Perspectives of the Ab Initio No-Core Shell Model

No-core Monte Carlo shell model in light nuclei

T. Abe¹, P. Maris², T. Otsuka¹, N. Shimizu¹, Y. Utsuno³, J.P. Vary² ¹U. of Tokyo, ²Iowa State U., ³JAEA

> 2011/02/11(FRI) TRIUMF, Vancouver, BC, Canada

Outline

- Motivation
- Recent Development s of MCSM
 - Acceleration of TBMEs Computation
 - Energy-variance Extrapolation
- Benchmark Results
- Error Assignment of Extrapolation
- Summary & Outlook

Introduction

- Current motivation for the nuclear structure theory
 - Understand the nuclear structures from the first principle of nuclear theory by *ab-initio* calc w/ realistic nuclear forces

→ Machine power: one of the main limitations for the large-scale computation

- Necessity of *ab-initio*(-like) method compared w/ GFMC, NCSM, (up to ~ A = 12-16), CC(closed shell +/- 1,2)
- No-core Monte Carlo shell model
- Choice of the nuclear forces (interactions) efficient for the MCSM calculation
 JISP16 NN int.

Open the way to understand nuclear structures from the realistic nuclear forces

Truncations of the Model Space in NCSM & FCI

NCSM, FCI, NCFC, MCSM

	Truncation	Interaction
NCSM	Nmax	Bare/Effective
FCI	Nshell	Bare
NCFC	Nmax	Bare
MCSM	Nshell	Bare/Effective

- ✓ NCSM,FCI,NCFC does exact diagonalization of large Hamilotonian matrices, while MCSM utilizes the diagonalization of smaller matrices w/ importance-truncated bases.
- ✓ NCSM,NCFC uses Nmax truncation, while FCI, MCSM does Nshell truncation.
- ✓ Nmax is the sum of the HO excitation quanta from the reference state.
- ✓ **Nshell** is the # of major shells included as the model space.
- NCSM usually employs effective interactions for getting faster convergence wrt the model space.
- ✓ FCI,NCFC employs bare interactions & extrapolates into the infinite model space (Nshell, Nmax -> ∞).
- Treatment of spurious CM effect is exact in NCSM,NCFC , while it is approximate in FCI,MCSM (by using Gloeckner-Lawson method).

JISP16 NN interaction

• JISP16: J-matrix Inverse Scattering Potential tuned B.E.s up to 160 with phaseshift-equivalent unitary transformation

$$V = \sum_{\Gamma,\Gamma'} \sum_{n=0}^{N_{\Gamma}} \sum_{n'=0}^{N_{\Gamma'}} |n,\Gamma\rangle V_{n,n'}^{\Gamma,\Gamma'} \langle n',\Gamma'|$$

- Small matrix of the NN int. in the oscillator basis
- High quality description of NN potential thru. p-shell nuclei
 - -> Reproduce the phase shift, deuteron properties, & B.E.s of some light nuclei
 - -> In this sense, JISP16 is the "bare" interaction
- JISP16 NN int. seems to minimize 3N (many-body) int.

realistic large-scale computation of nuclear structures w/o genuine 3N force

<u>References</u>

JISP16: A. M. Shirokov, J.P. Vary, A. I. Mazur, T.A. Weber, Phys. Lett. B644, 33 (2007) NCFC calc of light nuclei w/ JISP16: P. Maris, J.P. Vary, A.M. Shirokov, Phys. Rev. C 79, 014308 (2009) ⁹ Review: T. Otsuka, M. Honma, T. Mizusaki, N. Shimizu, Y. Utsuno, Prog. Part. Nucl. Phys. 47, 319 (2001)

Monte Carlo shell model (MCSM) $|\psi(\sigma)\rangle = \prod e^{\Delta\beta h(\sigma)} |\phi\rangle$

New MCSM code

Original MCSM code

since 1995 for conventional large-scale shell-model calc. Useful even nowadays, but ...

