Ab initio description of reactions in light nuclei

Perspectives of the Ab Initio No-Core Shell Model
Vancouver, TRIUMF
February 23-25, 2012

Wataru Horiuchi (RIKEN)

Collaborators:
P. Navratil (TRIUMF), S. Quaglioni (LLNL)
Y. Suzuki (Niigata, RIKEN), K. Arai (Nagaoka)

Introduction

- To understand dynamics of light nuclei
- Important for astrophysical reactions
- Ab initio calculation: Predictability
- Structures and reactions
- Interactions
- Nuclear reactions with realistic interactions
- Realistic nuclear interaction
- Hard (short-range, tensor force or high momentum)
- Bound state problem can be solved up to $\mathrm{A} \sim 10$.
- Continuum description
\rightarrow much more difficult (boundary conditions etc.)
- Use of a square integrable (L^{2}) basis
- Easy to handle

Contents

- Correlated Gaussian approach: application to photoabsorption reaction of ${ }^{4} \mathrm{He}$
- Recent progress on NCSM/RGM calculation for three-particle projectile

Explicitly correlated basis function

Correlated Gaussian with global vectors: explicitly correlated

$$
\begin{aligned}
& \phi_{L_{1} L_{2}\left(L_{12}\right) L_{3} L M_{L}}^{(N)}\left(A, u_{1}, u_{2}, u_{3}\right) \\
& =\exp (-\tilde{\boldsymbol{x}} A \boldsymbol{x})\left[\left[\mathcal{Y}_{L_{1}}\left(\tilde{u}_{1} x\right) \mathcal{Y}_{L_{2}}\left(\tilde{u}_{2} x\right)\right]_{L_{12}} \mathcal{Y}_{L_{3}}\left(\tilde{u}_{3} x\right)\right]_{L M_{L}},
\end{aligned}
$$

\mathbf{x} : any set of relative coordinates

$$
\begin{aligned}
& \tilde{\boldsymbol{x}} A \boldsymbol{x}=\sum_{i, j=1}^{N-1} A_{i j} \boldsymbol{x}_{i} \cdot \boldsymbol{x}_{j} \\
& \tilde{u}_{i} \boldsymbol{x}=\sum_{k=1}^{N-1}\left(u_{i}\right)_{k} \boldsymbol{x}_{k}
\end{aligned}
$$

Flexible basis
Formulation for N-particle system
Functional form unchanged under any coordinate transformations

LS coupling scheme: $\Phi_{(L S) J M T M_{T}}^{(N) \pi}=\mathcal{A}\left[\phi_{L}^{(N) \pi} \chi_{S}^{(N)}\right]_{J M} \eta_{T M_{T}}^{(N)}$,

$$
\chi_{S_{12} S_{123} \ldots S M_{S}}^{(N)}=\left[\ldots\left[\left[\chi_{\frac{1}{2}}(1) \chi_{\frac{1}{2}}(2)\right]_{S_{12}} \chi_{\frac{1}{2}}(3)\right]_{S_{123}} \ldots\right]_{S M_{S}}
$$

Ground state of ${ }^{4} \mathrm{He}$ agrees with the benchmark cal.
H. Kamada et al., PRC64, 044001 (2001)

Application of correlated Gaussian basis to reactions in light nuclei

- $\mathrm{n} \mathrm{H}^{4} \mathrm{He}$ scattering: With Green's function method Y. Suzuki, WH, K. Arai, NPA823, 1 (2009).
- $d+d, n+{ }^{3} \mathrm{He}$ reactions: With microscopic R-matrix method K. Arai, S. Aoyama, Y. Suzuki, P. Descouvemont, D. Baye, PRL107, 132502(2011) S. Aoyama, K. Arai, Y. Suzuki, P. Descouvemont, D. Baye, FBS52, 97 (2012)
- Inclusive reaction ${ }^{4} \mathrm{He}(\gamma, X)$
- Recent measurements
- Peak $\sim 27 \mathrm{MeV}$ s. Nakayama et al., PRC 76, 021305 (2007).
- Peak $\sim 30 \mathrm{MeV}$ т. Shima et al., PRC 72, 044004 (2005).
- Theoretical studies
D. Gazit et al. PRL 96, 112302 (2006)
S. Bacca, PRC75, 044001(2007)
S. Quaglioni and P. Navratil, PLB652, 370 (2007)

Basis function: HH, NCSM
Interactions: Effective interaction based on realistic force
Continuum: Lorentz Integral Transform Method

Taken from S. Nakayama et al. PRC 76, 021305 (2007).

In order to understand this problem

- To use a realistic interaction as it is
- To include couplings with final decay channels explicitly
- Perform different method
- Complex scaling method (CSM)
- Microscopic R-matrix method (MRM)

Complex scaling method (CSM)

Photoabsorption cross section $\quad \sigma_{\gamma}\left(E_{\gamma}\right)=\frac{4 \pi^{2}}{\hbar c} E_{\gamma} \frac{1}{3} S\left(E_{\gamma}\right)$
Strength function

$$
\begin{aligned}
S(E) & \left.=\mathcal{S}_{\mu f}\left|\left\langle\Psi_{f}\right| \mathcal{M}_{1 \mu}\right| \Psi_{0}\right\rangle\left.\right|^{2} \delta\left(E_{f}-E_{0}-E\right) \\
& =-\frac{1}{\pi} \operatorname{Im} \sum_{\mu}\left\langle\Psi_{0}\right| \mathcal{M}_{1 \mu}^{\dagger} \frac{1}{E-H+i \epsilon} \mathcal{M}_{1 \mu}\left|\Psi_{0}\right\rangle
\end{aligned}
$$

Electric dipole operator $\quad \mathcal{M}_{1 \mu}=\sum_{i=1}^{4} \frac{e}{2}\left(1-\tau_{3 i}\right)\left(\boldsymbol{r}_{i}-\boldsymbol{x}_{4}\right)_{\mu}$, $=-\frac{e}{2} \sqrt{\frac{4 \pi}{3}} \sum_{i=1}^{4} \tau_{3 i} \mathcal{Y}_{1 \mu}\left(\boldsymbol{r}_{i}-\boldsymbol{x}_{4}\right), \quad$ Isovector type

Complex rotation

$$
U(\theta): \quad \boldsymbol{r}_{j} \rightarrow \boldsymbol{r}_{j} \mathrm{e}^{i \theta}, \quad \boldsymbol{p}_{j} \rightarrow \boldsymbol{p}_{j} \mathrm{e}^{-i \theta} \quad \text { Outgoing-wave B.C. }
$$

