How to Save TERABYES of memory:

on-the-fly algorithms for 3- (and 4-) body forces in many-body systems

Collaborators:

W. Erich Ormand, Lawrence Livermore Plamen G. Krastev, Harvard Supercomputing Hai Ah Nam, SDSU/ Oak Ridge Collaborators-in-training: Joshua Staker & Micah Schuster, SDSU

How to Save TERABYTES PETABYES of memory:

on-the-fly algorithms for 3- (and 4-) body forces in many-body systems

Collaborators:

W. Erich Ormand, Lawrence Livermore Plamen G. Krastev, Harvard Supercomputing Hai Ah Nam, SDSU/ Oak Ridge Collaborators-in-training: Joshua Staker & Micah Schuster, SDSU

THE KEY ISSUES

Sparsity/storage requirements of matrices

Redundancy of matrix elements

Factorization and reduced storage of operations

Parallel distribution of operations

What's new in BIGSTICK

SPARSITY AND MATRIX STORAGE

A SPARSE MATRIX, BUT....

Despite sparsity, nonzero matrix elements can require TB of storage

•Typical dimensions and sparsity

Nuclide	valence space	valence Z	valence N	basis dim	sparsity (%)	
²⁰ Ne	"sd"	2	2	640	10	
^{25}Mg	"sd"	4	5	44,133	0.5	
⁴⁹ Cr	"pf"	4	5	6M	0.01	
⁵⁶ Fe	"pf"	6	10	500M	2x10 ⁻⁴	
$^{12}\mathrm{C}$	N _{max} =8	6	6	600M	4x10-4	2-body force
$^{12}\mathbf{C}$	N _{max} =8	6	6	600M	2x10 ⁻²	3-body force

A SPARSE MATRIX, BUT....

Despite sparsity, nonzero matrix elements can require TB of storage

Nuclide	Space	Basis dim	matrix store
⁵⁶ Fe	pf	501 M	4.2 Tb
⁷ Li	N _{max} =12	252 M	3.6 Tb
⁷ Li	N _{max} =14	1200 M	23 Tb
¹² C	N _{max} =6	32M	0.2 Tb
¹² C	N _{max} =8	590M	5 Tb
¹² C	N _{max} =10	7800M	111 Tb
¹⁶ O	N _{max} =6	26 M	0.14 Tb
¹⁶ O	N _{max} =8	990 M	9.7 Tb

A SPARSE MATRIX, BUT....

Despite sparsity, nonzero matrix elements can require TB of storage

Nuclide	Space	Basis dim	matrix store (2-body)	matrix store (3-body)
⁴ He	N _{max} =16	6 M	0.2 Gb	12 Tb
⁴ He	N _{max} =20	39 M	3 Tb	270 Tb
⁷ Li	N _{max} =10	43 M	0.4 Tb	176 Tb
¹² C	N _{max} =6	32M	0.2 Tb	6.2 Tb
¹² C	N _{max} =8	590M	5 Tb	200 Tb

REDUNDANCY OF MATRIX ELEMENTS

A Sparse Matrix, but....

• How the Hamiltonian is represented

"occupation representation"

$$|\alpha\rangle = \hat{a}_{n_1}^+ \hat{a}_{n_2}^+ \hat{a}_{n_3}^+ \dots \hat{a}_{n_N}^+ |0\rangle$$

n _i	1	2	3	4	5	6	7
α=1	1	0	0	1	1	0	1
α=2	1	0	1	0	0	1	1
α=3	0	1	1	1	0	1	0

$$\hat{H} = \sum_{ij} T_{ij} \hat{a}_i^{\dagger} \hat{a}_j + \frac{1}{4} \sum_{ijkl} V_{ijkl} \hat{a}_i^{\dagger} \hat{a}_j^{\dagger} \hat{a}_l \hat{a}_k$$

Usually, each *i* represents single-particle states with good *j,m*, parity

RECYCLED MATRIX ELEMENTS

Only a fraction of matrix elements are unique; **most are reused.** Reuse of matrix elements understood through *spectator* particles.

TRIUMF – Feb 2012

RECYCLED MATRIX ELEMENTS

Only a fraction of matrix elements are unique; **most are reused.** Reuse of matrix elements understood through *spectator* particles.

of nonzero matrix elements vs. # unique matrix elements

Nuclide	valence space	valence Z	valence N	# nonzero	# unique
²⁸ Si	"sd"	6	6	$26 \ge 10^{6}$	3600
⁵² Fe	"pf"	6	6	$90 \ge 10^9$	21,500

Nuclide	ab initio space	basis dim	# nonzero m.e.s	# unique	avg redundancy
⁴ He	$N_{max} = 16$	6M	$2 \ge 10^{10}$	109	18
$^{12}\mathrm{C}$	N _{max} =8	600M	6 x 10 ¹¹	$5 \ge 10^{7}$	10,000

FACTORIZATION ALGORITHMS

Reuse can be **exploited using exact factorization** enforced through *additive/multiplicative quantum numbers*

We work in an *M*-scheme basis:

Because J^2 and J_z both commute with **H**, one does not need *all* basis states, but can use many-body basis restricted to the same *M*.