- Fortran 77
- PVM (less popular now)
- Isospin-conserving interaction only
- Developed on Alpha chip

difficult to run it on
 state-of-the-art supercomputers
 with minor modification

New MCSM code since 2010

written from scratch

- Not only for shell-model calc. with core, but also for no-core calc.
- Fortran 95
- MPI (+OpenMP hybrid parallel)
- Isospin-breaking interaction
- Developed on Intel chip
- New algorithm to evaluate Hamiltonian matrix elements in Slater det. Basis
- Improved sampling algorithm
- Extrapolation by energy variance

Ref. T. Otsuka, T. Mizusaki, and M. Honma: Phys. Rev. Lett. 75 1284 (1995)

not yet : 3-body force

Recent developments in MCSM

Acceleration of the computation of two-body matrix elements

$$\left\langle \phi \left| \hat{V} \right| \phi' \right\rangle = \frac{1}{2} \sum_{i,k} \rho_{ki} \left(\sum_{j,l} v_{ij\,kl} \rho_{lj} \right) = \frac{1}{2} \sum_{(ki)} \rho_{(ki)} \left(\sum_{jl} v_{(ki),(lj)} \rho_{(lj)} \right)$$

Matrix product is performed by DGEMM subroutine in BLAS library 800 % performance improvement from the original MCSM code

• Extrapolation method by the energy variance

$$\langle H \rangle = E_0 + E_1 \langle \Delta H^2 \rangle + E_2 \langle \Delta H^2 \rangle^2 + \cdots \qquad \langle \Delta H^2 \rangle = \langle H^2 \rangle - \langle H \rangle^2$$

$$\frac{\langle \phi | \hat{H}^2 | \psi \rangle}{\langle \phi | \psi \rangle} = \sum_{i < j, \alpha < \beta} \left(\sum_{k < l} v_{ijkl} ((1 - \rho)_{k\alpha} (1 - \rho)_{l\beta} - (1 - \rho)_{l\alpha} (1 - \rho)_{k\beta}) \right) \left(\sum_{\gamma < \delta} v_{\alpha\beta\gamma\delta} (\rho_{\gamma i} \rho_{\delta j} - \rho_{\delta i} \rho_{\gamma j}) \right)$$

$$+ \operatorname{Tr}((t + \Gamma)(1 - \rho)(t + \Gamma)\rho) + \left(\operatorname{Tr}(\rho(t + \frac{1}{2}\Gamma)) \right)^2$$

(naively) 8-fold loops -> (effectively) 6-fold loops by the factorization

N. Shimizu, Y. Utsuno, T.Mizusaki, T. Otsuka, T. Abe, & M. Honma, Phys. Rev. C82, 061305(R) (2010) ¹²

Acceleration of TBMEs Computation

New algorithm for the MCSM code

Hot spot: compute the matrix element of two-body interaction between two deformed Slater determinants, $|\phi\rangle = \prod_{\alpha=1}^{N} \left(\sum_{i=1}^{N_{sp}} c_i^{\dagger} D_{i\alpha} \right) |-\rangle$ sparse two-body matrix elements in *m*-scheme real, block $\left\langle \phi \left| \hat{V} \right| \phi' \right\rangle = \sum_{i < j, k < l} \bigvee_{ij \, kl} \left\langle \phi \left| c_i^{\dagger} c_j^{\dagger} c_l c_k \right| \phi' \right\rangle$ diagonal complex $= \sum_{i < i, k < l} v_{ij kl} (\rho_{ki} \rho_{lj} - \rho_{kj} \rho_{li}) = \frac{1}{2} \sum_{i,k} \rho_{ki} \left(\sum_{i,l} v_{ij kl} \rho_{lj} \right)$ New code (concept): Original code: do ki=1,ijmax do n=1,nmax y = 0.i = ind(1,n)do il=1.ilmax = ind(2,n) y = y + v(ki, jl) * rho(jl)k = ind(3,n)end do I = ind(4,n)x = x + rho(ki) * y $x = x + v(n)^{*}(rho(k,i)^{*}rho(l,j)-rho(k,j)^{*}rho(l,i))$ end do 14 end do

 $V_{i,j,k,l} = V_{(ki),(lj)}$ is block diagonal thanks to the symmetries of Jz, parity, and isospin Non-zero matrix elements: $j_z(i)+j_z(j)=j_z(k)+j_z(l) \rightarrow j_z(j)-j_z(k)=-(j_z(j)-j_z(l))$ 15