Expanded in L^{2} basis

$$
\Psi_{\lambda}^{J M \pi}(\theta)=\sum_{i} C_{i}^{\lambda}(\theta) \Phi_{i}(x) \quad H(\theta) \Psi_{\lambda}^{J M \pi}(\theta)=E_{\lambda}(\theta) \Psi_{\lambda}^{J M \pi}(\theta)
$$

Strength function

$$
\begin{aligned}
S(E)=-\frac{1}{\pi} \sum_{\mu \lambda} \operatorname{Im} \frac{\widetilde{\mathcal{D}}_{\mu}^{\lambda}(\theta) \mathcal{D}_{\mu}^{\lambda}(\theta)}{E-E_{\lambda}(\theta)+i \epsilon} \\
\mathcal{D}_{\mu}^{\lambda}(\theta)=\left\langle\left(\Psi_{\lambda}^{J M \pi}(\theta)\right)^{*}\right| \mathcal{M}_{1 \mu}(\theta)\left|U(\theta) \Psi_{0}\right\rangle \\
\widetilde{\mathcal{D}}_{\mu}^{\lambda}(\theta)=\left\langle\left(U(\theta) \Psi_{0}\right)^{*}\right| \widetilde{\mathcal{M}}_{1 \mu}(\theta)\left|\Psi_{\lambda}^{J M \pi}(\theta)\right\rangle
\end{aligned}
$$

Configuration for final state

(i) Single-particle excitation

(ii) $3 \mathrm{~N}+\mathrm{N}$ two-body disintegration

(iii) $d+p+n$ three-body disintegration

$$
\begin{equation*}
\Psi_{f}^{\mathrm{sp}}=\mathcal{A}\left[\Phi_{0}^{(4)}(i) \mathcal{Y}_{1}\left(\boldsymbol{r}_{1}-x_{4}\right)\right]_{1 M} \eta_{T_{12} T_{123} 10}^{(4)} \tag{i}
\end{equation*}
$$

-The ground state combined with $Y_{1}\left(r_{1}-x_{4}\right)$

- Complete set of isospin wave function ($\mathrm{T}=1$)
- Basis and possible angular momentum couplings

3N: three-body cal.
$3 N-N$: p-wave
(iii)

2N: two-body cal.
2N-N: p-wave
3N*-N: s-wave are included independently.

Note: The coherent E1 state $\quad \sum_{\mu} \mathcal{M}_{1 \mu}|0\rangle$
Explicit correlation of 3+1 and 2+1+1 exhausts 100% of the non-energy-weighted sum rule.

Microscopic R-matrix Method (MRM)

- Internal region: Relative motion between two clusters χ_{c} is expanded in several Gaussians $r^{\ell} \exp \left(-\rho r^{2}\right) Y_{\ell}(\hat{r})$
-External region: asymptotic wave function (e.g. Coulomb w.f.)
- Matching internal and external regions at a channel radius

Schroedinger eq. $\quad[H-E+\widetilde{L}] \Psi_{\mathrm{int}}^{J M \pi}=\widetilde{L} \Psi_{\mathrm{ext}}^{J M \pi} \quad$ L: Bloch operator
The continuity condition: $\quad \Psi_{\text {int }}^{J M \pi}=\Psi_{\text {ext }}^{J M \pi}$

- Distortion of the cluster is taken into account by adding pseudostates $3 \mathrm{~N}\left(1 / 2^{+}\right)+\mathrm{N}, \mathrm{d}\left(1^{+}\right)+\mathrm{d}\left(1^{+}\right), \mathrm{pn}\left(0^{+}\right)+\mathrm{pn}\left(0^{+}\right), \mathrm{pp}\left(0^{+}\right)+\mathrm{nn}\left(0^{+}\right)$

$$
\begin{aligned}
& \text { Photoabsorption cross section } \Leftrightarrow \text { radiative capture cross section } \\
& \qquad \begin{array}{r}
4 \mathrm{He}(\gamma, \mathrm{~N}) 3 \mathrm{~N} \Leftrightarrow \mathrm{~N}(3 \mathrm{~N}, \gamma)^{4} \mathrm{He} \\
\qquad \sigma_{\gamma}^{\mathrm{AB}}\left(E_{\gamma}\right)=\frac{k^{2}\left(2 J_{A}+1\right)\left(2 J_{B}+1\right)}{2 k_{\gamma}^{2}\left(2 J_{0}+1\right)} \sigma_{\text {cap }}^{\mathrm{AB}}\left(E_{\text {in }}\right)
\end{array}
\end{aligned}
$$

Total photoabsorption cross sections

Interaction: AV8'+3NF
3NF: E. Hiyama et al., PRC70, 031001(2004).
Comparison of two methods \rightarrow agree in the low-energy region

Data taken from

S. Nakayama et al., (2007)
Y. M. Arkatov et al.,(1974).
T. Shima et al., (2005).
T. Shima et al., new measurement

Good reproduction of the experiments
D. Gazit et al. PRL 96, 112302 (2006)
S. Bacca, PRC75, 044001(2007)
S. Quaglioni and P. Navratil, PLB652, 370 (2007)

Photoabsorption cross sections

V Y. M. Arkatov et al., Yad. Fiz. 19, 1172 (1974).
R. Raut et al. (2012)W. Tornow et al. (2011), preliminary

O T. Shima et al. (2005)
T. Shima et al., new measurements

Summary and outlook

- Photoabsorption cross sections of ${ }^{4} \mathrm{He}$ based on four-body calculation
- Correlated Gaussian with global vectors, flexible basis!
- "Bare" interaction can be used.
- Explicit cluster correlations in the final state
- Continuum states are properly treated using the square integrable (L^{2}) basis by the Complex Scaling Method and Microscopic R-matrix Method
- The calculations with two different methods
- Virtually the same results in the low-energy
- Good agreement with the recent experiments
- $3 \mathrm{~N}+\mathrm{N}$ cluster structure is important

WH, Y. Suzuki, K. Arai, arXiv: 1202.0268

- Future works
- More particle systems (A>5)
- Electro-weak responses (Gamow-Teller, spin-dipole etc.)