This is easy because M is an additive quantum number so it is possible for a single Slater determinant to be a state of good M.

(It's possible to work in a *J*-basis, e.g. OXBASH or NuShell, but each basis state is generally a complicated sum of Slater determinants).

Reuse can be **exploited using exact factorization** enforced through *additive/multiplicative quantum numbers*

Because the M values are discrete integers or half-integers (-3, -2, -1, 0, 1, 2, ... or -3/2, -1/2, +1/2, +3/2...) we can organize the basis states in discrete *sectors*

Example: 2 protons, 4 neutrons, total M = 0

$$M_{z}(\pi) = -4$$

 $M_{z}(\upsilon) = +4$
 $M_{z}(\pi) = -3$
 $M_{z}(\upsilon) = +3$

$$M_z(\pi) = -2$$
 $M_z(\upsilon) = +2$

Reuse can be **exploited using exact factorization** enforced through *additive/multiplicative quantum numbers*

In fact, we can see an example of factorization here because all proton Slater determinants in one M-sector *must* combine with all the conjugate neutron Slater determinants

Example: 2 protons, 4 neutrons, total M = 0

$$M_z(\pi) = -4: 2 \text{ SDs}$$
 $M_z(\upsilon) = +4: 24 \text{ SDs}$ 48 combined $M_z(\pi) = -3: 4 \text{ SDs}$ $M_z(\upsilon) = +3: 39 \text{ SDs}$ 156 combined $M_z(\pi) = -2: 9 \text{ SDs}$ $M_z(\upsilon) = +2: 60 \text{ SDs}$ 540 combined

Reuse can be **exploited using exact factorization** enforced through *additive/multiplicative quantum numbers*

In fact, we can see an example of factorization here because all proton Slater determinants in one M-sector *must* combine with all the conjugate neutron Slater determinants

M _z (π) = -4: 2 SDs	M _z (υ) = +4: 24 SDs	48 combined
$egin{array}{c} \pi_1 angle \ \pi_2 angle \ igstarrow \end{array}$	$egin{array}{c c} v_1 angle \ v_2 angle \ v_3 angle \ v_4 angle \end{array}$	$egin{aligned} \pi_1 angle &oldsymbol{ u}_1 angle \ \pi_2 angle &oldsymbol{ u}_1 angle \ \pi_1 angle &oldsymbol{ u}_2 angle \ \pi_2 angle &oldsymbol{ u}_2 angle \ dots\ \dots\ dots\ dots$
	$ {m v}_{24} angle$	$ \pi_1 angle u_{24} angle$
	TRIUMF – Feb 2012	$ \pi_2 angle\! u_{24} angle$

16

Reuse can be exploited using exact factorization enforced through additive/multiplicative quantum numbers

TRIUMF – FEB 2012

Reuse can be **exploited using exact factorization** enforced through *additive/multiplicative quantum numbers*

Factorization allows us to keep track of all basis states without writing out every one explicitly -- we only need to write down the proton/neutron components

The same trick can be applied to matrix-vector multiply

TRIUMF – Feb 2012

Reuse can be **exploited using exact factorization** enforced through *additive/multiplicative quantum numbers*

There are potentially 48×48 matrix elements But for H_{pp} at most 4×24 are nonzero and we only have to look up 4 matrix elements

Advantage: **we can store 98 matrix elements as 4 matrix elements** and avoid 2000+ zero matrix elements.

Reuse can be **exploited using exact factorization** enforced through *additive/multiplicative quantum numbers*

 $M_{z}(\pi) = -4: 2 \text{ SDs} \qquad M_{z}(\upsilon) = +4: 24 \text{ SDs} \qquad 48 \text{ combined}$ $\begin{vmatrix} v_{1} \rangle \\ |v_{2} \rangle \\ |\pi_{2} \rangle \qquad H_{pp} = \begin{pmatrix} H_{11} & H_{12} \\ H_{21} & H_{22} \end{pmatrix} \qquad \begin{vmatrix} v_{1} \rangle \\ |v_{2} \rangle \\ |v_{3} \rangle \\ |v_{4} \rangle \\ \vdots \\ |v_{24} \rangle$

Advantage: **we can store 98 matrix elements as 4 matrix elements** and avoid 2000+ zero matrix elements.

