Importance Truncated NCSM with Chiral NN+3N Interactions

Robert Roth

TECHNISCHE UNIVERSITÄT DARMSTADT

Road Map

Nuclear Structure & Reaction Observables

Importance Truncated NCSM

ab initio studies in the p- & sd-shell

Applications to Nuclear Spectra

spectroscopy and sensitivity on 3N

Coupled Cluster Approach

systematic extension to heavy nuclei ...

Similarity Renormalization Group

pre-diagonalization of Hamiltonian by unitary transformation computational technology for 3N matrix elements

Chiral Effective Field Theory

systematic low-energy effective theory of QCD consistent & improvable NN, 3N,... interactions

Low-Energy Quantum Chromodynamics

Road Map

	Nuclear	
Structure a	& Reaction	Observables

Importance Truncated NCSM

ab initio studies in the p- & sd-shell

Applications to Nuclear Spectra

spectroscopy and sensitivity on 3N

Coupled Cluster Approach

systematic extension to heavy nuclei •••

Similarity Renormalization Group

pre-diagonalization of Hamiltonian by unitary transformation computational technology for 3N matrix elements

Chiral Effective Field Theory

systematic low-energy effective theory of QCD consistent & improvable NN, 3N,... interactions

Low-Energy Quantum Chromodynamics

Overview

Importance Truncated NCSM

- basic ideas & extensions
- threshold dependence of observables

uncertainty quantification in the IT-NCSM

- extrapolation vs. systematic uncertainties
- uncertainty quantification protocol

■ IT-NCSM with SRG-evolved chiral NN+3N interactions

- ground-state energies
- induced 4N interactions and their origin
- low-cutoff chiral 3N interaction

Importance Truncated NCSM

Roth, Langhammer, Calci et al. — Phys. Rev. Lett. 107, 072501 (2011) Navrátil, Roth, Quaglioni — Phys. Rev. C 82, 034609 (2010) Roth — Phys. Rev. C 79, 064324 (2009) Roth, Gour & Piecuch — Phys. Lett. B 679, 334 (2009) Roth, Gour & Piecuch — Phys. Rev. C 79, 054325 (2009) Roth, Navrátil — Phys. Rev. Lett. 99, 092501 (2007)

Importance Truncated NCSM

- converged NCSM calculations essentially restricted to lower/mid p-shell
- full 10ħΩ calculation for ¹⁶O getting very difficult (basis dimension > 10¹⁰)

Importance Truncation

reduce model space to the relevant basis states using an **a priori importance measure** derived from MBPT

Importance Truncation: Basic Idea

starting point: approximation $|\Psi_{ref}\rangle$ for the **target state** within a limited reference space \mathcal{M}_{ref}

$$\left|\Psi_{\text{ref}}\right\rangle = \sum_{\nu \in \mathcal{M}_{\text{ref}}} C_{\nu}^{(\text{ref})} \left|\Phi_{\nu}\right\rangle$$

■ measure the importance of individual basis state $|\Phi_{\nu}\rangle \notin \mathcal{M}_{ref}$ via first-order multiconfigurational perturbation theory

Importance Truncation: Iterative Scheme

- property of N_{max}-truncated space: step from N_{max} to N_{max} + 2 requires 2p2h excitations at most
- **sequential calculation** for a range of $N_{m\alpha x}\hbar\Omega$ spaces:
 - do full NCSM calculations up to a convenient N_{max}
 - use components of eigenstate with $|C_{\nu}| \ge C_{\min}$ as initial $|\Psi_{ref}\rangle$
 - consider all states $|\Phi_{\nu}\rangle \notin \mathcal{M}_{ref}$ from an $N_{m\alpha x} + 2$ space and add those with $|\kappa_{\nu}| \ge \kappa_{min}$ to importance-truncated space \mathcal{M}_{IT}
 - **\boldsymbol{\Theta}** solve eigenvalue problem in \mathcal{M}_{IT}
 - use components of eigensta
 - 🛿 goto 🛈

full NCSM space is recovered in the limit $(\kappa_{\min}, C_{\min}) \rightarrow 0$