NCSM/RGM calculation

- Consistent description of bound and scattering states
- No core shell model (NCSM)
- Effective interaction starting from realistic force
- Applicable A<16
- Resonating Group Method (RGM)
- Fully microscopic
- Proper treatment of continuum states with the microscopic R-matrix
- Single-particle projectile ($\mathrm{N}-{ }^{3} \mathrm{H}, \mathrm{N}-{ }^{4} \mathrm{He}, \mathrm{N}-{ }^{-10} \mathrm{Be}$)
S. Quaglioni, P. Navratil, PRC79, 044606 (2009).
- Combined with IT-NCSM ($\mathrm{N}-{ }^{7} \mathrm{Li}, \mathrm{N}-{ }^{7} \mathrm{Be}, \mathrm{N}-{ }^{12} \mathrm{C}, \mathrm{N}-{ }^{16} \mathrm{O}$)
P. Navratil, R. Roth, S. Quaglioni, PRC82, 034609 (2010).
- Two-particle projectile ($\mathrm{d}-{ }^{4} \mathrm{He}, \mathrm{d}-{ }^{3} \mathrm{H}->\mathrm{n}-{ }^{4} \mathrm{He}$)
P. Navratil, S. Quaglioni, PRC83, 044609 (2011).
P. Navratil, S. Quaglioni, PRL108, 042503 (2012).
- Three-particle projectile $\left({ }^{3} \mathrm{H}-{ }^{-3} \mathrm{H},{ }^{3} \mathrm{He}-{ }^{4} \mathrm{He}, \ldots\right)$

This work

Formalism

Scattering wave function

$$
\begin{equation*}
\left|\Psi^{J^{\pi} T}\right\rangle=\sum_{\nu} \int d r r^{2} \frac{g_{\nu}^{J^{\pi} T}(r)}{r} \hat{\mathcal{A}}_{\nu}\left|\Phi_{\nu r}^{J^{\pi} T}\right\rangle \tag{A-3}
\end{equation*}
$$

Basis function (NCSM basis)

$$
\left|\Phi_{\nu r}^{J^{\pi} T}\right\rangle=\left[\left(\left|A-3 \alpha_{1} I_{1}^{\pi_{1}} T_{1}\right\rangle\left|a=3 \alpha_{2} I_{2}^{\pi_{2}} T_{2}\right\rangle\right)^{(s T)} Y_{\ell}\left(\hat{r}_{A-3,3}\right)\right]^{\left(J^{\pi} T\right)} \frac{\delta\left(r-r_{A-3,3}\right)}{r r_{A-3,3}}
$$

Schroedinger equation (RGM equation)

$$
\sum_{\nu} \int d r r^{2}\left[\mathcal{H}_{\nu^{\prime} \nu}^{J^{\pi} T}\left(r^{\prime}, r\right)-E \mathcal{N}_{\nu^{\prime} \nu}^{J^{\pi} T}\left(r^{\prime}, r\right)\right] \frac{g_{\nu}^{J^{\pi} T}(r)}{r}=0
$$

Microscopic R-matrix method is used to solve the RGM eq.
Non-local matrix elements

> Norm kernel

$$
\begin{aligned}
\text { Norm kernel } & \mathcal{N}_{\nu^{\prime} \nu}^{J^{\pi} T}\left(r^{\prime}, r\right)=\left\langle\Phi_{\nu^{\prime} r^{\prime}}^{J^{\pi} T}\right| \hat{\mathcal{A}}_{\nu^{\prime}} \hat{\mathcal{A}}_{\nu}\left|\Phi_{\nu r}^{J^{\pi} T}\right\rangle \\
\text { Hamiltonian kernel } & \mathcal{H}_{\nu^{\prime} \nu}^{J^{\pi} T}\left(r^{\prime}, r\right)=\left\langle\Phi_{\nu^{\prime} r^{\prime}}^{J^{\pi} T}\right| \hat{\mathcal{A}}_{\nu^{\prime}} H \hat{\mathcal{A}}_{\nu}\left|\Phi_{\nu r}^{J^{\pi} T}\right\rangle \\
& H=T_{\text {rel }}+\mathcal{V}_{\text {rel }}+V_{C}(r)+H_{A-3}+H_{a=3}
\end{aligned}
$$

Calculation of RGM matrix elements

1. Basis: Combination of Slater determinant (SD) and Jacobi basis obtained by NCSM
$\left.\left|\Phi_{\nu n}^{J^{\pi} T}\right\rangle_{\mathrm{SD}}=\left[\frac{\left(\mid A-3 \alpha_{1} I_{1}^{\pi_{1}} T_{1}\right.}{\text { SD basis }}\right\rangle_{\mathrm{SD}} \frac{\left.\left|a=3 \alpha_{2} I_{2}^{\pi_{2}} T_{2}\right\rangle\right)^{(s T)}}{\text { Jacobi basis }} Y_{\ell}\left(\hat{R}_{\mathrm{cm}}^{(a=3)}\right)\right]^{\left(J^{\pi} T\right)} R_{n \ell}\left(R_{\mathrm{cm}}^{(a=3)}\right)$

SD basis is computationally advantageous for $A>5$.
Spurious c.m. motion can be subtracted.
2. Write it down with single particle HO states
3. Calculate the Norm and Hamiltonian kernels

- Expression: Sum of A-body (up to 4) densities

Norm kernel

- Antisymmetrizer between two clusters

$$
\begin{aligned}
\mathcal{A}^{(A-3,3)}= & \sqrt{\frac{6}{A(A-1)(A-2)}}\left[1-\sum_{i=1}^{A-3} \hat{P}_{i, A}-\sum_{i=1}^{A-3} \hat{P}_{i, A-1}-\sum_{i=1}^{A-3} \hat{P}_{i, A-2}\right. \\
& \left.+\frac{1}{2} \sum_{i \neq j}\left(\hat{P}_{i, A} \hat{P}_{j, A-1}+\hat{P}_{i, A-2} \hat{P}_{j, A}+\hat{P}_{i, A-1} \hat{P}_{j, A-2}\right)-\frac{1}{6} \sum_{i \neq j \neq k} \hat{P}_{i, A} \hat{P}_{j, A-1} \hat{P}_{k, A-2}\right]
\end{aligned}
$$

- Norm kernel $\mathcal{N}_{\nu^{\prime} \nu}^{J^{\pi} T} T\left(r^{\prime}, r\right)=\left\langle\Phi_{\nu^{\prime} r^{\prime}}^{J^{\pi} T}\right| \mathcal{A}^{2}\left|\Phi_{\nu r}^{J \pi}\right\rangle$

