directives

Intermezzo: Memory requirements

- Consider matrix dimension D with $N N Z$ nonzero matrix elements
- Consider hybrid MPI/OMP run on total of N_{c} cores, with N_{p} MPI processors and n_{t} OpenMP threads and N_{d} 'diagonal' processors $N_{p}=N_{d}\left(N_{d}+1\right) / 2$
- Perfect load-balancing
- local dimension $D / \sqrt{2 N_{p}}$
- local number of nonzero mat.els. $N N Z / N_{p}$
- Global memory footprint during Lanczos iterations
- $4 D N_{\text {iterations }}$ Lanczos vectors
- $\left(8 N N Z+4 D \sqrt{N_{c} /\left(2 n_{t}\right)}\right)$ sparse matrix in CCF
- $4 D \sqrt{N_{c} / 2}\left(4 / \sqrt{n_{t}}+\sqrt{n_{t}}\right)$ local work arrays
- Multi-threading with 4 threads minimizes global memory footprint during Lanczos iterations

Strong Scaling of MFDn on Cray XK6

Hybrid MPI/OpenMP scaling for ${ }^{10} \mathrm{~B}, N_{\max }=8$ with 3-body interactions

- Current bottleneck: M-scheme input interaction file of 33 GB
- Can be removed: coupled JT-scheme

> using 2 MPI procs per node and 8 threads per MPI proc on Jaguar (ORNL)
> dimension $166 \cdot 10^{6}$
> \# nonzero m.e. $5.43 \cdot 10^{12}$
> memory for matrix: 44 TB

Benchmark calculations for light nuclei

Chiral NN interaction, SRG evolved to $\lambda=1.5, \lambda=2.0$, and $\lambda=2.5$

- UNEDF benchmark project
- initiated June 2007
- CCSD (Hagen/Papenbrock) vs. NCFC (Maris/Vary)
- unpublished results (June 2008)

- Current benchmark project
- Chiral NN interaction without Coulomb
- Results plus estimate of all numerical uncertainties
- CCSD (T), NCFC, it-NCSM, ...
- Data delivered: Nov 18, 2011 for gs energies and RMS radii of ${ }^{8} \mathrm{He},{ }^{12} \mathrm{C},{ }^{16} \mathrm{O},{ }^{18} \mathrm{O}$, and ${ }^{40} \mathrm{Ca}$

Ground state energy of ${ }^{8} \mathrm{He}$

8 He , N3LO-SRG2 ($\lambda=2.50$), results with MFDn

- Convergence pattern for $\lambda=1.5$ and $\lambda=2.5$ are qualitatively different
- Optimal $\hbar \omega$ shifts from $\hbar \omega=14 \mathrm{MeV}$ to $\hbar \omega=18 \mathrm{MeV}$ to $\hbar \omega=22 \mathrm{MeV}$

RMS radii of ${ }^{8} \mathrm{He}$

Proton and neutron densities ${ }^{8} \mathrm{He}$

- Translationally-invariant, after deconvolution of Center-of-Mass

$$
\rho_{\mathrm{ti}}(\vec{r})=F\left[\frac{F\left[\rho^{\omega}(\vec{r})\right]}{F\left[\rho_{\mathrm{cm}}^{\omega}(\vec{r})\right]}\right] \quad \text { Cockrell, Vary, PM, arXiv:1201.0724 [nucl-th] }
$$

- become independent of basis $\hbar \omega$ for large $N_{\max }$

- plotted for $\lambda=1.5, N_{\max }=12, \hbar \omega=12 \mathrm{MeV}$

Ground state energy of ${ }^{12} \mathbf{C}$

12C, N3LO-SRG2 $(\lambda=1.50)$, results with MFDn

12C, N3LO-SRG2 $(\lambda=2.50)$, results with MFDn

- Convergence pattern for $\lambda=1.5$ and $\lambda=2.5$ are qualitatively different
- Optimal $\hbar \omega$ shifts from $\hbar \omega=22 \mathrm{MeV}$ to $\hbar \omega=28 \mathrm{MeV}$
to $\hbar \omega=32 \sim 36 \mathrm{MeV}$

RMS radius of ${ }^{12} \mathrm{C}$

- Convergence pattern radii very different than convergence pattern for gs energy
- Around $\hbar \omega=18 \mathrm{MeV}$ more or less independent of λ

Excitation energy 2^{+}and 4^{+}of ${ }^{12} \boldsymbol{C}$

Quadrupole moment 2^{+}of ${ }^{12} \boldsymbol{C}$

Translationally-invariant ${ }^{12} \mathrm{C}$ proton densities

Translationally-invariant densities

- plotted for $M_{J}=J$
- plotted for $\lambda=1.5, N_{\max }=10, \hbar \omega=16 \mathrm{MeV}$
- become independent of basis $\hbar \omega$ for large $N_{\text {max }}$ after deconvolution of Center-of-Mass motion

$$
\rho_{\mathrm{ti}}(\vec{r})=F\left[\frac{F\left[\rho^{\omega}(\vec{r})\right]}{F\left[\rho_{\mathrm{cm}}^{\omega}(\vec{r})\right]}\right]
$$

Ground state energy of ${ }^{16} \mathrm{O}$

- Convergence pattern for $\lambda=1.5$ and $\lambda=2.5$ are qualitatively different
- Optimal $\hbar \omega$ shifts from $\hbar \omega=22 \mathrm{MeV}$ to $\hbar \omega=26 \sim 30 \mathrm{MeV}$ to $\hbar \omega=30 \sim 36 \mathrm{MeV}$

