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Subleading chiral few-nucleon forces 
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- need for three-nucleon interactions

- few-nucleon scattering data

• Leading three-nucleon forces

- power counting estimates and numerical results

- discussion of results

• Subleading few-nucleon interactions 

- 4N forces / numerical results 

- 3N forces / status
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Phenomenological approach
Several NN force models describe the data ( ~ 4000 data) up to the pion production 

threshold perfectly using ~ 40 parameters

Long-range part is driven by one-pion exchange

Predictions based on NN forces are reasonable:  
Many low energy few-nucleon observables are well  & model independently described !

(see e.g. Witała et al., 2001)

3 MeV

2

Approximation to the nuclear 
Hamiltonian does not seem to 
be too bad, but .....



Binding energies are not model-independent 

& the results do not agree with experiment

Phenomenological approach

February 10, 2011

3H 4He

CD-Bonn -8.013 -26.23

AV18 -7.628 -24.25

Nijm I -7.741 -24.99

Nijm II -7.659 -24.55

Expt -8.482 -28.30

(see e.g. A.N. et al., 2002)

3NF’s are quantitatively important for binding energies.
Modified NN interactions?

Cancelation of kinetic and potential energy!
Small parts of the nuclear Hamiltonian are relevant

3
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Phenomenological 3NF’s
NN interactions can be augmented by phenomenological 3N interactions 
(Tuscon-Melbourne, Urbana, Illinois, ...)

usually the 3N force is adjusted so that the
 3H binding energy is described correctly  (remember Tjon-line correlation)

                  none of the phenomenological models describes all the data!

       

   

relativistic effects are small at these energies (see e.g. Sekiguchi et al., 2005) 

These phenomenological combinations are very useful to identify signatures of 3NF’s

         triggered a lot of experiments for pd scattering (RIKEN, KVI, IUCF, ...)
         so that the 3N data base became quite extensive (at intermediate energies)

135 MeV 135 MeV

4



very few observables at low energy are not well described
when 3NF‘s are included                                                                        „puzzles“

e.g. Ay of pd and nd elastic scattering        

Note that Ay deviation is on the 1 % level !
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Low energy puzzles

5

(L.E. Marcucci et al., 2009)
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More serious ...

13 MeV

6

(see e.g. Witała et al., 2001)

VOLUME 86, NUMBER 17 P H Y S I C A L R E V I E W L E T T E R S 23 APRIL 2001

[16] (the AV18 model), and (ii) the Argonne V18 NN po-
tential plus the Urbana IX 3N potential [10] (the AV18UR
model). The present calculations represent the first attempt
to study the effects of 3N forces on the p-3He scattering
observables at energies greater than zero. In this paper we
focus on low energies where the convergence properties of
our theoretical approach are more satisfactory and where
meaningful comparisons with the experimental data can be
performed.

The new measurements of the proton analyzing power
Ay for p-3He elastic scattering were obtained at Ec.m. !
1.20 and 1.69 MeV. The experiments were carried out
at the University of Wisconsin tandem accelerator labora-
tory. Polarized protons from a crossed-beam polarized ion
source [17] were accelerated, momentum analyzed by a
90± bending magnet, and transported to a 1-m scattering
chamber. The scattering chamber was filled with 43.4 Torr
of 99.95% purity 3He gas, and was isolated from the beam
line vacuum by a 4.44 3 1025 cm thick Ni entrance foil
located 1.27 cm from the chamber center.

Elastically scattered protons were detected by three rec-
tangular silicon surface-barrier detectors, 60 to 100 mm
thick, placed symmetrically on each side of the scattering
chamber. A slit assembly restricted the angular field of
view to 60.34±. The spectra were clean except for a small
contaminant peak that was well separated from the peak
of interest except at the most forward angle. At that angle,
background subtraction was performed.

After passing through the scattering chamber, the beam
entered a polarimeter in which the beam polarization was
determined using "p-a elastic scattering [18]. The po-
larimeter was filled with one-half atmosphere natural He
gas, and was separated from the scattering chamber by
a 2.54 3 1024 cm thick Havar foil. Because of the low
beam energies, we could not measure the beam polariza-
tion very accurately at the same time as data were being
taken. However, previous experience indicates that the
beam polarization does not normally change significantly
over time. Consequently, at least once a day we made a
careful measurement of the beam polarization by increas-
ing the beam energy to 4.0 MeV at the center of the po-
larimeter. At this energy, the polarimeter analyzing powers
are known to 2%. Each such careful measurement of the
beam polarization yielded a value between 0.79 and 0.84
with typical statistical errors of 60.01.

The new measurements are shown in Fig. 1. The error
bars include statistical uncertainties and also at the extreme
forward angle an estimate of uncertainty in the background
subtraction. There is also a scale factor uncertainty of 3%
due to beam polarization uncertainties.

We turn now to the theoretical calculations. Four-
nucleon scattering problems have been studied theoreti-
cally for a long time (see Ref. [19], and references cited
therein). Recently, increases in computing power have
opened the possibility for accurate calculations of the 4N
observables using realistic models for NN forces. These
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FIG. 1. Measurements of the proton analyzing power Ay as a
function of the scattering angle at Ec.m. ! 1.20 MeV (panel a)
and 1.69 MeV (panel b). The theoretical estimates obtained
with the AV18 (solid curves) and the AV18UR (dashed curves)
interaction models are also reported.

calculations have been performed mainly by means of the
Faddeev-Yakubovsky (FY) approach [20,21] and the Kohn
variational principle [15,22]. In this Letter, the wave func-
tions of the scattering states are expanded in terms of the
CHH basis [14] and the complex form of the Kohn varia-
tional principle is applied [23,24].

The wave function (WF) of a 4N state with total angular
momentum J, parity P, and total isospin T , Tz (in the
present case T ! Tz ! 1) can be written as [15]

CJ
LS ! CJ

C 1 FJ
LS , P ! "2#L. (1)

The first term CJ
C of Eq. (1) must be sufficiently flexible

to guarantee a detailed description in the “internal region,”
where all the particles are close to each other and the mu-
tual interaction is large; CJ

C goes to zero when the distance
ri between the 3He and the unbound proton i increases.
This term in the WF is expanded in terms of CHH ba-
sis functions, following the procedure discussed in detail
in Ref. [25].

