

Drip Lines and Magic Numbers: 3N Forces in Medium-Mass Nuclei

Drip Lines and Magic Numbers: 3N Forces in Medium-Mass Nuclei

Important in light nuclei, nuclear matter...

What are the limits of nuclear existence?

How do magic numbers form and evolve?

Holt, Otsuka, Schwek, (d) NN + 3N ($pfg_{q/2}$ shell) Energy (MeV) Suzuki, arXiv:1009.5984 5 2^{+}_{1} 2 $V_{low k}$ (NN) $V_{low k} + 3N(N^{2}LO)$ protons 0 $+ 3N(N^{2}LO)$ [MBPT] 42 44 46 48 50 52 54 56 58 60 62 64 66 68 Mass Number A 28 50 8 2 20 8 2 neutrons

Drip Lines and Magic Numbers: 3N Forces in Medium-Mass Nuclei

Important in light nuclei, nuclear matter... What are the limits of nuclear existence? How do magic numbers form and evolve? 82

Solving the Nuclear Many-Body Problem

Nuclei understood as many-body system starting from closed shell, add nucleons

Solving the Nuclear Many-Body Problem

Nuclei understood as many-body system starting from closed shell, add nucleons

Solving the Nuclear Many-Body Problem

Nuclei understood as many-body system starting from closed shell, add nucleons

3rd-order MBPT: intermediate states to 13 major shells

3N Forces for Valence-Shell Theories

Normal-ordered 3N: contribution to valence neutron interactions

Effective two-body

Effective one-body

Combine with microscopic NN: eliminate empirical adjustments

Oxygen Anomaly

One-Body 3N: Single Particle Energies

NN-only microscopic SPEs yield poor results – rely on empirical adjustments

sd-shell: SPEs much too bound, unreasonable splitting

Orbit	"Exp"	USDb	$T + V_{NN}$
<i>d</i> _{5/2}	-4.14	-3.93	-5.43
s _{1/2}	-3.27	-3.21	-5.32
d _{3/2}	0.944	2.11	-0.97

One-Body 3N: Single Particle Energies

NN-only microscopic SPEs yield poor results – rely on empirical adjustments

sd-shell: SPEs much too bound, unreasonable splitting **3N forces**: additional repulsion – reasonable values!

Orbit	USDb	$T + V_{NN} + V_{3N}$
<i>d</i> _{5/2}	-3.93	-3.82
s _{1/2}	-3.21	-2.14
d _{3/2}	2.11	2.01

One-Body 3N: Single Particle Energies

Effects of correlations beyond one major oscillator shell:

Fully microscopic framework and extended valence space

Fully-Microscopic Calculations

Interaction and self-consistent SPEs from NN+3N

Empirical SPEs for NN-only

NN-only: dripline at ²⁸O NN+3N: dripline at ²⁴O

sd-shell results underbound; improved in *sdf*_{7/2} $p_{3/2}$

Continuum: ~300keV more binding beyond ²⁴O (from CC)

Impact on Spectra: ²³O

Neutron-rich oxygen spectra with NN+3N $5/2^+$, $3/2^+$ indicate position of $d_{5/2}$ and $d_{3/2}$ orbits

Impact on Spectra: ²³O

Neutron-rich oxygen spectra with NN+3N $5/2^+$, $3/2^+$ indicate position of $d_{5/2}$ and $d_{3/2}$ orbits

Impact on Spectra: ²³O

Neutron-rich oxygen spectra with NN+3N $5/2^+$, $3/2^+$ indicate position of $d_{5/2}$ and $d_{3/2}$ orbits

Continuum effectively lowers $3/2^+$ - vital for ²⁴⁻²⁸O

Impact on Spectra: ²²O

Neutron-rich oxygen spectra with NN+3N 22 O: *N*=14 new magic number – not reproduced with NN

Contributions from 3N and extended valence orbitals important

Impact on Spectra: ²¹O

Neutron-rich oxygen spectra with NN+3N Spectrum sensitive to $s_{1/2}$ shell closure

NN-only Low-lying states too compressed 7/2⁺-5/2⁺ too wide

Microscopic NN+3N Improvement in sd Extended orbits essential Improved spacing in all levels

Holt, Schwenk, arXiv:1108.2680

3N improvements largely due to higher calculated $s_{1/2}$ orbital Need proper treatment of non-degenerate spaces

Shell Formation/Evolution in Calcium Isotopes

Calcium Isotope Physics: Magic Numbers

GXPF1: Honma, Otsuka, Brown, Mizusaki (2004) KB3G: Poves, Sanchez-Solano, Caurier, Nowacki (2001)

Phenomenological Forces

Large gap at ⁴⁸Ca
Discrepancy at N=34

Microscopic NNTheory

Small gap at ⁴⁸Ca

N=28: first standard magic

number not reproduced in microscopic NN theories

Evolution of Shell Structure

SPE evolution with 3N forces in *pf* and *pfg*_{9/2} spaces:

NN+3N *pf*-shell:

Trend across: improved binding energies Increased gap at ⁴⁸Ca: enhanced closed-shell features