Hamiltonian kernel

$$
\begin{aligned}
\mathcal{H}_{\nu^{\prime} \nu}^{J^{\pi} T}\left(r^{\prime}, r\right) & =\left\langle\Phi_{\nu^{\prime} r^{\prime}}^{J J^{\pi}}\right| \mathcal{A} H \mathcal{A}\left|\Phi_{\nu r}^{J \pi T}\right\rangle \\
& =\left\langle\Phi_{\nu^{\prime} r^{\prime}}^{J J^{\prime}}\right| H \mathcal{A}^{2}\left|\Phi_{\nu r}^{J \pi}\right\rangle
\end{aligned}
$$

$$
\mathcal{V}_{\nu^{\prime}, \nu}\left(r^{\prime}, r\right)=\left\langle\Phi_{\nu^{\prime} r^{\prime}}^{J \pi T}\right| \mathcal{V}_{\text {rel }} \mathcal{A}^{2}\left|\Phi_{\nu r}^{J^{\pi} T}\right\rangle \xrightarrow{8 \text { terms }}
$$

$$
\begin{aligned}
& 3(A-3) V_{A-3, A-2}\left(1-\hat{P}_{A-3, A-2}\right)-6(A-3) V_{A-3, A-1} \hat{P}_{A-3, A-2} \\
- & 3(A-3)(A-4) V_{A-4, A-2} \hat{P}_{A-3, A-2} \\
- & 6(A-3)(A-4) V_{A-3, A}\left(1-\hat{P}_{A-3, A}\right) \hat{P}_{A-4, A-1} \\
+ & 3(A-3)(A-4) V_{A-3, A-2} \hat{P}_{A-3, A} \hat{P}_{A-4, A-1} \\
+ & 3(A-3)(A-4)(A-5) V_{A-5, A} \hat{P}_{A-3, A} \hat{P}_{A-4, A-1} \\
+ & \frac{3}{2}(A-3)(A-4)(A-5) V_{A-5, A-2} \hat{P}_{A-3, A} \hat{P}_{A-4, A-1}\left(1-\hat{P}_{A-5, A-2}\right) \\
& -\frac{1}{2}(A-3)(A-4)(A-5)(A-6) V_{A-6, A} \hat{P}_{A-3, A} \hat{P}_{A-4, A-1} \hat{P}_{A-5, A-2}
\end{aligned}
$$

$$
\mathrm{SD}\left\langle\psi_{\mu^{\prime}}^{A-3}\right| a^{\dagger} a\left|\psi_{\mu}^{A-3}\right\rangle_{\mathrm{SD}}
$$

$$
\mathrm{SD}\left\langle\psi_{\mu^{\prime}}^{A-3}\right| a^{\dagger} a^{\dagger} a a\left|\psi_{\mu}^{A-3}\right\rangle_{\mathrm{SD}}
$$

$$
\mathrm{SD}\left\langle\psi_{\mu^{\prime}}^{A-3}\right| a^{\dagger} a^{\dagger} a^{\dagger} a a a\left|\psi_{\mu}^{A-3}\right\rangle_{\mathrm{SD}}
$$

$$
\mathrm{SD}\left\langle\psi_{\mu^{\prime}}^{A-3}\right| a^{\dagger} a^{\dagger} a^{\dagger} a^{\dagger} a a a a\left|\psi_{\mu}^{A-3}\right\rangle_{\mathrm{SD}}
$$

Explicit formula of the RGM kernels

$\left\langle\Phi_{\alpha_{1}^{\prime} I_{1}^{\prime} T_{1}^{\prime}, \alpha_{2}^{\prime} I_{2}^{\prime} T_{2}^{\prime} ; s^{\prime} \ell^{\prime} ;}^{(A-3,)^{\pi}} n^{\prime} \ell^{\prime}\right| \mathcal{O}\left|\Phi_{\alpha_{1} I_{1} T_{1}, \alpha_{2} I_{2} T_{2} ; s \ell}^{(A-3,3) J^{\pi} T} ; n \ell\right\rangle$
$=\sum\left\langle\left.\left(n_{2} \ell_{2} s_{2} j_{2} t_{2} ; \mathcal{N}_{2} \mathcal{L}_{2} \mathcal{J}_{2} \frac{1}{2}\right) I_{2} T_{2} \right\rvert\, a=3 \alpha_{2} I_{2} T_{2}\right\rangle$
$\times\left\langle a=3 \alpha_{2}^{\prime} I_{2}^{\prime} T_{2}^{\prime} \left\lvert\,\left(n_{2}^{\prime} \ell_{2}^{\prime} s_{2}^{\prime} j_{2}^{\prime} t_{2}^{\prime} ; \mathcal{N}_{2}^{\prime} \mathcal{L}_{2}^{\prime} \mathcal{J}_{2}^{\prime} \frac{1}{2}\right) I_{2}^{\prime} T_{2}^{\prime}\right.\right\rangle$
$\times \hat{s} \hat{I} \hat{s}_{2} \hat{j}_{2} \hat{I}_{2} \hat{\mathcal{J}}_{2} \hat{j}_{a} \hat{j}_{b} \hat{j}_{c} \hat{I}_{a b} \hat{\lambda}^{2} \hat{L}_{a b}^{2} \hat{s}^{\prime} \hat{I}^{\prime} \hat{s}_{2}^{\prime} \hat{j}_{2}^{\prime} \hat{I}_{2}^{\prime} \hat{\mathcal{J}}_{2}^{\prime} \hat{j}_{a}^{\prime} \hat{j}_{b}^{\prime} \hat{j}_{c}^{\prime} \hat{I}_{a b}^{\prime} \hat{\lambda}^{\prime 2} \hat{L}_{a b}^{\prime 2}$
$\times(-1)^{I_{1}-I+\ell_{c}+\ell+\mathcal{J}_{2}+\ell_{2}+t_{2}+I_{a b}+I_{1}^{\prime}-I^{\prime}+\ell_{c}^{\prime}+\ell^{\prime}+\mathcal{J}_{2}^{\prime}+\ell_{2}^{\prime}+t_{2}^{\prime}+I_{a b}^{\prime}+2 J+1}$
$\times\left\langle n_{a} \ell_{a} n_{b} \ell_{b} L_{a b} \mid N_{2} L_{2} n_{2} \ell_{2} L_{a b}\right\rangle_{d=1}\left\langle n_{c} \ell_{c} N_{2} L_{2} \lambda \mid n \ell \mathcal{N}_{2} \mathcal{L}_{2} \lambda\right\rangle_{d=1 / 2}$
$\times\left\langle n_{a}^{\prime} \ell_{a}^{\prime} n_{b}^{\prime} \ell_{b}^{\prime} L_{a b}^{\prime} \mid N_{2}^{\prime} L_{2}^{\prime} n_{2}^{\prime} \ell_{2}^{\prime} L_{a b}^{\prime}\right\rangle_{d=1}\left\langle n_{c}^{\prime} \ell_{c}^{\prime} N_{2}^{\prime} L_{2}^{\prime} \lambda^{\prime} \mid n^{\prime} \ell^{\prime} \mathcal{N}_{2}^{\prime} \mathcal{L}_{2}^{\prime} \lambda^{\prime}\right\rangle_{d=1 / 2}$
$\times\left\{\begin{array}{ccc}I_{1} & I_{2} & s \\ \ell & J & I\end{array}\right\}\left\{\begin{array}{ccc}I_{1}^{\prime} & I_{2}^{\prime} & s^{\prime} \\ \ell^{\prime} & J & I^{\prime}\end{array}\right\}\left\{\begin{array}{ccc}L_{2} & L_{a b} & \ell_{2} \\ s_{2} & j_{2} & I_{a b}\end{array}\right\}\left\{\begin{array}{ccc}L_{2}^{\prime} & L_{a b}^{\prime} & \ell_{2}^{\prime} \\ s_{2}^{\prime} & j_{2}^{\prime} & I_{a b}^{\prime}\end{array}\right\}$
$\times\left\{\begin{array}{ccc}\ell_{a} & \ell_{b} & L_{a b} \\ \frac{1}{2} & \frac{1}{2} & s_{2} \\ j_{a} & j_{b} & I_{a b}\end{array}\right\}\left\{\begin{array}{ccc}\ell_{a}^{\prime} & \ell_{b}^{\prime} & L_{a b}^{\prime} \\ \frac{1}{2} & \frac{1}{2} & s_{2}^{\prime} \\ j_{a}^{\prime} & j_{b}^{\prime} & I_{a b}^{\prime}\end{array}\right\}\left\{\begin{array}{cccc}\ell & \lambda & L_{2} & j_{2} \\ \mathcal{L}_{2} & \ell_{c} & I_{a b} & I_{2} \\ \mathcal{J}_{2} & \frac{1}{2} & j_{c} & I\end{array}\right\}\left\{\begin{array}{cccc}\ell^{\prime} & \lambda^{\prime} & L_{2}^{\prime} & j_{2}^{\prime} \\ \mathcal{L}_{2}^{\prime} & \ell_{c}^{\prime} & I_{a b}^{\prime} & I_{2}^{\prime} \\ \mathcal{J}_{2}^{\prime} & \frac{1}{2} & j_{c}^{\prime} & I^{\prime}\end{array}\right\} \mathcal{M}(\mathcal{O})$
$\mathcal{M}(\mathcal{O})=\int d \zeta_{1} \cdots d \zeta_{A}$
Matrix element for operator O
$\times\left\{\left[\left\langle\zeta_{1} \cdots \zeta_{A-3} \mid A-3 \alpha_{1}^{\prime} I_{1}^{\prime} T_{1}^{\prime}\right\rangle_{\mathrm{SD}}\left[\left[\varphi_{n_{a}^{\prime} \ell_{a}^{\prime} j_{a}^{\prime} \frac{1}{2}}\left(\zeta_{A}\right) \varphi_{n_{b}^{\prime} \ell_{b}^{\prime} j_{b}^{\prime} \frac{1}{2}}\left(\zeta_{A-1}\right)\right]^{\left(I_{a b}^{\prime} t_{2}^{\prime}\right)} \varphi_{n_{c}^{\prime} \ell_{c}^{\prime} j_{c}^{\prime} \frac{1}{2}}\left(\zeta_{A-2}\right)\right]^{\left(I^{\prime} T_{2}^{\prime}\right)}\right]^{(J T)}\right\}^{*}$
$\times \mathcal{O}\left\{\left[\left\langle\zeta_{1} \cdots \zeta_{A-3} \mid A-3 \alpha_{1} I_{1} T_{1}\right\rangle_{\mathrm{SD}}\left[\left[\varphi_{n_{a} \ell_{a j} j_{a} \frac{1}{2}}\left(\zeta_{A}\right) \varphi_{n_{b} \ell_{b} j_{b} \frac{1}{2}}\left(\zeta_{A-1}\right)\right]^{\left(I_{a b} t_{2}\right)} \varphi_{n_{c} \ell_{c} j_{c} \frac{1}{2}}\left(\zeta_{A-2}\right)\right]^{\left(I T_{2}\right)}\right]^{(J T)}\right\}$