The second term FJ
LS describes the asymptotic configu-

ration of the system, for large ri values, where the nuclear
p-3He interaction is negligible. Let us introduce the sur-
face functions

V
"l#
LSJ !

4
X

i!1
$YL"r̂i# %C

3He
jk! xi&S'JJzR

"l#
L "ri# , (2)

where xi is the spin function of the unbound nucleon i

and C
3He
jk! is the 3He bound state WF. This latter function

is normalized to unity and is antisymmetric under the ex-
change of any pair of particles j, k, and !. C

3He has been
determined as discussed in Ref. [14] by using the CHH
expansion for a three-body system.

The functions R"l#
L "ri# of Eq. (2) are the ingoing

"l ! 2# and outgoing "l ! 1# radial solutions of the

3740

e.g. p - 3He Ay 

1.2 MeV 1.69 MeV

(Viviani et al., 2001)

e.g. space star configuration in nd breakup

Here the deviation for Ay is on the 5 % level 
and more at other energies !
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3NF‘s improve the description of binding energies, but some discrepancies remain   

Discussion: how accurate do we need to describe BE‘s and excitation energies?  
Improvement of 3NF’s and/or 4NF‘s is required 

Binding energies and 3NF‘s

(S. Pieper, 2011)
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Some obvious correlations: e.g.  LS splittings with the nd  Ay

February 10, 2011

nd scattering and nuclear structure

8

Are there more correlations of 3N scattering and nuclear structure observables?
Up to what energy do we need to describe 3N data? 
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6

IS non-local NN potential with modified triplet P-waves 
! best agreement with experiment  
! very similar effect as adding the three-nucleon interaction to standard NN potentials

(Navrátil, 2003)

modified INOY 
potential describes 
Ay properly !



EFT allows to understand pion mass dependence of nuclear observables
            connections to lattice QCD results
 

EFT can be applied to different strong interaction reactions
            reveals connections of different processes,
            connects NN, 3N, 4N ... interactions 

                                                                                              πN

QCD              ChEFT  involving π,N,...                   π production
                                                                                                ....
                                                                                               nuclei
                                                                                              

pion mass dependence                                              symmetries (chiral symmetry)

February 10, 2011

EFT of QCD: chiral perturbation theory
Aim is the systematically improvement of nuclear forces

EFT enables to related strong interaction to QCD

9
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EFT of QCD: chiral perturbation theory

LQCD = q̄ i /D q −
1

2
Tr GµνGµν

− q̄ m q

QCD & approximate 
chiral symmetry

spontaneously & explicitly 
broken chiral symmetry

Goldstone bosons: pions

Effective Field Theory of QCD:
     relevant degrees of freedom
           nucleons & pions

    expansion in        

                        

 Chiral Perturbation Theory (ChPT)
     
    „power counting“ 
      a systematic scheme to identify 
      a finite numbers of diagrams 
      contributing at a given order  

Q

Λχ

Q ≈ mπ, typical momentum

symmetries

10

Λχ ∝ m∆ −mN , mρ,
√

mπmN , 4πFπ, . . .

≈ 300 MeV . . . 1200 MeV
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Chiral nuclear interactions

Systematically improvable NN, 3N, 4N, ... interactions

Qualitatively:  NN >> 3N  >> 4N ...

What do we know quantitatively on that hierarchy?
Estimate accuracy using cutoffs of the Lippmann-Schwinger equation

11

chiral SU(2) symmetry of QCD. The symmetry breaking pattern places stringent
constraints on the interaction of the Goldstone bosons. In particular, they do
not interact with hadrons at very low energies in the so-called chiral limit (i.e.,
the limit of massless up and down quarks). If the typical hadronic momenta in-
volved in a process are of the order of the pion mass, one is still sufficiently close
to this non-interacting limit in order for the scattering amplitude to be calculable in
perturbation theory (via the so-called chiral expansion). This method is applicable
in the Goldstone boson and single-baryon sectors and is referred to as chiral per-
turbation theory (ChPT), see [2] for a recent review. On the other hand, the in-
teraction between nucleons does not vanish and, in fact, remains strong in the
above-mentioned limit. Indeed, the appearance of shallow bound=virtual states
signals the failure of perturbation theory already at very low energies. One way
to circumvent this difficulty in the few-nucleon sector is to apply ChPT to the
irreducible part of the amplitude (i.e., the one which does not involve contributions
generated by iterations of the Schr€oodinger equation) which gives rise to the nuclear
forces [3].

In this talk, I discuss some recent developments in chiral EFT for few-nucleon
systems. In Sect. 2, I briefly outline the structure of nuclear forces in few lowest
orders of the chiral expansion. Selected applications to few-nucleon observables
are discussed in Sect. 3. I end with the summary and outlook in Sect. 4.

2 Nuclear forces in chiral EFT

The hierarchy of the nuclear forces in EFT without explicit delta degrees of free-
dom at lowest orders in the chiral expansion is depicted in Fig. 1. The diagrams

Fig. 1 Hierarchy of nuclear forces in chiral EFT based on Weinberg’s power counting [3]. Solid and

dashed lines denote nucleons and pions, respectively. Solid dots, filled circles and filled squares refer

to the leading, subleading and sub-subleading vertices, respectively. The crossed square denotes 2N

contact interactions with 4 derivatives

58 E. Epelbaum

(from Epelbaum, 2008)

non-perturbativity of A ≥ 2 requires to 
perform chiral expansion for a potential which is used to solve a Schrödinger equation

adjust to 2 few-body data
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typical momentum in nuclei is of the order of the pion mass

typical cutoff value for chiral interactions  Λ ≈ 500 MeV

Same estimate for NLO and N2LO ! 
Λ  variation gives a lower bound of accuracy 
(e.g. accuracy of NLO & N3LO is  less than estimated cutoff dependence!)