Matrix product is performed by DGEMM subroutine in BLAS library

DGEMM/BLAS is always highly tuned for TOP500 list

Energy-variance Extrapolation

Obstacle: computation time

The expectation value of general four-body operator in deformed Slater determinants is obtained by Wick's theorem :

$$\begin{split} \hat{V} &= \sum_{i < j, k < l} v_{ijk} \mathcal{C}_{i}^{\dagger} \mathcal{C}_{j}^{\dagger} \mathcal{C}_{l} \mathcal{C}_{k} \qquad \rho_{ij} = \frac{\langle \phi | \mathcal{C}_{j}^{\dagger} \mathcal{C}_{l} | \phi' \rangle}{\langle \phi | \phi' \rangle} \\ & \frac{\langle \phi | \hat{V}^{2} | \phi' \rangle}{\langle \phi | \phi' \rangle} &= \frac{1}{16} \sum_{ijkl\alpha\beta\gamma\delta} \overline{v}_{ijkl} \overline{v}_{\alpha\beta\gamma\delta} \\ & \left((1 - \rho)_{k\alpha} (1 - \rho)_{l\beta} \rho_{\gamma i} \rho_{\delta j} - (1 - \rho)_{k\alpha} (1 - \rho)_{l\beta} \rho_{\gamma j} \rho_{\delta i} \right. \\ & - (1 - \rho)_{l\alpha} (1 - \rho)_{k\beta} \rho_{\gamma i} \rho_{\delta j} + (1 - \rho)_{l\alpha} (1 - \rho)_{k\beta} \rho_{\gamma j} \rho_{\delta i} \\ & + \rho_{\gamma\alpha} (1 - \rho)_{l\beta} \rho_{ki} \rho_{\delta j} - \rho_{\gamma\alpha} (1 - \rho)_{k\beta} \rho_{li} \rho_{\delta j} \\ & - \rho_{\delta\alpha} (1 - \rho)_{l\beta} \rho_{ki} \rho_{\gamma j} + \rho_{\delta\alpha} (1 - \rho)_{k\beta} \rho_{li} \rho_{\gamma i} \\ & - \rho_{\delta\alpha} (1 - \rho)_{l\beta} \rho_{ki} \rho_{\gamma j} + \rho_{\delta\alpha} (1 - \rho)_{k\beta} \rho_{li} \rho_{\gamma i} \\ & + \rho_{\gamma\beta} (1 - \rho)_{l\alpha} \rho_{ki} \rho_{\delta j} + \rho_{\gamma\beta} (1 - \rho)_{k\alpha} \rho_{li} \rho_{\delta j} \\ & + \rho_{\gamma\beta} (1 - \rho)_{l\alpha} \rho_{ki} \rho_{\delta j} - \rho_{\gamma\beta} (1 - \rho)_{k\alpha} \rho_{li} \rho_{\gamma i} \\ & + \rho_{\delta\beta} (1 - \rho)_{l\alpha} \rho_{li} \rho_{\gamma j} - \rho_{\delta\beta} (1 - \rho)_{k\alpha} \rho_{lj} \rho_{\gamma i} \\ & + \rho_{ki} \rho_{lj} \rho_{\gamma\alpha} \rho_{\delta\beta} - \rho_{ki} \rho_{lj} \rho_{\delta\alpha} \rho_{\gamma\beta} - \rho_{li} \rho_{kj} \rho_{\gamma\alpha} \rho_{\delta\beta} + \rho_{li} \rho_{kj} \rho_{\delta\alpha} \rho_{\gamma\beta} \Big)^{18} \end{split}$$

Factorization

• Extrapolation method by the energy variance

$$\langle H \rangle = E_0 + E_1 \langle \Delta H^2 \rangle + E_2 \langle \Delta H^2 \rangle^2 + \cdots$$
$$\langle \Delta H^2 \rangle = \langle H^2 \rangle - \langle H \rangle^2$$

$$\frac{\langle \phi | \hat{H}^2 | \psi \rangle}{\langle \phi | \psi \rangle} = \sum_{i < j, \alpha < \beta} \left(\sum_{k < l} v_{ijkl} ((1 - \rho)_{k\alpha} (1 - \rho)_{l\beta} - (1 - \rho)_{l\alpha} (1 - \rho)_{k\beta}) \right) \left(\sum_{\gamma < \delta} v_{\alpha\beta\gamma\delta} (\rho_{\gamma i} \rho_{\delta j} - \rho_{\delta i} \rho_{\gamma j}) \right) + \operatorname{Tr}((t + \Gamma)(1 - \rho)(t + \Gamma)\rho) + \left(\operatorname{Tr}(\rho(t + \frac{1}{2}\Gamma)) \right)^2 \Gamma_{ik} = \sum_{jl} v_{ijkl} \rho_{lj}$$