Norm kernel (3 terms)

One-particle exchange

$$
\begin{aligned}
& \mathcal{M}\left(\hat{P}_{A-3, A-2}\right)=\delta_{n_{a}^{\prime}, n_{a}} \delta_{\ell_{a}^{\prime}, \ell_{a}} \delta_{j_{j}^{\prime}, j_{a}} \delta_{n_{b}^{\prime}, n_{b}} \delta_{\ell_{b}^{\prime}, \ell_{b}} \delta_{j_{b}^{\prime}, j_{b}} \delta_{I_{a b}^{\prime}, I_{a b}} \delta_{t_{2}^{\prime}, t_{2}} \frac{1}{A-3} \\
& \times \sum_{K \tau}(-1)^{I_{a b}+I_{1}+K+J+j_{c}^{\prime}+t_{2}+T_{1}+\tau+T+\frac{1}{2}} \hat{I} \hat{I}^{\prime} \hat{K} \hat{T}_{2} \hat{T}_{2}^{\prime} \hat{\tau} \\
& \times\left\{\begin{array}{ccc}
I_{1} & K & I_{1}^{\prime} \\
I^{\prime} & J & I
\end{array}\right\}\left\{\begin{array}{ccc}
I_{a b} & j_{c}^{\prime} & I^{\prime} \\
K & I & j_{c}
\end{array}\right\}\left\{\begin{array}{ccc}
T_{1} & \tau & T_{1}^{\prime} \\
T_{2}^{\prime} & T & T_{2}
\end{array}\right\}\left\{\begin{array}{ccc}
t_{2} & \frac{1}{2} & T_{2}^{\prime} \\
\tau & T_{2} & \frac{1}{2}
\end{array}\right\} \\
& \times\left\langle A-3 \alpha_{1}^{\prime} I_{1}^{\prime} T_{1}^{\prime}\left\|\left|\left(a_{n_{c} \ell_{c} j_{c} \frac{1}{2}}^{\dagger} \tilde{a}_{n_{c}^{\prime} \ell_{c}^{\prime} j_{c}^{\prime} \frac{1}{2}}\right)^{(K \tau)} \|\right| A-3 \alpha_{1} I_{1} T_{1}\right\rangle \quad\right. \text { One-body density }
\end{aligned}
$$