Estimated residual Λ dependence 

Q ≈

√

2mN (E/A) ≈ 130 MeV/c

order NN contact 
forces omitted

Λ [MeV] ΔV/V ΔE/E

LO (Q/Λ)2 500 7% 70%

NLO (Q/Λ)4 500 0.5 % 5%

N2LO (Q/Λ)4 500 0.5 % 5%

N3LO (Q/Λ)6 500 0.03 % 0.3 %

N2LO (Q/Λ)4 700 0.1 % 1%

N2LO (Q/Λ)4 300 3.5% 35%

12
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Binding energies for 3H (NN forces only)
3H binding energies are based on NN forces only
      (LO from AN et al., 2005
       NLO and N2LO from Epelbaum et al., 2005,
       N3LO from Entem et al., 2003)

Eb [MeV] V [MeV] ΔEb [keV] |ΔEb/V| [%]

LO 500 / no loops -7.50 -51.8 1430 3.0 (7.0)

600 / no loops -6.07

NLO 400 / 700 -8.46 650 1.6 (0.5)

550 / 700 -7.81 -41.1

N2LO 450 / 700 -8.42 -38.3 530 1.3 (0.5)

600 / 700 -7.89

N3LO 500 / DR -7.84 -42.3 40 0.1 (0.03)

600 / DR -7.80

Λ/Λ̃ [MeV]

“power counting” estimates in brackets qualitatively agree    ✓

To what order to we need to go?  I assume N3LO for this talk.
13



The explicit form of the 3NF at N2LO (van Kolck, 1994)

• ci are related to πN scattering and also to the N2LO NN force 

• ci are unnaturally large in EFT without explicit Δ (approximately by factor 3)  

• large uncertainties in ci 

• cD and cE can be determined using several strategies 

February 10, 2011

Explicit form of the leading 3NF’s

V 2π
3NF =

∑

i<j<k

(

gA

2Fπ

)2
!σi · !qi !σj · !qj

(!q 2
i + m2

π)(!q 2
j + m2

π)
Fαβ

ijk τα
i τβ

j

Fαβ
ijk = δαβ

[

−
4c1m

2
π

F 2
π

+
2c3

F 2
π

"qi · "qj

]

+
c4

F 2
π

εαβγ τγ
k "σk · ["qi × "qj ]

V 1π
3NF = −

∑

i<j<k

gA

4F 2
π

cD

F 2
πΛx

!σj · !qj

!q 2
j + m2

π

τ i · τj !σi · !σj

V
c
3NF =

∑

i<j<k

cE

F 4
πΛx

τ j · τk

14
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ci constants

How well do we know the strength of the subleading πN vertices ?

ci constants link 2π-exchange NN-, 3N-force and πN scattering

There are sizable error bars > 30 % !
Note that the uncertainty is at least comparable to N3LO contributions !
Discussion can we improve this situation?

Nevertheless, let‘s check impact of leading 3NF‘s on observables

c1 c3 c4

Rentmeester et al. PRC 67, 044001 -0.76 -4.78 3.96 NN

Büttiker et al. NPA 668, 97 -0.81 -4.70 3.40 πN

Fettes et al. NPA 640, 199 -1.23 -5.94 3.47 πN

Meißner, talk at TRIUMF -0.9 -4.7 3.5 πN

Entem et al. PRC 66,014002 -0.81 -3.40 3.40 NN

Entem et al. PRC 68,041001(R) -0.81 -3.20 5.40 NN

c1, c3, c4

(red=input to analysis)

15
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Impact on low energy „puzzles“

ci are chosen consistently to NN 

     no change for nd  Ay  

          at low energy !

February 10, 2011

nd scattering and chiral forces

16

(Viviani et al.,2010
preliminary)

(L.E. Marcucci et al., 2009)

but p-3He Ay is affected !!! 

(remember that this is in 
contrast to Urbana-IX)
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Impact of cD & cE on p-shell nuclei

Survey of A=6,10-13 nuclei 
revealed a few observables that 
are sensitive to cD/cE
    (Navrátil et al., 2007), 
         
- green area accommodates 
    B(E2,10B) and Q(6Li) 

- other observables are either 
   insensitive to variation of cD or 

   are consistently described

-  cD determination difficult  
   because of the numerical 
   accuracy 

due to the lack of an in-depth three-nucleon scattering
phase shift analysis. We therefore investigate sensitivity
of the A> 3 nuclei properties to the variation of the con-
strained LECs. Our approach differs in two aspects from
the first NCSM application of the chiral NN ! NNN in-
teractions in Ref. [12] which presents a detailed investiga-
tion of 7Li. First, we introduce a regulator depending on the
momentum transfer in the NNN terms which results in a
local chiral NNN interaction. Second, we do not use ex-
clusively the 4He binding energy as the second constraint
on the cD and cE LECs.

The NCSM casts the diagonalization of the infinite
dimensional many-body Hamiltonian matrix as a finite
matrix problem in a harmonic oscillator (HO) basis with
an equivalent ‘‘effective Hamiltonian’’ derived from the
original Hamiltonian. The finite matrix problem is defined
by Nmax, the maximum number of oscillator quanta shared
by all nucleons above the lowest configuration. We solve
for the effective Hamiltonian by approximating it as a 3-

body interaction [10,11] based on our chosen chiral NN !
NNN interaction. With this ‘‘cluster approximation,’’ con-
vergence is guaranteed with increasing Nmax.

It is important to note that our NCSM results through
A " 4 are fully converged in that they are independent of
the Nmax cutoff and the @! HO energy. For heavier sys-
tems, we characterize the approach to convergence by the
dependence of the results on Nmax and @!.

Figure 1 shows the trajectories of the two LECs cD # cE
that are determined from fitting the binding energies of the
A " 3 systems. Separate curves are shown for 3H and 3He
fits, as well as their average. There are two points where the
binding of 4He is reproduced exactly. We observe, how-
ever, that in the investigated range of cD # cE, the calcu-
lated 4He binding energy is within a few hundred keV of
experiment. Consequently, the determination of the LECs
in this way is likely not very stringent. We therefore
investigate the sensitivity of the p-shell nuclear properties
to the choice of the cD # cE LECs. First, we maintain the
A " 3 binding energy constraint. Second, we limit our-
selves to the cD values in the vicinity of the point cD $ 1
since the values close to the point cD $ 10 overestimate the
4He radius.