Threshold Extrapolation

- repeat calculations for a sequence of importance thresholds K_{min}
- observables show smooth threshold dependence and systematically approach the full NCSM limit
- use a posteriori extrapolation κ_{min} → 0 of observables to account for effect of excluded configurations

Threshold Extrapolation

- repeat calculations for a sequence of importance thresholds K_{min}
- observables show smooth threshold dependence and systematically approach the full NCSM limit
- use a posteriori extrapolation κ_{min} → 0 of observables to account for effect of excluded configurations

Threshold Extrapolation

- repeat calculations for a sequence of importance thresholds K_{min}
- observables show smooth threshold dependence and systematically approach the full NCSM limit
- use a posteriori extrapolation $\kappa_{min} \rightarrow 0$ of observables to account for effect of excluded configurations

Constrained Threshold Extrapolation

- for free: importance selection gives perturbative energy correction Δ_{excl}(κ_{min}) accounting for excluded states
- formal property $\Delta_{\text{excl}}(\kappa_{\min}) \rightarrow 0 \quad \text{for} \quad \kappa_{\min} \rightarrow 0$
- auxiliary parameter λ defining a family of energy sequences

 $E_{\lambda}(\kappa_{\min}) = E(\kappa_{\min}) + \lambda \Delta_{excl}(\kappa_{\min})$

• simultaneous extrapolation for family of λ -values with constraint $E_{\lambda}(0) = E_{extrap}$

Importance Truncation: Extensions

Excited States

- target *M* lowest eigenstates simultaneously and define corresponding reference states $|\Psi_{ref}^{(m)}\rangle$ with m = 1...M
- keep basis states with $|\kappa_{\nu}^{(m)}| \ge \kappa_{\min}$ for at least one $|\Psi_{ref}^{(m)}\rangle$
- dimension of IT model space grows linearly with M

3N Interactions

- importance measure κ_{ν} includes 3N interaction explicitly
- IT-NCSM(seq) scheme does not change
- dimension of IT model space does not change significantly, but Hamilton matrix becomes denser

Uncertainty Quantification in the IT-NCSM

Two Sources of Uncertainties

Model-Space Truncation

- use sequence of N_{max}-truncated model spaces
- extrapolate to N_{max} → ∞ using exponential ansatz or more refined constrained extrapolation schemes
- uncertainty estimate derived from extrapolation protocol
- same extrapolation uncertainties as in full NCSM

Importance Truncation

- use sequence of (C_{min}, κ_{min})truncated model spaces
- extrapolate to $\kappa_{\min} \rightarrow 0$ using polynomial ansatz or more refined constrained extrapolation schemes
- uncertainty estimate derived from extrapolation protocol
- systematic uncertainty compared to the full NCSM
- both types of uncertainties are controlled, well quantified and systematically improvable

Comment on C_{min} Truncation

- truncation of reference state to components with $|C_{\nu}| \ge C_{\min}$
- technical reason: importance selection algorithm scales with (dim M_{ref})²

• typically
$$C_{\min} = 2 \times 10^{-4}$$

virtually no influence on threshold extrapolated energies

Protocol: Simple κ_{\min} Extrapolation

- IT-NCSM calculations for sequence of κ_{min} -values, typically $\kappa_{min} =$ 3, 3.5, ..., 10 × 10⁻⁵
- **nominal result** from extrapolation $\kappa_{\min} \rightarrow 0$ using polynomial $P_p(\kappa_{\min})$, typically order p = 3
- uncertainty band from set of alternative extrapolations
 - P_{p-1} and P_{p+1} extrapolations using full κ_{\min} -range
 - P_p extrapolations with lowest and lowest two κ_{\min} -points dropped
- nominal uncertainty from standard deviation

Protocol: Constrained κ_{\min} Extrapolation

IT-NCSM with SRG-Evolved Chiral NN+3N Interactions

Roth, Binder, Vobig et al. — arXiv: 1112.0287 Roth, Langhammer, Calci et al. — Phys. Rev. Lett. 107, 072501 (2011)