Two-particle exchange

$$
\begin{aligned}
& \mathcal{M}\left(\hat{P}_{A-3, A} \hat{P}_{A-4, A-1}\right)=\delta_{n_{c}^{\prime}, n_{c}} \delta_{\ell_{c}^{\prime}, \ell_{c}} \delta_{j_{c}^{\prime}, j_{c}} \frac{1}{(A-3)(A-4)} \\
& \times \sum_{K \tau}(-1)^{j_{c}+I_{1}+I+K+J+I^{\prime}+I_{a b}+I_{a b}^{\prime}+j_{a}^{\prime}+j_{b}^{\prime}+\frac{1}{2}+T_{1}+T_{2}+\tau+T+T_{2}^{\prime}+t_{2}+t_{2}^{\prime}+1} \hat{I} \hat{I}^{\prime} \hat{K} \hat{T}_{2} \hat{T}_{2}^{\prime} \hat{\tau} \\
& \times\left\{\begin{array}{ccc}
I_{1} & K & I_{1}^{\prime} \\
I^{\prime} & J & I
\end{array}\right\}\left\{\begin{array}{ccc}
j_{c} & I_{a b}^{\prime} & I^{\prime} \\
K & I & I_{a b}
\end{array}\right\}\left\{\begin{array}{ccc}
T_{1} & \tau & T_{1}^{\prime} \\
T_{2}^{\prime} & T & T_{2}
\end{array}\right\}\left\{\begin{array}{ccc}
\frac{1}{2} & t_{2}^{\prime} & T_{2}^{\prime} \\
\tau & T_{2} & t_{2}
\end{array}\right\} \\
& \times \underline{\left\langle A-3 \alpha_{1}^{\prime} I_{1}^{\prime} T_{1}^{\prime}\left\|\left|\left[\left(a_{n_{a} \ell_{a} j_{a} \frac{1}{2}}^{\dagger} a_{n_{b} \ell_{b} j_{b} \frac{1}{2}}^{\dagger}\right)^{\left(I_{a b} t_{2}\right)}\left(\tilde{a}_{n_{b}^{\prime} \ell_{b}^{\prime} j_{b}^{\prime} \frac{1}{2}} \tilde{a}_{n_{a}^{\prime} \ell_{a}^{\prime} j_{a}^{\prime} \frac{1}{2}}\right)^{\left(I_{a b}^{\prime} t_{2}^{\prime}\right)}\right]^{(K \tau)} \|\right| A-3 \alpha_{1} I_{1} T_{1}\right\rangle\right.}
\end{aligned}
$$

Norm kernel

Three-particle exchange

$$
\begin{aligned}
& \mathcal{M}\left(\hat{P}_{A-3, A} \hat{P}_{A-4, A-1} \hat{P}_{A-5, A-2}\right) \\
& =\frac{1}{(A-3)(A-4)(A-5)}(-1)^{I_{1}+I+J+I^{\prime}+j_{a}^{\prime}+j_{b}^{\prime}+j_{c}^{\prime}+T_{1}+T_{2}+T+T_{2}^{\prime}+\frac{3}{2}} \\
& \times \sum_{K \tau} \hat{K} \hat{\tau}\left\{\begin{array}{ccc}
I_{1} & K & I_{1}^{\prime} \\
I^{\prime} & J & I
\end{array}\right\}\left\{\begin{array}{ccc}
T_{1} & \tau & T_{1}^{\prime} \\
T_{2}^{\prime} & T & T_{2}
\end{array}\right\} \underline{\left\langle A-3 \alpha_{1}^{\prime} I_{1}^{\prime} T_{1}^{\prime}\| \|\left\{\left[\left(a_{n_{a} \ell_{a} j_{a} \frac{1}{2}}^{\dagger} a_{n_{b} \ell_{b j} j_{b} \frac{1}{2}}^{\dagger}{ }^{\left(I_{a b} t_{2}\right)} a_{n_{c} \ell_{c} j_{c} \frac{1}{2}}^{\dagger}{ }^{\left(I T_{2}\right)}\right.\right.\right.\right.}
\end{aligned}
$$

$=\frac{1}{(A-3)(A-4)(A-5)} \sum_{I_{\beta} T_{\beta}}(-1)^{j_{a}^{\prime}+j_{b}^{\prime}+j_{c}^{\prime}+I-I^{\prime}+I_{1}^{\prime}+I_{\beta}+\frac{3}{2}+T_{2}-T_{2}^{\prime}+T_{1}^{\prime}+T_{\beta}}\left\{\begin{array}{ccc}I & I_{1}^{\prime} & I_{\beta} \\ I^{\prime} & I_{1} & J\end{array}\right\}\left\{\begin{array}{ccc}T_{2} & T_{1}^{\prime} & T_{\beta} \\ T_{2}^{\prime} & T_{1} & T\end{array}\right\}$
$\times\left\langle A-3 \alpha_{1}^{\prime} I_{1}^{\prime} T_{1}^{\prime}\| \|\left[\left(a_{n_{a} \ell_{a} j_{a} \frac{1}{2}}^{\dagger} a_{\left.n_{b} \ell_{b j} b_{\frac{1}{2}}\right)^{1}{ }^{\left(I_{a b} t_{2}\right)} a_{n_{c} \ell_{c} j_{c} \frac{1}{2}}^{\dagger}\left(I T_{2}\right)}^{\|\left|A-6 \beta I_{\beta} T_{\beta}\right\rangle}\right.\right.\right.$

Completeness (closure) relation
$A=7$ case $\left.\left|A-6{ }_{\beta}\right|_{\beta}\right\rangle \rightarrow\left|n_{\beta}\right|_{\beta} \beta_{\beta} 1 / 2>$:single particle HO basis

Hamiltonian Kernel (8 terms)