While most of the p-shell nuclear properties, e.g., exci-
tation spectra, are not very sensitive to variations of cD in
the range from #3 to !2 that we explored, we identified
several observables that do demonstrate strong dependence
on cD. In Fig. 2 we display the 6Li quadrupole moment that
changes sign depending on the choice of cD, the ratio of the
B%E2& transitions from the 10B ground state to the first and
the second 1!0 state, and the 12C B%M1& transition from
the ground state to the 1!1 state. The B%M1& transition
inset illustrates the importance of the NNN interaction in
reproducing the experimental value [13]. The 10B B%E2&
ratio, in particular, changes by several orders of magnitude
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constrained by the A " 3 binding energy fit for different basis
sizes for: 6Li quadrupole moment, 10B B%E2; 3!1 0 !
1!1 0&=B%E2; 3!1 0 ! 1!2 0& ratio, and the 12C B%M1; 0!0 !
1!1&. The HO frequency of @! " 13, 14, 15 MeV was em-
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for calculations with (using cD " #1) and without the NNN
interaction.
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due to the lack of an in-depth three-nucleon scattering
phase shift analysis. We therefore investigate sensitivity
of the A> 3 nuclei properties to the variation of the con-
strained LECs. Our approach differs in two aspects from
the first NCSM application of the chiral NN ! NNN in-
teractions in Ref. [12] which presents a detailed investiga-
tion of 7Li. First, we introduce a regulator depending on the
momentum transfer in the NNN terms which results in a
local chiral NNN interaction. Second, we do not use ex-
clusively the 4He binding energy as the second constraint
on the cD and cE LECs.

The NCSM casts the diagonalization of the infinite
dimensional many-body Hamiltonian matrix as a finite
matrix problem in a harmonic oscillator (HO) basis with
an equivalent ‘‘effective Hamiltonian’’ derived from the
original Hamiltonian. The finite matrix problem is defined
by Nmax, the maximum number of oscillator quanta shared
by all nucleons above the lowest configuration. We solve
for the effective Hamiltonian by approximating it as a 3-

body interaction [10,11] based on our chosen chiral NN !
NNN interaction. With this ‘‘cluster approximation,’’ con-
vergence is guaranteed with increasing Nmax.

It is important to note that our NCSM results through
A " 4 are fully converged in that they are independent of
the Nmax cutoff and the @! HO energy. For heavier sys-
tems, we characterize the approach to convergence by the
dependence of the results on Nmax and @!.

Figure 1 shows the trajectories of the two LECs cD # cE
that are determined from fitting the binding energies of the
A " 3 systems. Separate curves are shown for 3H and 3He
fits, as well as their average. There are two points where the
binding of 4He is reproduced exactly. We observe, how-
ever, that in the investigated range of cD # cE, the calcu-
lated 4He binding energy is within a few hundred keV of
experiment. Consequently, the determination of the LECs
in this way is likely not very stringent. We therefore
investigate the sensitivity of the p-shell nuclear properties
to the choice of the cD # cE LECs. First, we maintain the
A " 3 binding energy constraint. Second, we limit our-
selves to the cD values in the vicinity of the point cD $ 1
since the values close to the point cD $ 10 overestimate the
4He radius.

While most of the p-shell nuclear properties, e.g., exci-
tation spectra, are not very sensitive to variations of cD in
the range from #3 to !2 that we explored, we identified
several observables that do demonstrate strong dependence
on cD. In Fig. 2 we display the 6Li quadrupole moment that
changes sign depending on the choice of cD, the ratio of the
B%E2& transitions from the 10B ground state to the first and
the second 1!0 state, and the 12C B%M1& transition from
the ground state to the 1!1 state. The B%M1& transition
inset illustrates the importance of the NNN interaction in
reproducing the experimental value [13]. The 10B B%E2&
ratio, in particular, changes by several orders of magnitude
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FIG. 2 (color online). Dependence on the cD with the cE
constrained by the A " 3 binding energy fit for different basis
sizes for: 6Li quadrupole moment, 10B B%E2; 3!1 0 !
1!1 0&=B%E2; 3!1 0 ! 1!2 0& ratio, and the 12C B%M1; 0!0 !
1!1&. The HO frequency of @! " 13, 14, 15 MeV was em-
ployed for 6Li, 10B, 12C, respectively. In the inset of the 12C
figure, the convergence of the B%M1; 0!0 ! 1!1& is presented
for calculations with (using cD " #1) and without the NNN
interaction.
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due to the lack of an in-depth three-nucleon scattering
phase shift analysis. We therefore investigate sensitivity
of the A> 3 nuclei properties to the variation of the con-
strained LECs. Our approach differs in two aspects from
the first NCSM application of the chiral NN ! NNN in-
teractions in Ref. [12] which presents a detailed investiga-
tion of 7Li. First, we introduce a regulator depending on the
momentum transfer in the NNN terms which results in a
local chiral NNN interaction. Second, we do not use ex-
clusively the 4He binding energy as the second constraint
on the cD and cE LECs.

The NCSM casts the diagonalization of the infinite
dimensional many-body Hamiltonian matrix as a finite
matrix problem in a harmonic oscillator (HO) basis with
an equivalent ‘‘effective Hamiltonian’’ derived from the
original Hamiltonian. The finite matrix problem is defined
by Nmax, the maximum number of oscillator quanta shared
by all nucleons above the lowest configuration. We solve
for the effective Hamiltonian by approximating it as a 3-

body interaction [10,11] based on our chosen chiral NN !
NNN interaction. With this ‘‘cluster approximation,’’ con-
vergence is guaranteed with increasing Nmax.

It is important to note that our NCSM results through
A " 4 are fully converged in that they are independent of
the Nmax cutoff and the @! HO energy. For heavier sys-
tems, we characterize the approach to convergence by the
dependence of the results on Nmax and @!.