Ground state energy of ${ }^{18} \mathrm{O}$

- Convergence pattern for $\lambda=1.5$ and $\lambda=2.5$ are qualitatively different
- Optimal $\hbar \omega$ shifts from $\hbar \omega=22 \mathrm{MeV}$ to $\hbar \omega=28 \sim 32 \mathrm{MeV}$ to $\hbar \omega=30 \sim 36 \mathrm{MeV}$

Translationally-invariant ${ }^{18} \mathrm{O}$ proton and neutron densities

excited 2^{+}
neutron

neutron-proton

Inclusion of induced and explicit 3-body forces

- Consider SRG-evolved chiral interactions
- chiral N3LO NN-only
- chiral NN plus induced 3-body forces
- chiral N3LO NN plus N2LO 3NF
- Use NN-only calculations up to $N_{\max }=10$ or 12 to validate extrapolation and establish optimal $\hbar \omega$ region
- Extrapolate 3-body calculations up to $N_{\max }=8$ assuming that optimal $\hbar \omega$ region for NN -only calculations is also (more or less) optimal for 3-body calculations
- should be valid if there is a hierarchy for many-body forces

$$
V_{N N} \gg V_{N N N} \gg V_{N N N N}
$$

- Work in progress: ${ }^{7} \mathrm{Li},{ }^{7} \mathrm{Be},{ }^{8} \mathrm{Be},{ }^{10} \mathrm{~B},{ }^{12} \mathrm{C}$
w. Furnstahl, Jurgenson, Navratil, Ormand, Vary

Results for 3^{+}state of ${ }^{10} \boldsymbol{B}$ at $\lambda=1.0$

- NN-only calculations: optimal $\hbar \omega$ region is 12 to 16 MeV
- 3-body calculations in optimal $\hbar \omega$ region
- rapid convergence with $N_{\text {max }}$
- however 'converged' results are $\hbar \omega$ dependent because the truncation on the initial 3-body space, $N_{\text {max }}=40$ is insufficient in this $\hbar \omega$ range?
- 3-body calculations restricted to $\hbar \omega \geq 20 \mathrm{MeV}$
- slower convergence with $N_{\text {max }}$,
- approximately independent of $\hbar \omega$

Results for 3^{+}state of ${ }^{10} \boldsymbol{B}$ at $\lambda=1.5$

- NN-only calculations: optimal $\hbar \omega$ region is 16 to 22 MeV
- 3-body calculations in optimal $\hbar \omega$ region
- rapid convergence with $N_{\max }$
- however 'converged' results with 3NF are $\hbar \omega$ dependent because the truncation on the initial 3-body space, $N_{\text {max }}=40$ is insufficient in this $\hbar \omega$ range?
- 3-body calculations restricted to $\hbar \omega \geq 20 \mathrm{MeV}$
- slower convergence with $N_{\text {max }}$,
- approximately independent of $\hbar \omega$

Results for 3^{+}state of ${ }^{10} \boldsymbol{B}$ at $\lambda=2.0$ and $\lambda=2.5$

10B, chiral N3LO plus 3 NF , SRG $\lambda=2.00$

10B, chiral N3LO plus 3 NF, SRG $\lambda=2.50$

- NN-only calculations up through $N_{\max }=10$
- optimal $\hbar \omega$ region is 24 to 30 MeV for $\lambda=2.0$
- optimal $\hbar \omega$ region is 30 to 40 MeV for $\lambda=2.5$

Evidence for induced 4-body forces?

- Error estimates at $\lambda=2.0$ and $\lambda=2.5$ dominated by extrapolation error of many-body calculation
- Error estimates at $\lambda=1.0$ and $\lambda=1.5$ combination of numerical uncertainty in input 3-body matrix elements and of extrapolation

Conclusions

- MFDn: Scalable and load-balanced Cl code for nuclear structure
- new version under development, has run on $200 k+$ cores on Jaguar (ORNL) enabling largest model-space calculations
- Significant benefits from collaboration between nuclear physicists, applied mathematicians, and computer scientists
- Need at least $N_{\text {max }}=8$ for reliable extrapolation to infinite basis
- main challenge: construction and diagonalization of extremely large ($\mathrm{D}>1$ billion) sparse matrices
- Accurate results, including numerical error estimates, for p-shell nuclei with SRG evolved chiral NN-only interactions
- Calculations and extrapolations for p-shell nuclei with SRG evolved chiral 3-body forces in progress
- challenge:
complete $N_{\max }=10$ calculations with 3-body forces

Accuracy of SRG evolved 3-body matrix elements?

- A3max ramp used here: $40,38,36,34,32,30,28,26,24,20, \ldots$
- A3max ramp Darmstadt: 40, 40, 40, 36, 32, 28, 24, 24, 24, 24, ...

Differences in binding energies between our ramp and Darmstadt ramp

	${ }^{7} \mathrm{Li}, \frac{3}{2}^{-}$			${ }^{10} \mathrm{~B}, 3^{+}$			${ }^{12} \mathrm{C}, 0^{+}$		
$N_{\max }$	16	20	24	16	20	24	16	20	24
2	.038	.008	.004	.160	.038	.017	.267	.067	.031
4	.042	.008	.004	.176	.039	.017	.294	.069	.030
6	.044	.008	.004	.190	.046	.025	.321	.079	.041
8	.048	.013	.009		.061	.041			

- Note strong increase with number of nucleons
- Note systematic increase with $N_{\max }$

Need systematic investigation of convergence of 3-body matrix elements as function of A3max