(naively) 8-fold loops -> (effectively) 6-fold loops by the factorization

N. Shimizu, Y. Utsuno, T.Mizusaki, T. Otsuka, T. Abe, & M. Honma, Phys. Rev. C82, 061305(R) (2010) ¹⁹

Benchmark Results

What we have calculated as Benchmark

- Nuclei (JP): s- & p-shell nuclei
 - 4He(0+)
 - 6He(0+)
 - 6Li(1+)
 - 7Li(1/2-, 3/2-)
 - 8Be(0+)
 - 10B(1+, 3+)
 - 12C(0+)
- Observables
 - BE
 - Point-particle RMS radius
 - Q-moment
 - µ-moment

Model space: Nshell = 2, 3, 4 NN Interaction: JISP16 w/o Coulomb w/o Gloeckner-Lawson prescription

MCSM: Abe, Otsuka, Shimizu, Utsuno (Tokyo) T2K (Tokyo, Tsukuba), BX900 (JAEA) FCI: Maris, Vary (Iowa) Jaguar, Franklin (NERSC, DOE) Convergence pattern of the 4He B.E.s w.r.t. MCSM basis dimension

Comparison of MCSM (solid symbols) w/ FCI (dashed lines)
 @ Nshell = 2 (sp), 3 (spsd), & 4 (spsdpf)

Good agreement w/ FCI within a few keV up to Nshell = 4

hw dependence of 4He B.E.s

Comparison of MCSM (solid symbols) w/ FCI (open symbols)
 @ Nshell = 2 (sp), 3 (spsd), & 4 (spsdpf)

Good agreement w/ FCI results within a few keV

Binding Energy of Light Nuclei

w/o the extrapolation method

25

Binding Energy of Light Nuclei

w/ the extrapolation method

26

Convergence pattern of the 4He point-particle RMS radius w.r.t. MCSM basis dimension

Comparison of MCSM (solid symbols) w/ FCI (dashed lines)
 @ Nshell = 2 (sp), 3 (spsd), & 4 (spsdpf)

Good agreement w/ FCI within 0.001 fm up to Nshell = 4

Point-particle RMS Radius of Light Nuclei

Convergence pattern of the 6Li Q-moment w.r.t. MCSM basis dimension

• Comparison of MCSM (solid symbols) w/ FCI (dashed lines) @ Nshell = 2 (sp), 3 (spsd), & 4 (spsdpf) Good agreement w/ FCI within 0.01 efm² up to Nshell = 4 H = Hint + β Hcm, (β = 0) 0.2 Emminute of the symbols of the sy

29

Q-moment of Light Nuclei

Convergence pattern of the 6Li μ-moment w.r.t. MCSM basis dimension

Comparison of MCSM (solid symbols) w/ FCI (dashed lines)
 @ Nshell = 2 (s,p), 3 (s,p,sd), & 4 (s,p,sd,pf)

µ-moment of Light Nuclei

Error Assignment of Extrapolation

Error estimate of extrapolation

Rough estimate

• From my experience,

 $|\mathsf{E}_{\mathsf{EXTRP}} - \mathsf{E}_{\mathsf{EXACT}}| \simeq 1/10 - 1/20 \times (\mathsf{E}_{\mathsf{MCSM}} - \mathsf{E}_{\mathsf{EXACT}})$

 σ of the naïve error estimate gives the slope of 1/10 ~ 1/20

Error estimate of extrapolation

• More precise estimate

• $\delta E = [(\delta c_0)^2 + (\delta c_1 x_0)^2 + (\delta c_2 x_0^2)^2]^{1/2}$

Equation above gives good error estimate of the extrapolation

Summary & Outlook

- Summary
 - Most obs for s- & p-shell nuclei will be able to be reproduced by no-core MCSM calc. w/ JISP16 NN int up to Nshell = 4 (spsdpf) model space by new code & extrapolation method.
- Outlook
 - Check the convergence wrt Nshell
 - Clarify advantages/disadvantages of Nshell truncation to Nmax truncation
 - Do Physics

END