Figure 1 shows the trajectories of the two LECs cD # cE
that are determined from fitting the binding energies of the
A " 3 systems. Separate curves are shown for 3H and 3He
fits, as well as their average. There are two points where the
binding of 4He is reproduced exactly. We observe, how-
ever, that in the investigated range of cD # cE, the calcu-
lated 4He binding energy is within a few hundred keV of
experiment. Consequently, the determination of the LECs
in this way is likely not very stringent. We therefore
investigate the sensitivity of the p-shell nuclear properties
to the choice of the cD # cE LECs. First, we maintain the
A " 3 binding energy constraint. Second, we limit our-
selves to the cD values in the vicinity of the point cD $ 1
since the values close to the point cD $ 10 overestimate the
4He radius.

While most of the p-shell nuclear properties, e.g., exci-
tation spectra, are not very sensitive to variations of cD in
the range from #3 to !2 that we explored, we identified
several observables that do demonstrate strong dependence
on cD. In Fig. 2 we display the 6Li quadrupole moment that
changes sign depending on the choice of cD, the ratio of the
B%E2& transitions from the 10B ground state to the first and
the second 1!0 state, and the 12C B%M1& transition from
the ground state to the 1!1 state. The B%M1& transition
inset illustrates the importance of the NNN interaction in
reproducing the experimental value [13]. The 10B B%E2&
ratio, in particular, changes by several orders of magnitude
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1!1&. The HO frequency of @! " 13, 14, 15 MeV was em-
ployed for 6Li, 10B, 12C, respectively. In the inset of the 12C
figure, the convergence of the B%M1; 0!0 ! 1!1& is presented
for calculations with (using cD " #1) and without the NNN
interaction.
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Choose cD =-1 and obtain spectra and their sensitivity on the 3NF ....

               

  
         - Clear improvement of description compared to experiment. 
         - Some corrections are too strong
         - ci are fixed at EM values, shall one relax the consistency to the NN force? 

10B & 13C spectra

depending on the cD variation. This is due to the fact that
the structure of the two 1!0 states is exchanged depending
on cD. From Figs. 1 and 2, we can see that for cD <"2 the
4He radius and the 6Li quadrupole moment underestimate
experiment while for cD > 0 the lowest two 1! states of
10B are reversed and the 12C B#M1; 0!0 ! 1!1$ is over-
estimated. We therefore select cD % "1 for our further
investigation.

We present in Fig. 3 the excitation spectra of 11B as a
function of Nmax for both the chiral NN ! NNN, (top
panel) as well as with the chiral NN interaction alone
(bottom panel). In both cases, the convergence with in-
creasing Nmax is quite good especially for the lowest-lying
states. Similar convergence rates are obtained for our other
p-shell nuclei.

We display in Fig. 4 the natural parity excitation spectra
of four nuclei in the middle of the p shell with both the NN
and the NN ! NNN effective interactions from ChPT. The
results shown are obtained in the largest basis spaces
achieved to date for these nuclei with the NNN interac-
tions, Nmax % 6 (6@!). Overall, the NNN interaction con-
tributes significantly to improve theory in comparison with
experiment. This is especially well demonstrated in the odd
mass nuclei for the lowest few excited states. The cele-
brated case of the ground-state spin of 10B and its sensi-
tivity to the presence of the NNN interaction is clearly
evident. There is an initial indication in these spectra that
the chiral NNN interaction is ‘‘overcorrecting’’ the inad-
equacies of the NN interaction since, e.g., the 1!0 and 4!0
states in 12C are not only interchanged but they are also
spread apart more than the experimentally observed
separation.

Table I contains selected experimental and theoretical
results, including Gamow-Teller (GT) transitions, for 6Li
and A % 10–13. A total of 68 experimental data are sum-
marized in this Table including the excitation energies of
28 states encapsulated in the rms energy deviations. Note
that the only case of an increase in the rms energy deviation
with inclusion of NNN interaction is 13C and it arises due
to the upward shift of the 7

2
" state seen in Fig. 4, an
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FIG. 4 (color online). States dominated by p-shell configura-
tions for 10B, 11B, 12C, and 13C calculated at Nmax % 6 using
@! % 15 MeV (14 MeV for 10B). Most of the eigenstates are
isospin T % 0 or 1=2, the isospin label is explicitly shown only
for states with T % 1 or 3=2. The excitation energy scales are in
MeV.

TABLE I. Selected properties of 6Li, 10;11B, and 12;13C from
experiment and theory. E2 transitions are in e2 fm4 and M1
transitions are in !2

N . The rms deviations of excited state
energies are quoted for the states shown in Fig. 4 whose spin-
parity assignments are well established and that are known to be
dominated by p-shell configurations. The total energy rms is for
the 28 excited states from Fig. 4. Results were obtained in the
basis spaces with Nmax % 6 (8 for 6Li) and HO frequency @! %
15 MeV (13 MeV for 6Li, 14 MeV for 10B). In the NN ! NNN
column, we show sensitivity of selected observables to the
change of cD by &1 at fixed Nmax and @!. The experimental
values are from Refs. [14–21].

Nucleus/property Expt. NN ! NNN NN
6Li: jE#1!1 0$j [MeV] 31.995 32.63 28.98
Q#1!1 0$ [e fm2] "0:082#2$ "0:12#4$ "0:052
!#1!1 0$ [!N] !0:822 !0:836 !0:845
Ex#3!1 0$ [MeV] 2.186 2.47(8) 2.874
B#E2; 3!1 0 ! 1!1 0$ 10.69(84) 3.685 4.512
B#E2; 2!1 0 ! 1!1 0$ 4.40(2.27) 3.847 4.624
B#M1; 0!1 1 ! 1!1 0$ 15.43(32) 15.04(4) 15.089
B#M1; 2!1 1 ! 1!1 0$ 0.149(27) 0.08(2) 0.031

10B: jE#3!1 0$j [MeV] 64.751 64.78 56.11
rp [fm] 2.30(12) 2.197 2.256
Q#3!1 0$ [e fm2] !8:472#56$ !6:327 !6:803
!#3!1 0$ [!N] !1:801 !1:837 !1:853
rms (Exp-Th) [MeV] - 0.823 1.482
B#E2; 1!1 0 ! 3!1 0$ 4.13(6) 3.05(62) 4.380
B#E2; 1!2 0 ! 3!1 0$ 1.71(0.26) 0.50(50) 0.082
B#GT; 3!1 0 ! 2!1 1$ 0.083(3) 0.07(1) 0.102
B#GT; 3!1 0 ! 2!2 1$ 0.95(13) 1.22(2) 1.487

