Towards nuclear reactions with coupled cluster theory

Gaute Hagen (ORNL)

Collaborators:

Thomas Papenbrock (UT/ORNL) Morten Hjorth-Jensen (UiO/CMA/MSU) Gustav Jansen (UiO/CMA) Ruprecht Machleidt (Idaho) Nicolas Michel (UT/ORNL)

Nuclear Physics Seminar UT, February 20, 2012

Roadmap for Theory of Nuclei

Main goal :

To arrive at at comprehensive description of all nuclei and low-energy reactions from the basic interactions between the constituent nucleons

Calcium isotopes from chiral interactions

<u>G. Hagen, M. Hjorth-Jensen, G. R. Jansen,</u> <u>R. Machleidt</u>, <u>T. Papenbrock</u>, in preparation (2012)

2⁺ systematics in Calcium isotopes from chiral interactions

	⁴⁸ Ca		⁵² Ca			⁵⁴ Ca			
	2+	4 +	4+/2+	2+	4 +	4+/2+	2+	4 +	4+/2+
CC	4.148	4.675	1.13	2.787	5.349	1.92	2.696	5.827	2.16
Ехр	3.833	4.503	1.17	2.563	?	?	?	?	?

Calcium isotopes from chiral interactions

- Our calculations agree very well with available mass models for the the experimentally known Calcium isotopes.
- Beyond ⁵³Ca masses are not known experimentally.
- Can ab-initio structure calculations of masses put constraints on extrapolations?

Potassium isotopes from chiral interactions

 $\frac{1}{2}$ state with respect to $3/2^+$ state in 39 K and 47 K.

Jπ	E(CC)	E(Exp)	E(CC)	E(Exp)
3/2+	0.00	0.00	0.00	0.00
1/2+	4.097	2.52	-0.636	-0.36

Open Quantum Systems

Continuum induced correlations

Continuum shell model calculations of oxygen isotopes. The effect of continuum correlations for nuclei with low neutron emission thresholds can be significant.

N. Michel et al, J. Phys. G **37** 064042 (2010).

Towards nuclear reactions with coupled-cluster theory

One-nucleon overlap functions

Elastic scattering, capture and transfer reactions of a nucleon on/to a target nucleus with mass A is determined by the one-nucleon overlap function

$$O_{A}^{A+1}(lj;r) = \left\langle A \, \big\| \, \tilde{a}_{lj}(r) \, \big\| \, A+1 \right\rangle = \sum_{n} \left\langle A \, \big\| \, \tilde{a}_{nlj} \, \big\| \, A+1 \right\rangle \phi_{nlj}(r)$$

Microscopic definition of Spectroscopic Factors

SF is the norm of the overlap function and quantifies the degree of correlations SFs are not observables and depend on the resolution scale

$$SF = \int_0^\infty dr r^2 |O_A^{A+1}(lj;r)|^2$$

Asymptotic properties of the one-nucleon overlap functions

The overlap functions satisfy a one-body Schrodinger like equation, and outside the range of the interaction the overlap function is proportional to a single-particle wave function

$$O_A^{A+1}(lj;r) = C \frac{e^{-\kappa r}}{\kappa r} \quad \text{Bound states}$$
$$O_A^{A+1}(lj;r) = A(j_l(kr) - \tan \delta_l n_l(kr)) \quad \text{Scattering states}$$

Asymmetry dependence and spectroscopic factors

Spectroscopic factors are not observables
They are extracted from a cross section based on a specific structure and reaction model
Structure and reaction models needs to be consistent!

Theoretical cross section:

C. Barbieri, W.H.Dickhoff, Int. Jour. Mod. Phys. A24, 2060 (2009).

Self-consistent green's function method show rather weak asymmetry dependence for the spectroscopic factor.

Quenching of spectroscopic factors for proton removal in neutron rich oxygen isotopes

Strong asymmetry dependence on the SF for proton and neutron removal in neutron rich oxygen isotopes.

SF~1 for neutron removal while protons are strongly correlated SF ~0.6-0.7 in ^{22,24,28}O

Spectroscopic factor is a useful tool to study correlations towards the dripline.

SF for proton removal in neutron rich ²⁴O show strong "quenching" pointing to large deviations from a mean-field like picture. G. Hagen et al Phys. Rev. Lett. 107, 032501 (2011).

Threshold effects and spectroscopic factors

Near the scattering threshold for one-neutron decay the spectroscopic factors are Significantly influenced by the presence of The continuum. The standard shell model

$$\langle \Psi_A^{J_A} || a_{n\ell j}^+ || \Psi_{A-1}^{J_{A-1}} \rangle^2$$

approximation to spectroscopic factors completely fails in this region.