$$
\begin{aligned}
& \mathcal{M}\left(V_{A-3, A-2}\left(1-\hat{P}_{A-3, A-2}\right)\right)=\delta_{\left(n_{a}^{\prime} \ell_{a} j_{a} j_{a}^{\prime}\right)\left(n_{a} \ell_{a} j_{a}\right.} \delta_{\left.\left(n_{6}^{\prime} \epsilon_{b} f_{b}^{\prime}\right)^{\prime}\right),\left(n_{b} \ell_{b j b}\right)} \delta_{a b}^{\prime}, I_{a b} \delta_{t_{2}, t_{2}} \frac{1}{A-3} \\
& \times \sum_{n_{d} \ell_{d j} j_{d}^{\prime}} \sum_{n_{d}^{\prime} \ell_{d}^{\prime} j_{d}} \sum_{K \tau J_{0} T_{0}}(-1)^{I_{a b}+I_{1}+J+K-J_{0}+j_{d}^{\prime}+t_{2}+T_{1}+T+\tau-T_{0}+1 / 2} \hat{I} \hat{I}^{\prime} \hat{K} \hat{K}_{0}^{2} \hat{T_{2}} \hat{T}_{2}^{\prime} \hat{\tau} \hat{T}_{0}^{2} \\
& \times\left\{\begin{array}{ccc}
I_{1} & K & I_{1}^{\prime} \\
I^{\prime} & J & I
\end{array}\right\}\left\{\begin{array}{ccc}
I_{a b} & j_{c}^{\prime} & I^{\prime} \\
K & I & j_{c}
\end{array}\right\}\left\{\begin{array}{lll}
j_{c}^{\prime} & K & j_{c} \\
j_{d} & J_{0} & j_{d}^{\prime}
\end{array}\right\}\left\{\begin{array}{lll}
T_{1} & \tau & T_{1}^{\prime} \\
T_{2}^{\prime} & T & T_{2}
\end{array}\right\}\left\{\begin{array}{ccc}
t_{2} & \frac{1}{2} & T_{2}^{\prime} \\
\tau & T_{2} & \frac{1}{2}
\end{array}\right\}\left\{\begin{array}{ccc}
\frac{1}{2} & \tau & \frac{1}{2} \\
\frac{1}{2} & T_{0} & \frac{1}{2}
\end{array}\right\} \\
& \times \sqrt{1+\delta_{\left(n_{c} \ell_{c}^{\prime} l_{d} j_{)}^{\prime}\right)\left(n_{d}^{\prime} \ell_{d}^{\prime} j_{d}^{\prime} j_{d}^{\prime}\right.}} \sqrt{1+\delta_{\left(n_{d} \ell_{d} j_{d}\right),\left(n_{c} \ell_{c} j_{c}\right)}}\left\langle\left(n_{c}^{\prime} \ell_{c}^{\prime} j_{c}^{\prime} \frac{1}{2}\right)\left(n_{d}^{\prime} \ell_{d}^{\prime} j_{d}^{\prime} \frac{1}{2}\right) J_{0} T_{0}\right| V\left|\left(n_{c} \ell_{c} j_{c} \frac{1}{2}\right)\left(n_{d} \ell_{d} j_{d} \frac{1}{2}\right) J_{0} T_{0}\right\rangle \\
& \times \underline{\left\langle A-3 \alpha_{1}^{\prime} I_{1}^{\prime} T_{1}^{\prime}\left\|\left|\left(a_{n_{d}^{\prime} \ell_{d}^{\prime} d_{d}^{2}}^{\dagger} \tilde{a}_{n_{d} \ell_{d} j_{d} \frac{1}{2}}\right)^{(K \tau)} \|\right| A-3 \alpha_{1} I_{1} T_{1}\right\rangle\right.} \\
& \text { Two-body interaction }
\end{aligned}
$$