11B: jE# 321
" 1

2$j [MeV] 76.205 77.52 67.29
rp# 321

" 1
2$ [fm] 2.24(12) 2.127 2.196

Q# 321
" 1

2$ [e fm2] !4:065#26$ !3:065 !2:989

!# 321
" 1

2$ [!N] !2:689 !2:06#1$ !2:597
rms (Exp-Th) [MeV] - 1.067 1.765
B#E2; 3

21
" 1

2 ! 1
21
" 1

2$ 2.6(4) 1.476 0.750

B#GT; 3
21
" 1

2 ! 3
21
" 1

2$ 0.345(8) 0.24(1) 0.663

B#GT; 3
21
" 1

2 ! 1
21
" 1

2$ 0.440(22) 0.46(2) 0.841

B#GT; 3
21
" 1

2 ! 5
21
" 1

2$ 0.526(27) 0.53(3) 0.394

B#GT; 3
21
" 1

2 ! 3
22
" 1

2$ 0.525(27) 0.76(2) 0.574

12C: jE#0!1 0$j [MeV] 92.162 95.57 84.76
rp [fm] 2.35(2) 2.172 2.229
Q#2!1 0$ [e fm2] !6#3$ !4:318 !4:931
rms (Exp-Th) [MeV] - 1.058 1.318
B#E2; 2!0 ! 0!0$ 7.59(42) 4.252 5.483
B#M1; 1!0 ! 0!0$ 0.0145(21) 0.006 0.003
B#M1; 1!1 ! 0!0$ 0.951(20) 0.91(6) 0.353
B#E2; 2!1 ! 0!0$ 0.65(13) 0.45(1) 0.301

13C: jE# 121
" 1

2$j [MeV] 97.108 103.23 90.31

rp# 121
" 1

2$ [fm] 2.29(3) 2.135 2.195

!# 121
" 1

2$ [!N] !0:702 !0:39#3$ !0:862
rms (Exp-Th) [MeV] - 2.144 2.089
B#E2; 3

21
" 1

2 ! 1
21
" 1

2$ 6.4(15) 2.659 4.584
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depending on the cD variation. This is due to the fact that
the structure of the two 1!0 states is exchanged depending
on cD. From Figs. 1 and 2, we can see that for cD <"2 the
4He radius and the 6Li quadrupole moment underestimate
experiment while for cD > 0 the lowest two 1! states of
10B are reversed and the 12C B#M1; 0!0 ! 1!1$ is over-
estimated. We therefore select cD % "1 for our further
investigation.

We present in Fig. 3 the excitation spectra of 11B as a
function of Nmax for both the chiral NN ! NNN, (top
panel) as well as with the chiral NN interaction alone
(bottom panel). In both cases, the convergence with in-
creasing Nmax is quite good especially for the lowest-lying
states. Similar convergence rates are obtained for our other
p-shell nuclei.

We display in Fig. 4 the natural parity excitation spectra
of four nuclei in the middle of the p shell with both the NN
and the NN ! NNN effective interactions from ChPT. The
results shown are obtained in the largest basis spaces
achieved to date for these nuclei with the NNN interac-
tions, Nmax % 6 (6@!). Overall, the NNN interaction con-
tributes significantly to improve theory in comparison with
experiment. This is especially well demonstrated in the odd
mass nuclei for the lowest few excited states. The cele-
brated case of the ground-state spin of 10B and its sensi-
tivity to the presence of the NNN interaction is clearly
evident. There is an initial indication in these spectra that
the chiral NNN interaction is ‘‘overcorrecting’’ the inad-
equacies of the NN interaction since, e.g., the 1!0 and 4!0
states in 12C are not only interchanged but they are also
spread apart more than the experimentally observed
separation.

Table I contains selected experimental and theoretical
results, including Gamow-Teller (GT) transitions, for 6Li
and A % 10–13. A total of 68 experimental data are sum-
marized in this Table including the excitation energies of
28 states encapsulated in the rms energy deviations. Note
that the only case of an increase in the rms energy deviation
with inclusion of NNN interaction is 13C and it arises due
to the upward shift of the 7

2
" state seen in Fig. 4, an
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FIG. 4 (color online). States dominated by p-shell configura-
tions for 10B, 11B, 12C, and 13C calculated at Nmax % 6 using
@! % 15 MeV (14 MeV for 10B). Most of the eigenstates are
isospin T % 0 or 1=2, the isospin label is explicitly shown only
for states with T % 1 or 3=2. The excitation energy scales are in
MeV.

TABLE I. Selected properties of 6Li, 10;11B, and 12;13C from
experiment and theory. E2 transitions are in e2 fm4 and M1
transitions are in !2

N . The rms deviations of excited state
energies are quoted for the states shown in Fig. 4 whose spin-
parity assignments are well established and that are known to be
dominated by p-shell configurations. The total energy rms is for
the 28 excited states from Fig. 4. Results were obtained in the
basis spaces with Nmax % 6 (8 for 6Li) and HO frequency @! %
15 MeV (13 MeV for 6Li, 14 MeV for 10B). In the NN ! NNN
column, we show sensitivity of selected observables to the
change of cD by &1 at fixed Nmax and @!. The experimental
values are from Refs. [14–21].