Reuse can be **exploited using exact factorization** enforced through *additive/multiplicative quantum numbers*

M _z (π) = -4: 2 SDs	M _z (υ) =	= +4: 24 SDs 48 combined
$ \begin{vmatrix} \pi_1 \\ \pi_2 \end{vmatrix} \qquad H_{pp} = \begin{pmatrix} H_{11} & H_{12} \\ H_{21} & H_{22} \end{pmatrix} $	$egin{aligned} egin{aligned} egi$	$\begin{split} H_{pp} \pi_{1}\rangle \nu_{1}\rangle &= H_{11} \pi_{1}\rangle \nu_{1}\rangle + H_{12} \pi_{2}\rangle \nu_{1}\rangle \\ H_{pp} \pi_{2}\rangle \nu_{1}\rangle &= H_{12} \pi_{1}\rangle \nu_{1}\rangle + H_{22} \pi_{2}\rangle \nu_{1}\rangle \\ H_{pp} \pi_{1}\rangle \nu_{2}\rangle &= H_{11} \pi_{1}\rangle \nu_{2}\rangle + H_{12} \pi_{2}\rangle \nu_{2}\rangle \\ H_{pp} \pi_{2}\rangle \nu_{2}\rangle &= H_{12} \pi_{1}\rangle \nu_{2}\rangle + H_{22} \pi_{2}\rangle \nu_{2}\rangle \\ \vdots \\ H_{pp} \pi_{1}\rangle \nu_{24}\rangle &= H_{11} \pi_{1}\rangle \nu_{24}\rangle + H_{12} \pi_{2}\rangle \nu_{24}\rangle \\ H_{pp} \pi_{2}\rangle \nu_{24}\rangle &= H_{12} \pi_{1}\rangle \nu_{24}\rangle + H_{22} \pi_{2}\rangle \nu_{24}\rangle \end{split}$

Advantage: we can store 98 matrix elements as 4 matrix elements and avoid 2000+ zero matrix elements.

Reuse can be **exploited using exact factorization** enforced through *additive/multiplicative quantum numbers*

Comparison of nonzero matrix storage with factorization

Nuclide	Space	Basis dim	matrix store	factorization
⁷ Li	N _{max} =12	252 M	3600 Gb	96 Gb
⁷ Li	N _{max} =14	1200 M	23 Tb	624 Gb
¹² C	N _{max} =6	32M	196 Gb	3.3 Gb
¹² C	N _{max} =8	590M	5000 Gb	65 Gb
¹² C	N _{max} =10	7800M	111 Tb	1.4 Tb
¹⁶ 0	N _{max} =6	26 M	142 Gb	3.0 Gb
¹⁶ 0	N _{max} =8	990 M	9700 Gb	130 Gb

Comparison of nonzero matrix storage with factorization

⁴He

Space	Basis dim	matrix store (2-body)	factorization (2-body)	matrix store (3-body)	factorization (3-body)
N _{max} =14	2M	46 Gb	1.2 Gb	2 Tb	16 Gb
N _{max} =16	6M	200 Gb	4 Gb	12 Tb	60 Gb
N _{max} =18	16M	820 Gb	11 Gb	60 Tb	190 Gb
N _{max} =20	39M	3 Tb	29 Gb	270 Tb	600 Gb
N _{max} =22	86M	9 Tb	70 Gb	1.1 Pb	1.4 Tb

Comparison of nonzero matrix storage with factorization

⁴He

Space	Basis dim	matrix store (2-body)	factorization (2-body)	matrix store (3-body)	factorization (3-body)
N _{shell} =8	29 M	1.4 Tb	0.6 Gb	120 Tb	11 Gb
N _{shell} =9	93 M	8 Tb	1.7 Gb	870 Tb	40 Gb
N _{shell} =10	270 M	36 Tb	5 Gb	5 Pb	120 Gb
N _{shell} =11	700 M	150 Tb	12 Gb	28 Pb	350 Gb
N _{shell} =12	1.7 G	500 Tb	27 Gb	130 Pb	900 Gb
N _{shell} =13	4 G	1.7 Pb	60 Gb	500 Pb	2 Tb

Comparison of nonzero matrix storage with factorization

⁷Li

Space	Basis dim	matrix store (2-body)	factorization (2-body)	matrix store (3-body)	factorization (3-body)
N _{max} =8	6 M	36 Gb	1.5 Gb	1 Tb	26 Gb
N _{max} =10	43 M	430 Gb	10 Gb	170 Tb	250 Gb
N _{max} =12	250 M	4 Tb	60 Gb		

