Ab Initio No-Core Shell Model in SU(3)-Scheme Basis

Tomas Dytrych

Jerry P. Draayer, Kristina D. Sviratcheva (LSU)
Daniel Langr (CTU)

SU(3) symmetry-adapted approach

Motivation:

- identification of the important collective correlations model space truncation
- computational methods of the group theory in NCSM calculations

SU(3) symmetry

- relevant for description of spatially deformed nuclei
- $(\lambda \mu)$ related to shape variables β and γ of the collective model
- embedded in the symplectic model of the nuclear collective motion

- $\operatorname{SU}(3)$ contains rotational group $S O(3)$ as a subgroup

Construction of SU(3) symmetry-adapted basis in NCSM

Step 1

- Generate distributions of nucleons over HO shells for a given Nmax model space
$N_{\text {max }}=$

Step 2

- for each set of nucleons in a HO shell determine antisymmetric representations of $U(N) \times U(2)$

$$
\begin{array}{ccccc}
U(2) \\
S
\end{array} \quad \otimes \begin{gathered}
U(10) \\
{[f]}
\end{gathered} \begin{aligned}
& \supset
\end{aligned} \begin{gathered}
\\
(\lambda \mu)(3)
\end{gathered}
$$

- Example:

Step 3

decompose each $U(N)$ irrep into a complete set of $S U(3)$ irreps

日 $\supset\{(52)(06)(33)(22)(30)\}$

Construction of SU(3) symmetry-adapted basis in NCSM

Number of "seed" representations in NCSM model spaces

- just a single state from each "seed" needs to be constructed in order to calculate matrix elements of a realistic interaction in SU(3)-scheme
- Complete Nmax basis constructed by inter-shell coupling of "seeds"

Construction of SU(3) symmetry-adapted basis in NCSM

SU(3) coupling $\left(\lambda_{1} \mu_{1}\right) \times\left(\lambda_{2} \mu_{2}\right) \rightarrow\left\{\rho^{\max }(\lambda \mu)\right\}$... similar to coupling of angular momenta but certain resulting irreps occur multiple times $\left(\begin{array}{ll}1 & 1\end{array}\right) \times\left(\begin{array}{ll}1 & 1\end{array}\right) \rightarrow\left\{(00) \oplus(03) \oplus\left(\begin{array}{ll}1 & 1\end{array}\right) \oplus\left(\begin{array}{ll}1 & 1\end{array}\right) \oplus\left(\begin{array}{ll}2 & 2\end{array}\right) \oplus\left(\begin{array}{ll}3 & 0\end{array}\right)\right\}$

Complete NCSM basis constructed by SU(3) and spin couplings of the "seed" irreps

each combination of upstream quantum numbers is spanned by $\left(\Pi \alpha^{\max }\right)\left(\Pi \rho^{\max }\right)\left(\Pi \alpha^{\max }\right)\left(\Pi \rho^{\max }\right) \rho^{\max } \operatorname{dim}[\{\kappa L J\}]$ states

NCSM model space in SU(3) scheme

SU(3)-scheme decomposes Nmax model space into subspaces of states labeled by $S_{\pi} S_{\nu}(\lambda \mu) S$
the center-of-mass HO does not mix $S_{\pi} S_{\nu}(\lambda \mu) S$

c.m. spurious states can be removed from each subspace exactly
truncation according to intrinsic spin $S_{\pi} S_{\nu} S$
Spin-decomposition of ground state band wfns in 12C [Nmax=6 model space]

$12 C J=0$ ground state

Low spin components dominate

- And there is a certain pattern in dominant $\operatorname{SU}(3)$ quantum labels $(\lambda \mu)$

12C $J=0$ ground state

Action of a raising operator that has (20) $\mathrm{SU}(3)$ tensorial character

$12 C J=0$ ground state

Action of a raising operator that has (20) $\mathrm{SU}(3)$ tensorial character

Symmetry of the many-body collective dynamics

Sp(3,R): symmetry of the nuclear collective dynamics

$$
\begin{array}{ll}
6 & \sum_{n} x_{n i} x_{n j} \\
9 \because \sum_{n}^{n} x_{n i} p_{n j} \pm x_{n j} p_{n i} & \begin{array}{l}
\text { mass monopole and quadrupole moments } \\
(-) \text { angular momentum } \\
(+) \text { monopole and quadrupole deformations }
\end{array} \\
6 \leadsto \sum_{n} p_{n i} p_{n j} & \text { quadrupole flow tensor }
\end{array}
$$