Nucleus/property Expt. NN ! NNN NN
6Li: jE#1!1 0$j [MeV] 31.995 32.63 28.98
Q#1!1 0$ [e fm2] "0:082#2$ "0:12#4$ "0:052
!#1!1 0$ [!N] !0:822 !0:836 !0:845
Ex#3!1 0$ [MeV] 2.186 2.47(8) 2.874
B#E2; 3!1 0 ! 1!1 0$ 10.69(84) 3.685 4.512
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B#M1; 2!1 1 ! 1!1 0$ 0.149(27) 0.08(2) 0.031
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rp [fm] 2.30(12) 2.197 2.256
Q#3!1 0$ [e fm2] !8:472#56$ !6:327 !6:803
!#3!1 0$ [!N] !1:801 !1:837 !1:853
rms (Exp-Th) [MeV] - 0.823 1.482
B#E2; 1!1 0 ! 3!1 0$ 4.13(6) 3.05(62) 4.380
B#E2; 1!2 0 ! 3!1 0$ 1.71(0.26) 0.50(50) 0.082
B#GT; 3!1 0 ! 2!1 1$ 0.083(3) 0.07(1) 0.102
B#GT; 3!1 0 ! 2!2 1$ 0.95(13) 1.22(2) 1.487
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• 3NF and NN expectation values for 4He 
• 3NF power counting estimate:  2 % of V  (based on Λ=500 MeV)

• 3NF contributions are somewhat more important (Δ not included in EFT, factor 3 ) 

• Naive estimate for N3LO contributions (subleading 3NF‘s and 4NF) 
     based on same expansion parameter is approximately 0.5 % of V (→ 500 keV)

• Estimate N3LO contributions using 4NF (because it is actually simpler to obtain)

3NF contributions - estimate of N2LO

Eb [MeV] VNN [MeV] V123 [MeV] |V123 /VNN| [%]

N2LO 450 / 700 -27.65 -84.56 -1.11 1.3

600 / 700 -28.57 -93.73 -6.83 7.3

N3LO 500 / DR-3NF-A -28.27 -99.45 -4.06 4.1

500 / DR-3NF-B -28.24 -98.92 -7.10 7.2

Λ/Λ̃ [MeV]
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Leading chiral 4NF
Five non-vanishing classes of contributions (see E. Epelbaum, 2006,2007)

• many terms with complicated spin/isospin structure !

• all parameters linked to leading NN interaction

• finite range contributions (some discussed in McManus, Riska (1980), Robilotta (1985))

• contact contributions                (possibly suppressed due to Wigner symmetry ?)
20
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Fig. 3. Class-I contributions to the 4NF. For notation, see figs. 1 and 2.

In the method of unitary transformation, one has to
take into account all terms in eq. (3.22). It is easy to verify
that the resulting 4NF vanishes due to an exact cancella-
tion between the different terms in this equation. A similar
cancellation occurs also for the 3NF [13,23], see also [24],
and for disconnected 2NF diagrams [21] at this chiral or-
der. The corrections to the effective Hamilton operator at
order ν = 3 within the method of unitary transformation
are discussed in detail in [13]. They give rise to at most
tree-nucleon operators and will not be discussed in this
work.

3.3 Order ν = 4

The first nonvanishing contributions to the 4NF arise at
order ν = 4. For the sake of a better overview, it is useful
to divide the total contribution at this order into pieces
with the same combinations of the coupling constants gA

and CS,T . This leads to eight classes of terms which are
discussed in detail below.

– Class-I contributions proportional to g6
A.

This class of contributions arises from all possible 4NF
diagrams involving six vertices H1

21 from the first line
of eq. (3.20). Using eqs. (2.14)–(2.17) one obtains:

V (4) =
1

2
η

[

H1
21

λ1

Eπ
H1

21 η H1
21

λ1

Eπ
H1

21
λ2

Eπ
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E2
π
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Eπ
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21
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E2
π
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Eπ
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E2
π
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λ2
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E2
π
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21 η H1
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Eπ
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λ2
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λ1

Eπ
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−H1
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λ1

Eπ
H1

21 η H1
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λ1

Eπ
H1

21 η H1
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λ1

E3
π

H1
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−
1

4
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E2
π

H1
21 η H1
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Eπ
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21 η H1
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π

H1
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−
3

4
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Eπ
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E2
π

H1
21 η H1
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E2
π

H1
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−H1
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Eπ
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H1
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λ1

Eπ
H1

21
λ2

Eπ
H1
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λ1

Eπ
H1

21

−H1
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λ1

Eπ
H1

21
λ2

Eπ
H1

21
λ3

Eπ
H1

21
λ2

Eπ
H1

21
λ1

Eπ
H1

21

]

η + h.c.

(3.23)

The corresponding contributions to the 4NF can, in
principle, be evaluated straightforwardly by calculat-
ing matrix elements of the operators in eq. (3.23) for
all possible “time orderings” of diagrams shown in
fig. 3. Before giving the explicit results, it is important
to address the issue whether the contribution V (4) is
defined unambiguously. Generally, an effective Hamil-
ton operator is defined modulo unitary transforma-
tions2. It should, therefore, be understood that terms
in eq. (3.23) correspond to one particular choice of the
unitary transformation U . Indeed, eq. (2.12) does not
yield the most general parametrization of the operator
U . The resulting effective Hamilton operator ηH̃η can
be further modified via subsequent unitary transfor-
mations acting on the η-space. To be specific, consider
the unitary transformation of the form

U = eS , (3.24)

where S is an anti-Hermitian operator acting on the
η-space, S ≡ ηSη, S† = −S. Further, let S be given
by S = α1S1 + α2S2 with α1,2 being arbitrary real
numbers and

S1 = η

[

H1
21

λ1

Eπ
H1

21 η H1
21

λ1

E3
π

H1
21

−H1
21

λ1

E3
π

H1
21 η H1

21
λ1

Eπ
H1

21

]

η,

S2 = η

[

H1
21

λ1

Eπ
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21
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Eπ
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E2
π

H1
21

−H1
21

λ1

E2
π

H1
21

λ2

Eπ
H1

21
λ1

Eπ
H1

21

]

η. (3.25)

The operators S1 and S2 are the only possible ones
that are invariant under the time reversal operation

2 Other sources of ambiguities related to field redefinitions in
the Lagrangian and to the choice of the dynamical equation are
discussed for one- and two-pion exchange potentials in ref. [25].
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Fig. 5. Class-II contributions to the 4NF. For notation, see figs. 1 and 2.
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(3.34)

Similar to the previously considered class-I contribu-
tions, we employ additional η-space unitary transfor-
mations with the operator S in eq. (3.24) given by
S = α3S3 + α4S4 + α5S5, where αi are real constants

and

S3 = η

[

H1
21

λ1

E2
π

H2
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Eπ
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Eπ
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η,
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[
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π
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π
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[
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π
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Eπ
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]

η.