A Tale of Three Hamiltonians

Initial Hamiltonian

- NN: chiral interaction at N³LO (Entem & Machleidt, 500 MeV)
- 3N: chiral interaction at N²LO (c_D , c_E from ³H binding & half-life)

SRG-Evolved Hamiltonians

- NN only: start with NN initial Hamiltonian and keep two-body terms only
- NN+3N-induced: start with NN initial Hamiltonian and keep two- and three-body terms
- NN+3N-full: start with NN+3N in two- and three-body terms

 α-variation provides a
diagnostic tool to assess
the contributions of omitted many-body interactions

⁴He: Ground-State Energies

⁶Li: Ground-State Energies

¹²C: Ground-State Energies

¹⁶O: Ground-State Energies

Origin of Induced 4N

analyze the origin of the induced 4N terms by switching off individual contributions of the 3N interaction

	<i>C</i> 1	<i>C</i> ₃	<i>C</i> 4	CD	CE
std*	+0.81	-3.2	+5.4	-0.2	-0.240*
$c_D = 0$	+0.81	-3.2	+5.4	0	-0.205*
$c_E = 0$	+0.81	-3.2	+5.4	+1.238*	0
$c_i = 0$	0	0	0	-0.2	+0.444*
$c_1 = 0$	0	-3.2	+5.4	-0.2	-0.207*
$c_{3} = 0$	+0.81	0	+5.4	-0.2	-0.228*
$c_4 = 0$	+0.81	-3.2	0	-0.2	+0.141*

• refit c_E (or c_D) parameter to reproduce ⁴He ground-state energy

¹⁶O: Origin of Induced 4N

Robert Roth – TU Darmstadt – 02/2012

¹⁶O: Origin of Induced 4N

Lowering the Initial 3N Cutoff

Jacobi-HO matrix elements of initial 3N $\Lambda_{3N} = 500$ MeV, *E*-block averages

- off-diagonal matrix elements dominated by c_i (c_3 and c_4) terms
- suppress off-diagonal matrix elements by lowering 3N cutoff Λ_{3N}

	<i>C</i> ₁	C 3	<i>C</i> 4	CD	C _E
$\Lambda_{3N} = 500 \text{ MeV}$	+0.81	-3.2	+5.4	-0.2	-0.205
$\Lambda_{3N} = 400 \text{ MeV}$	+0.81	-3.2	+5.4	-0.2	+0.098*

¹⁶O: Lowering the Initial 3N Cutoff

Conclusions

Conclusions

Importance-Truncated NCSM

- powerful scheme to extend the reach of the NCSM
- robust, universal, and efficient approach
- controlled, quantified, and improvable uncertainties
- SRG-evolved chiral NN+3N Hamiltonians for ground states
 - induced 4N interactions become sizable in upper p-shell
 - caused by two-pion terms (c_3 in particular) of the chiral 3N
 - lowering of the initial 3N cutoff circumvents this problem
- more applications in Joachim's and Sven's talks...

Epilogue

thanks to my group & my collaborators

- S. Binder, A. Calci, B. Erler, E. Gebrerufael, A. Günther, H. Krutsch, J. Langhammer, S. Reinhardt, C. Stumpf, R. Trippel, K. Vobig, R. Wirth Institut für Kernphysik, TU Darmstadt
- P. Navrátil

TRIUMF Vancouver, Canada

- J. Vary, P. Maris Iowa State University, USA
- S. Quaglioni LLNL Livermore, USA
- P. Piecuch Michigan State University, USA

- H. Hergert Ohio State University, USA
- P. Papakonstantinou IPN Orsay, F
- C. Forssén Chalmers University, Sweden
- H. Feldmeier, T. Neff GSI Helmholtzzentrum

Deutsche Forschungsgemeinschaft

DFG

Score Londes-Offensive zur Entwicklung Wissenschaftlichökonomischer Exzellenz

Bundesministerium für Bildung und Forschung

COMPUTING TIME