Space	Basis dim	matrix store (2-body)	factorization (2-body)	matrix store (3-body)	factorization (3-body)
N _{shell} =3	0.4 M	0.8 Gb	6 Mb	10 Gb	44 Mb
N _{shell} =4	45 M	330 Gb	0.3 Gb	9 Tb	4 Gb
N _{shell} =5	2 G	38 Tb	16 Gb	2 Pb	140 Gb
N _{shell} =6	50 G	2 Pb	87 Gb	170 Pb	3 Tb

Factorization

Comparison of nonzero matrix storage with factorization

⁹Be

Space	Basis dim	matrix store (2-body)	factorization (2-body)	matrix store (3-body)	factorization (3-body)
N _{max} =6	5 M	22 Gb	1 Gb	0.6 Tb	12 Gb
N _{max} =8	63 M	460 Gb	9 Gb	17 Tb	200 Gb
N _{max} =10	570 M	7 Tb	70 Gb		

Space	Basis dim	matrix store (2-body)	factorization (2-body)	matrix store (3-body)	factorization (3-body)
N _{shell} =3	4 M	15 Gb	30 Mb	240 Gb	240 Mb
N _{shell} =4	3 G	30 Tb	3 Gb	1 Pb	50 Gb
N _{shell} =5	400 G	12 Pb	130 Gb	800 Pb	3.6 Tb

Factorization

Comparison of nonzero matrix storage with factorization

 ^{10}B

Space	Basis dim	matrix store (2-body)	factorization (2-body)	matrix store (3-body)	factorization (3-body)
N _{max} =6	12 M	60 Gb	1.3 Gb	1.6 Tb	22 Gb
N _{max} =8	165 M	1.3 Tb	16 Gb	52 Tb	360 Gb

Comparison of nonzero matrix storage with factorization

¹²C

Space	Basis dim	matrix store (2-body)	factorization (2-body)	matrix store (3-body)	factorization (3-body)
N _{max} =6	32 M	170 Gb	3 Gb	5 Tb	60 Gb
N _{max} =8	590 M	5 Tb	45 Gb	200 Tb	1 Tb
N _{max} =10	8 G	100 Tb	440 Gb		

Space	Basis dim	matrix store (2-body)	factorization (2-body)	matrix store (3-body)	factorization (3-body)
N _{shell} =3	82 M	400 Gb	0.1 Gb	9 Tb	1.5 Gb
N _{shell} =4	600 G	10 Pb	43 Gb	580 Tb	0.9 Tb

Comparison of nonzero matrix storage with factorization

¹⁶O

Space	Basis dim	matrix store (2-body)	factorization (2-body)	matrix store (3-body)	factorization (3-body)
N _{max} =4	0.3 M	1 Gb	70 Mb	17 Gb	0.7 Gb
N _{max} =6	26 M	140 Gb	3 Gb	4 Tb	53 Gb
N _{max} =8	1 G	8.6 Tb	70 Gb		

Space	Basis dim	matrix store (2-body)	factorization (2-body)	matrix store (3-body)	factorization (3-body)
N _{shell} =3	800 M	6 Tb	0.7 Gb	140 Tb	7.5 Gb

Drawbacks of factorization/on-the-fly algorithms:

Much more complicated to code up (even matrix storage is not trivial)

Less flexible in basis—for example, importance truncation much harder (if even possible)

4-body is in principle straightforward

Experience in going from 2-body to 3-body shows most difficult part is correctly matching indices of input interaction to internal representation (+ induced phases etc) – useful to have *small* cases with known solutions for debugging

PARALLEL IMPLEMENTATION

PARALLEL IMPLEMENTATION

Factorization makes it easier to compute workload and distribute across multiple nodes

PARALLEL IMPLEMENTATION

Factorization makes it easier to compute workload and distribute across multiple nodes

TRIUMF – Feb 2012

PARALLEL IMPLEMENTATION

Factorization makes it easier to compute workload and distribute across multiple nodes

THE BIGSTICK CODE

THE BIGSTICK CODE

Many-fermion code: 2nd generation after REDSTICK code (started in *Baton Rouge, La*.)

Arbitrary single-particle radial waveforms Allows local or nonlocal two-body interaction Applies to both nuclear and atomic cases

Runs on both desktop and parallel machines --can run at least dimension 100M+ on desktop (20 Lanczos iterations in 300 CPU minutes)

20-30k lines of codes Fortran 90 + MPI + OpenMP Partially funded by SciDAC Plans to run on 50,000-100,000 compute nodes Plans to publish code late 2012

THE BIGSTICK CODE

What's new since last year:

Full 3-body capability

Improved efficiencies in memory usage

OpenMP parallelization (WEO)

"2nd generation" MPI parallelization in progress

Looking for purveyors of 3-body interactions to partner with ! (Also, 4-body...)