N. Michel et al Phys. Rev. C **75**, 031301 (2007) N. Michel et al Nucl. Phys. A **794**, 29 (2007)

Top and middle:

$${}^{6}\mathrm{He}(\mathrm{g.s.})|[{}^{5}\mathrm{He}(\mathrm{g.s.}) \otimes p_{3/2}]{}^{0^{+}}\rangle$$

Bottom :

 $\langle {}^{7}\mathrm{He}(\mathrm{g.s.})|[{}^{6}\mathrm{He}(\mathrm{g.s.})\otimes p_{3/2}]{}^{0^{+}}\rangle$

Treatment of long-range Coulomb effects

We diagonalize the one-body shcrodinger equation in momentum space using the off-

diagonal method described in N. Michel Phys. Rev. C 83, 034325 (2011)

$$h = \frac{\hat{p}^2}{2m} - V_o \left[1 + \exp\left(\frac{r - R_0}{d}\right) \right]^{-1} + U_{Coul}(r)$$

N_{GL}	$E \operatorname{cut} (\operatorname{MeV})$	$\Gamma \text{ cut } (\text{keV})$	E sub (MeV)	$\Gamma \text{ sub (keV)}$	E off-diag (MeV)	Γ off-diag (keV)
15	0.461875	-11.6596	0.464574	9.19011	0.46396	10.2211
30	0.465707	13.4833	0.463777	8.26812	0.463343	8.97219
45	0.463476	8.71097	0.463709	8.33267	0.463334	8.96171
60	0.463307	8.68396	0.463681	8.36454	0.463329	8.96458
75	0.463227	8.70558	0.463667	8.38006	0.463328	8.96595
90	0.46284	8.88896	0.463659	8.3888	0.463327	8.96669
105	0.462952	8.69106	0.463654	8.39421	0.463326	8.96712
120	0.462949	8.62468	0.46365	8.3978	0.463326	8.9674
exact	0.463324	8.96828	0.463324	8.96828	0.463324	8.96828

The many-nucleon Hamiltonian is

$$H = \hat{T} - \hat{T}_{\rm cm} + \hat{V}_{\rm NN} + V_{Coul}$$

We write the Coulomb interaction as a sum of two terms:

$$V_{Coul} = U_{Coul}(r) + [V_{Coul} - U_{Coul}(r)].$$

The second term is short range and can be Expanded in Harmonic Oscillator basis. The first term contain the long range Coulomb part.

Elastic proton/neutron scattering on 40Ca

The one-nucleon overlap function:
$$O_A^{A+1}(lj;kr) = \sum_n \left\langle A+1 \| \tilde{a}_{nlj}^{\dagger} \| A \right\rangle \phi_{nlj}(r).$$

Beyond the range of the nuclear interaction the overlap functions take the form:

Elastic scattering phase shifts for neutrons on ¹⁶O with coupled-cluster theory

Densities and radii from coupled-cluster theory

We solve for the right and left ground state of the similarity transformed Hamiltonian

$$e^{-T}H_Ne^T|\phi_0\rangle = \overline{H_N}|\phi_0\rangle = E_{CC}|\phi_0\rangle \qquad \langle\phi_0|L_0\overline{H_N} = E_{CC}\langle\phi_0|L_0$$
The density matrix is computed within coupled-cluster method as:

$$\rho_{pq} = \langle\Psi_0|a_p^{\dagger}a_q|\Psi_0\rangle = \langle\phi_0|Le^{-T}a_p^{\dagger}a_qe^T|\phi_0\rangle = \langle\phi_0|L\overline{a_p^{\dagger}a_q}|\phi_0\rangle$$
The coupled-cluster wave function factorizes
to a good approximation into an intrinsic and
center of mass part, $\Psi = \psi_{in}\Gamma$
where the center of mass part is a Gaussian
with a fixed oscillator frequency independent
of single-particle basis
GH, T. Papenbrock and D. Dean et al, Phys.
Rev. Lett. **103**, 062503 (2009)

We can obtain the intrinsic density by a deconvolution of the laboratory density B. G. Giraud, Phys. Rev. C **77**, 014311 (2008)

$$A^{-1}\rho(r) = A^{-1} \int dR \ [\Gamma(R)]^2 \sigma \left[\frac{A}{A-1}(r-R)\right]$$

Lab. density

Center of mass part

Intrinsic density

Densities and radii from coupled-cluster theory

- Relative energies in ²¹⁻²⁴O depend weakly on the resolution scale
- 2. We clearly see shell structure appearing in the matter densities for ²¹⁻²⁴O
- Matter and charge radii depend on the resolution scale, however relative difference which is relevant for isotope shift measurements does not

²³O interaction cross section (scattering off ¹²C target @ GSI)

Experimental radii extracted from matter distribution within Glauber model. Main result of new measurement: ²³O follows systematics; interaction cross section consistent with separation energies.

R. Kanungo et al Phys. Rev. C 84, 061304 (2011)

Resolving the anomaly in the cross section of ²³O

TABLE I: Measured interaction cross sections and the root mean square point matter radii $(R_{rms}^m(\text{ex.}))$ for ^{22–23}O.

Isotope	$\sigma_I(\Delta\sigma)$	$\Delta\sigma(\text{Stat.})$	$\Delta \sigma(\text{Syst.})$	R_{rms}^{m} (ex.)
^{22}O	(110) 1123(24) 1216(41)	18.5	15.3	2.75 ± 0.15
0	1216(41)	33.1	24.7	2.95 ± 0.23

Summary and outlook

- 1. CC calculations for oxygen and calciums with effects of 3NF and continuum are promising. Significant improvement in binding energy and spectra.
- 2. Quenching of spectroscopic factors near neutron dripline show role of continuum induced correlations for protons
- 3. Promising results for elastic nucleon-nucleus scattering on ⁴⁰Ca and ¹⁶O
- 4. Densities and cross sections from coupled-cluster theory help resolve long-standing anamoly of ²³O
- 5. Isotopic shift in radii of oxygen isotopes well reproduced with chiral NN interactions