One-body density

$$
\begin{aligned}
& \mathcal{M}\left(V_{A-6, A-2} \hat{P}_{A-3, A} \hat{P}_{A-4, A-1} \hat{P}_{A-5, A-2}\right) \\
& =\frac{1}{2(A-3)(A-4)(A-5)(A-6)} \sum_{n_{f} \ell_{f} j_{j}} \sum_{n_{g} \ell_{g} j_{g}} \sum_{n_{g}^{\prime} \ell_{g}^{\prime} j_{g}^{\prime}} \sum_{J_{0} K K_{1} K_{2} k_{2}} \sum_{T_{0} \tau \tau_{1} \tau_{2} q_{2}} \\
& \times(-1)^{I_{1}+J+K+j_{a}^{\prime}+j_{b}^{\prime}+j_{c}^{\prime}+T_{1}+T+\tau+3 / 2} \hat{I}^{\prime} \hat{K} \hat{K}_{1} \hat{K}_{2} \hat{k}_{2} \hat{J}_{0}^{2} \hat{T}_{2}^{\prime} \hat{\tau} \hat{\tau}_{1} \hat{\tau}_{2} \hat{q}_{2} \hat{T}_{0}^{2} \\
& \times\left\{\begin{array}{ccc}
I_{1} & K & I_{1}^{\prime} \\
I^{\prime} & J & I
\end{array}\right\}\left\{\begin{array}{ccc}
K & I^{\prime} & I \\
j_{g}^{\prime} & K_{1} & K_{2}
\end{array}\right\}\left\{\begin{array}{ccc}
I_{a b}^{\prime} & j_{f} & k_{2} \\
j_{g} & K_{2} & J_{0}
\end{array}\right\}\left\{\begin{array}{ccc}
I_{a b}^{\prime} & j_{c}^{\prime} & I^{\prime} \\
j_{g}^{\prime} & K_{2} & J_{0}
\end{array}\right\} \\
& \times\left\{\begin{array}{lll}
T_{1} & \tau & T_{1}^{\prime} \\
T_{2}^{\prime} & T & T_{2}
\end{array}\right\}\left\{\begin{array}{ccc}
\tau & T_{2}^{\prime} & T_{2} \\
\frac{1}{2} & \tau_{1} & \tau_{2}
\end{array}\right\}\left\{\begin{array}{lll}
t_{2}^{\prime} & \frac{1}{2} & q_{2} \\
\frac{1}{2} & \tau_{2} & T_{0}
\end{array}\right\}\left\{\begin{array}{ccc}
t_{2}^{\prime} & \frac{1}{2} & T_{2}^{\prime} \\
\frac{1}{2} & \tau_{2} & T_{0}
\end{array}\right\} \\
& \times \sqrt{1+\delta_{\left(n_{c}^{\prime} \ell_{c}^{\prime} j_{c}^{\prime}\right),\left(n_{g}^{\prime} \ell_{g}^{\prime} j_{g}^{\prime}\right)}} \sqrt{1+\delta_{\left(n_{f} \ell_{f} j_{f}\right),\left(n_{g} \ell_{g} j_{g}\right)}}\left\langle\left(n_{c}^{\prime} \ell_{c}^{\prime} j_{c}^{\prime} \frac{1}{2}\right)\left(n_{g}^{\prime} \ell_{g}^{\prime} j_{g}^{\prime} \frac{1}{2}\right) J_{0} T_{0}\right| V\left|\left(n_{f} \ell_{f} j_{f} \frac{1}{2}\right)\left(n_{g} \ell_{g} j_{g} \frac{1}{2}\right) J_{0} T_{0}\right\rangle \\
& \times\left\langle A-3 \alpha_{1}^{\prime} I_{1}^{\prime} T_{1}^{\prime} \|\right| \left\lvert\,\left\{\left[\left(a_{n_{a} \ell_{a} j_{a} \frac{a}{2}}^{\dagger} a_{n_{b} \ell_{b} j_{b} \frac{1}{2}}^{\dagger}\right)^{\left(I_{a b} t_{2}\right)} a_{n_{c} \ell_{c} c_{c} \frac{1}{2}}^{\dagger}\right]^{\left(I T_{2}\right)} a_{n_{g}^{\prime} \ell_{g}^{\prime} j_{g} \frac{1}{2}}^{\dagger}\right\}^{\left(K_{1} \tau_{1}\right)} \quad\right. \text { Four-body } \\
& \text { density } \\
& \frac{\left.\times\left\{\tilde{a}_{n_{g} \ell_{g} j_{g} \frac{1}{2}}\left[\tilde{a}_{n_{f} \ell_{f} j_{f} \frac{1}{2}}\left(\tilde{a}_{n_{b}^{\prime} \ell_{b}^{\prime} j_{b}^{\prime} \frac{1}{2}} \tilde{a}_{n_{a}^{\prime} \ell_{a}^{\prime} j_{a}^{\prime} j_{a} \frac{1}{2}}\right)^{\left(I_{a b}^{\prime} t_{2}^{\prime}\right)}\right]^{\left(k_{2} q_{2}\right)}\right\}^{\left(K_{2} \tau_{2}\right)}\right)^{(K \tau)} \| \mid A}{1} \sum_{n_{f} \ell_{f} j_{f}} \sum_{n_{g} \ell_{g} j_{g}} \sum_{n_{g}^{\prime} g_{g}^{\prime} j_{g}^{\prime}} \sum_{J_{0} K_{1} K_{2} k_{2} I_{\beta} T_{0}} \sum_{0 \tau_{1} \tau_{2} q_{2} T_{\beta}} \\
& \times(-1)^{2 I_{1}+I_{1}^{\prime}+J+j_{a}^{\prime}+j_{b}^{\prime}+j_{c}^{\prime}+2 T_{1}+T_{1}^{\prime}+T+3 / 2} \hat{I}^{\prime} \hat{K}_{1} \hat{K}_{2} \hat{k}_{2} \hat{J}_{0}^{2} \hat{T}_{2}^{\prime} \hat{\tau}_{1} \hat{\tau}_{2} \hat{q}_{2} \hat{T}_{0}^{2} \\
& \times\left\{\begin{array}{ccc}
I_{a b}^{\prime} & j_{f} & k_{2} \\
j_{g} & K_{2} & J_{0}
\end{array}\right\}\left\{\begin{array}{ccc}
I_{a b}^{\prime} & j_{c}^{\prime} & I^{\prime} \\
j_{g}^{\prime} & K_{2} & J_{0}
\end{array}\right\}\left\{\begin{array}{ccc}
I_{1} & K_{2} & I_{\beta} \\
I & j_{g}^{\prime} & K_{1} \\
J & I^{\prime} & I_{1}^{\prime}
\end{array}\right\}\left\{\begin{array}{ccc}
t_{2}^{\prime} & \frac{1}{2} & q_{2} \\
\frac{1}{2} & \tau_{2} & T_{0}
\end{array}\right\}\left\{\begin{array}{ccc}
t_{2}^{\prime} & \frac{1}{2} & T_{2}^{\prime} \\
\frac{1}{2} & \tau_{2} & T_{0}
\end{array}\right\}\left\{\begin{array}{ccc}
T_{1} & \tau_{2} & T_{\beta} \\
T_{2} & \frac{1}{2} & \tau_{1} \\
T & T_{2}^{\prime} & T_{1}^{\prime}
\end{array}\right\} \\
& \times \sqrt{1+\delta_{\left(n_{c}^{\prime} \ell_{j}^{\prime} j_{\ell}^{\prime}\right),\left(n_{g}^{\prime} \ell_{g}^{\prime} j_{g}^{\prime}\right)}} \sqrt{1+\delta_{\left(n_{f} \ell_{f} j_{f}\right),\left(n_{g} \ell_{g} j_{g}\right)}}\left\langle\left(n_{c}^{\prime} \ell_{c}^{\prime} j_{c}^{\prime} \frac{1}{2}\right)\left(n_{g}^{\prime} \ell_{g}^{\prime} j_{g}^{\prime} \frac{1}{2}\right) J_{0} T_{0}\right| V\left|\left(n_{f} \ell_{f} j_{f} \frac{1}{2}\right)\left(n_{g} \ell_{g} j_{g} \frac{1}{2}\right) J_{0} T_{0}\right\rangle \\
& \times \underline{\left\langle A-3 \alpha_{1}^{\prime} I_{1}^{\prime} T_{1}^{\prime}\left\|\left|\left\{\left[\left(a_{n_{a} \ell_{a} j_{a} \frac{1}{2}}^{\dagger} a_{n_{b} \ell_{b} j_{b} \frac{1}{2}}^{\dagger}\right)^{\left(I_{a b} t_{2}\right)} a_{n_{c} \ell_{c} j_{c} \frac{1}{2}}^{\dagger}\right]^{\left(I T_{2}\right)} a_{n_{g}^{\prime} \ell_{g}^{\prime} j_{g}^{\prime} \frac{1}{2}}^{\dagger}\right\}^{\left(K_{1} \tau_{1}\right)} \|\right| A-7 \beta I_{\beta} T_{\beta}\right\rangle\right.} \\
& \times \underline{\left\langle A-7 \beta I_{\beta} T_{\beta}\left\|\left|\left\{\tilde{a}_{n_{g} \ell_{g} j_{g} \frac{1}{2}}\left[\tilde{a}_{n_{f} \ell_{f} j_{f} \frac{1}{2}}\left(\tilde{a}_{n_{b}^{\prime} \ell_{b}^{\prime} j_{b}^{\prime} \frac{1}{2}} \tilde{a}_{n_{a}^{\prime} \ell_{a}^{\prime} j_{a}^{\prime} \frac{1}{2}}\right)^{\left(I_{a b}^{\prime} t_{2}^{\prime}\right)}\right]^{\left(k_{2} q_{2}\right)}\right\}^{\left(K_{\left.2 \tau_{2}\right)}\right.} \|\right| A-3 \alpha_{1} I_{1} T_{1}\right\rangle\right.} \\
& \text { Closure relation } \\
& \text { A=7 case } \\
& \mid \mathrm{A}-7 \mathrm{BI}_{\beta} \mathrm{T}_{\beta}>\rightarrow \text { vacuum }
\end{aligned}
$$

Phase shifts (preliminary)

Phase shifts (preliminary) with Exp.

Other pseudo states (e. g. 3/2+) should be added.

Summary and future

- NCSM/RGM for a three-body projectile
- Algebraic derivation and coding completed
- Preliminary ${ }^{3} \mathrm{He}+{ }^{4} \mathrm{He}$ Phase shift
- To be done
- Check the convergence
- Pseudo states ($3 / 2^{+}$, negative parity)
- Future developments
- Radiative capture reaction of ${ }^{3} \mathrm{He}\left({ }^{4} \mathrm{He}, \gamma\right)^{7} \mathrm{Be}$
- Heavier target (many-body density)
- Derive the RGM kernels for a four-particle projectile