Include $g_{9/2}$ orbit, calculated SPEs

More modest N=34 gap Different behavior of ESPEs

Small gap can give large 2⁺ energy Duguet, Hagen, arXiv:1110.2468

N=28 Magic Number in Calcium

First excited 2⁺ energies in calcium isotopes with NN+3N

Holt, Otsuka, Schwenk, Suzuki arXiv:1009.5984

pf-shell: robust but modest improvement in 2^+ energies, below experiment *pfg*_{9/2}-shell: reproduce experimental 2^+ in ⁴⁸Ca Both 3N and extended space essential

Evolution of Magic Numbers: N=34

Holt, Otsuka, Schwenk, Suzuki arXiv:1009.5984

pf-shell: Very pronounced closed-shell properties *pfg*_{9/2}-shell: More modest, similar to ⁵²Ca

Evolution of Magic Numbers: N=40

Holt, Otsuka, Schwenk, Suzuki arXiv:1009.5984

Extremely pronounced with NN-only Dramatically quenched with NN+3N

Calcium Ground State Energies and Dripline

Ground state energies using NN+3N

NN-only: overbinds beyond $\sim {}^{46}Ca$

pf-shell: 3N forces correct binding energies; good experimental agreement $pfg_{9/2}$ -shell: calculate to ⁷⁰Ca; modest overbinding (as in oxygen) Predict heaviest calcium isotope ~ ⁵⁸⁻⁶⁰Ca

Experimental Connection: Mass of 52Ca

 $S_{\rm 2n}$ energies for exotic calcium isotopes:

NN-only: poor agreement with experiment
 NN+3N: reasonable improvement for lighter calcium, wrong behavior past ⁵⁰Ca

Experimental Connection: Mass of 52Ca

New mass measurements of 51,52Ca at **TITAN**: Penning trap experiment at TRIUMF

NN+3N: Now reasonable agreement with experiment from ${}^{50-52}$ Ca What about at 53 Ca? No sharp downward trend...

Experimental Connection: Mass of 52Ca

New mass measurements of 51,52Ca at **TITAN**: Penning trap experiment at TRIUMF

NN+3N: Now reasonable agreement with experiment from ⁵⁰⁻⁵²Ca Adding approximated **residual 3N** important beyond ⁵²Ca: gives correct trend

Impact on Spectra: ⁴⁹Ca

Neutron-rich calcium spectra with NN+3N

NN+3N in $pfg_{9/2}$ comparable to phenomenology (as for all lighter Ca isotopes)

Impact on Spectra: ⁵¹Ca

Neutron-rich calcium spectra with NN+3N

Different ordering from different models: gamma-ray spectroscopy needed!

Impact on Spectra: ⁵⁴Ca

Neutron-rich calcium spectra with NN+3N

Microscopic prediction for ⁵⁴Ca spectrum

Pairing in EDF with 3N Forces

Calculations from Energy Density Functional with 3N forces

Lower gaps systematically:

Pairing in Calcium Isotopes

Compare with $\Delta_n^{(3)}$ calculated from microscopic NN+3N in calcium Negative shift from 3N repulsion

Pairing in Calcium Isotopes

Compare with $\Delta_n^{(3)}$ calculated from microscopic NN+3N in calcium Negative shift from 3N repulsion

Conclusion

- Exciting era for nuclear structure **experimentally and theoretically**
- Exploring frontiers of nuclear structure theory of medium-mass nuclei with 3N forces
- Discovered robust and general repulsive 3N mechanism for T=1 neutron-rich nuclei

Conclusion

- Exciting era for nuclear structure **experimentally and theoretically**
- Exploring frontiers of nuclear structure theory of medium-mass nuclei with 3N forces
- Discovered robust and general repulsive 3N mechanism for T=1 neutron-rich nuclei
- Oxygen isotopes: first fully-microscopic results with NN+3N, extended spaces
 - Cures NN-only failings: dripline, shell evolution, spectra in oxygen isotopes
- **Calcium isotopes** in *pf* and *pfg*_{9/2}-shells:
 - First microscopic prediction of N=28 magic number in ⁴⁸Ca
 - Shell evolution towards the dripline: modest N=34 closure, quenching of N=40
 - Dripline near ⁶⁰Ca
 - Spectra comparable to phenomenological models
 - NN+3N with higher many-body processes describe pairing without adjustments

Conclusion

- Exciting era for nuclear structure **experimentally and theoretically**
- Exploring frontiers of nuclear structure theory of medium-mass nuclei with 3N forces
- Discovered robust and general repulsive 3N mechanism for T=1 neutron-rich nuclei
- Oxygen isotopes: first fully-microscopic results with NN+3N, extended spaces
 - Cures NN-only failings: dripline, shell evolution, spectra in oxygen isotopes
- **Calcium isotopes** in *pf* and *pfg*_{9/2}-shells:
 - First microscopic prediction of N=28 magic number in ⁴⁸Ca
 - Shell evolution towards the dripline: modest N=34 closure, quenching of N=40
 - Dripline near ⁶⁰Ca
 - Spectra comparable to phenomenological models
 - NN+3N with higher many-body processes describe pairing without adjustments
- Clearly improvable upgrade path

Much to look forward to!

Acknowledgments