21 generators

- quadrupole and monopole vibrations and deformations
- rotational dynamics from rigid rotor to irrotational flow
$\square \operatorname{SU}(3)$ is a subgroup of $\operatorname{Sp}(3, R)$ Symplectic basis states are labeled by $(\lambda \mu)$ and also by $S_{\pi} S_{\nu} S$

Symplectic $\operatorname{Sp}(3, R)$ symmetry matches deformed geometry $[S U(3)]$ with the various modes of the nuclear collective dynamics

Symmetry of the many-body collective dynamics

Basis states in symplectic "cone" are built over symplectic bandhead by action of raising operators

I2C $J=0$ ground state

Projection of the ground state into $S_{\pi} S_{\nu}(\lambda \mu) S$ subspaces

most important subspaces contain states of the three leading $\operatorname{Sp}(3, R)$ irrep

Significant contribution from the most deformed $2 p-2 h \operatorname{Sp}(3, R)$ irrep

$S p=0 \quad S n=1 S=1$

R2C ground state - binding energy in SU(3)-scheme

Definition of model space:

Binding energy for different model space cutoffs

6Li $J=1$ ground state Nmax=6

- most important subspaces contain states of the leading $\operatorname{Sp}(3, R)$ irrep

6Li ground state - binding energy in SU(3)-scheme

Binding energy for different model space cutoffs

$7 L_{i} \mathrm{~J}=3 / 2$ ground state

$7 L_{i} J=3 / 2$ ground state

Binding energy for different model space cutoffs

Definition of model space:
$0 \hbar \Omega$
$2 \hbar \Omega\}$ full space
$4 \hbar \Omega$

\oplus

$(\lambda \mu)$ - subspaces included in the model space 2

full model space	
$S p=1 / 2 S n=0 S=1 / 2$	$(00)(11)(03)(30)(22)(14)(41)(33)(60)(52)(71)(90)$
$S p=1 / 2 S n=1 S=3 / 2$	(0 0)(1 1)(03)(30)(2 2)(14)(41)(3 3)(60)(52)(71)(90)
$S p=1 / 2 S n=1 S=1 / 2$	$(00)(11)(03)(30)(22)(14)(41)(3 \mathrm{3})(60)(52)(71)(900)$
$S p=1 / 2 S n=2 S=3 / 2$	$(00)(11)(03)(30)(22)(14)(41)(33)(60)(52)(71)(90)$
Sp=1/2 Sn=2 S=5/2	$(00)(11)(03)(30)(22)(14)(41)(33)(60)(52)(710)(900)$
$\mathrm{Sp}=3 / 2 \mathrm{Sn}=0 \mathrm{~S}=3 / 2$	$(00)(11)(03)(30)(22)(14)(41)(33)(60)(52)(710)(900)$
$S p=3 / 2 \mathrm{Sn}=1 \mathrm{~S}=1 / 2$	$(00)(11)(03)(30)(22)(14)(41)(33)(60)(52)(711)(900)$
$\mathrm{Sp}=3 / 2 \mathrm{Sn}=1 \mathrm{~S}=3 / 2$	$(00)(11)(03)(30)(22)(14)(41)(33)(60)(52)(71)(90)$
Sp=3/2 Sn=1 $S=5 / 2$	(0 0)(11)(03)(30)(2 2)(14)(41)(3 3)(60)(52)(71)(90)
Sp=3/2 Sn=2 S=1/2	$(00)(11)(03)(30)(22)(14)(41)(33)(60)(52)(71)(90)$
$\mathrm{Sp}=3 / 2 \mathrm{Sn}=2 \mathrm{~S}=3 / 2$	$(00)(11)(03)(30)(22)(14)(41)(33)(60)(52)(711)(900)$
Sp=3/2 Sn=2 S=5/2	$(00)(11)(03)(30)(22)(14)(41)(33)(60)(52)(711)(900)$
$S p=3 / 2 \mathrm{Sn}=2 \mathrm{~S}=7 / 2$	$(00)(11)(03)(30)(22)(14)(41)(33)(60)(52)(71)(90)$

Conclusion \& Outlook

methods for evaluation of a realistic NN interaction in SU(3)-scheme developed and validated
we have tested SU(3) and spin based truncation scheme which keeps ability to decouple the center-of-mass exactly

Our results reaffirm the importance of the symplectic symmetry

- Outlook:
- Implement evaluation of three-body interactions in SU(3)-scheme
- Effective interactions for $S U(3)$-scheme model space
- Inclusion of the symplectic configurations for large model spaces