(3.35)

The operators S3, S4 and S5 are the only time re-
versal invariant anti-Hermitian operators that can be
constructed out of two vertices H1

21 and one Weinberg-
Tomozawa vertex H2

22 with Eπ’s appearing only in
the denominators. The corresponding αi-dependent
class-II contributions to the effective Hamilton oper-
ator read

δV (4) = [H(0), S]

= −α3 η

[
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π
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[
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π
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η

+h.c. + . . . , (3.36)

where the ellipses refer to terms involving an inser-
tion of either the nucleon kinetic energy H2

20 or the
contact interaction H2

40 (class-V contributions). The
constants α3, α4 and α5 are constrained by the re-
quirement that the OPEP factorizes out in the 3NF
diagrams shown in fig. 6. This guarantees that all ultra-
violet divergences arising in the corresponding loop in-
tegrals are absorbable into a redefinition of the LEC D

∝ g4
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E. Epelbaum: Four-nucleon force using the method of unitary transformation 207

Fig. 8. Class-IV contributions to the 4NF. For notation, see figs. 1 and 2.

(a) (b) (c) (d) (e) (f)

(g) (h) (i) (j) (k) (l)

Fig. 9. Class-IV three-nucleon diagrams which do not involve self-energy insertions. For notation, see figs. 1 and 2.

the generator S6 given by

S6 = η

[

− H1
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21 η H2

40 + H2
40 η H1
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]
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(3.48)
The corresponding contributions to the effective
Hamilton operator read

δV (4) = α6 η

[
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π
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π
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Notice that the second possible generator

η

[

− H1
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π

H2
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λ1

Eπ
H1

21 + H1
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λ1

Eπ
H2
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E2
π
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21

]

η = 0

(3.50)

does not lead to a nontrivial transformation. The con-
stant α6 can be determined unambigously by the re-
quirement that the OPEP factorizes out in the 3NF
diagrams shown in fig. 9. The energy denominators for
the individual graphs in this figure read

V̄ a
3N = V̄ g

3N = 2(1 − 2α6)
ω2

i + ω2
j

ω3
i ω3

j

,

V̄ b
3N = −V̄ c

3N = V̄ h
3N = −V̄ i

3N = −
2

ωiω3
j

,

V̄ d
3N = V̄ j

3N =
4α6

ωiω3
j

,

V̄ e
3N = V̄ k

3N = −
2

ωiω3
j

− 2(1 − 2α6)
1

ω3
i ωj

,

V̄ f
3N = V̄ l

3N = 0 . (3.51)

Here, i labels the pion exchanged between the first two
nucleons and the third one while j denotes the pion
which does not interact with the third nucleon. The

∝ g4
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Fig. 10. Class-V contributions to the 4NF. For notation, see figs. 1 and 2.

OPEP factorizes out in the above terms if one sets

α6 =
1

2
. (3.52)

We have verified that this choice also leads to the
desired 1/ωi-dependence for the class-IV 3NF contri-
butions involving self-energy insertions which are not
shown in fig. 9. With the η-space unitary transforma-
tions being fixed as described above only the last two
diagrams in fig. 8 yield nonvanishing 4NF contribu-
tions:

Vclass-IV = 4CT
g4

A

(2Fπ)4
$σ1 · $q1 $σ3 × $σ4 · $q12

[$q 2
1 + M2

π ] [$q 2
12 + M2

π ]2

×
[

τ 1 · τ 3 $q1 × $q12 · $σ2 − τ 1 × τ 2 · τ 3 $q1 · $q12

]

+all perm. (3.53)

– Class-V contributions proportional to g2
A CS,T .

The class-V contributions arise from diagrams con-
structed from two vertices H1

21, one Weinberg-
Tomozawa vertex H2

22 and the leading contact inter-
action H2

40, see fig. 10. From eqs. (2.14)–(2.17), one
obtains:
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Fig. 11. Class-VI contribution to the 4NF. For notation, see
figs. 1 and 2.
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η + h.c. (3.54)

In addition, one has to take into account the contribu-
tions arising from the η-space unitary transformations
proportional to α3,4,5 and acting on H2

40:

δV (4) = −α5 η
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+
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π
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π
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]

η + h.c. (3.55)

Here, we have adopted the values for α3,4 from
eq. (3.40). Similar to the class-II forces, the resulting
4NF turns out to be α5-independent. From the dia-
grams shown in fig. 10, only the last two in the first row
generate the non vanishing contribution which reads

Vclass-V = 2CT
g2

A

(2Fπ)4
$σ1 · $q1 $σ3 × $σ4 · $q12

[$q 2
1 + M2

π ] [$q 2
12 + M2

π ]
τ 1

×τ 2 · τ 3 + all perm. (3.56)
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Fig. 12. Class-VII contributions to the 4NF. For notation, see figs. 1 and 2.

Fig. 13. Class-VIII contributions to the 4NF. Solid squares denote vertices of order ν = 4. For the remaining notation see
figs. 1 and 2.

– Class-VI contributions proportional to CS,T .
The only way the class-VI contributions can be gen-
erated is from a single disconnected diagram shown in
fig. 11. The corresponding terms in the effective po-
tential read

V (4) =η

[

1

2
H2

22
λ2

Eπ
H2

40
λ2

Eπ
H2

22−
1

2
H2
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λ2

E2
π

H2
22 η H2

40

]

η

+h.c. (3.57)

It is easy to verify that the diagram in fig. 11 leads to
a vanishing 4NF.

– Class-VII contributions proportional to g2
A C2

S,T .
The class-VII contributions arise from diagrams in-
volving two vertices H1

21 and two insertions of the
leading-order contact interactions H2

40, see fig. 12.

From eqs. (2.14)–(2.17), one obtains

V (4) = η
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π

H1
21 η H2

40

+
1

2
H1

21
λ1

E2
π
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]

η + h.c. (3.58)

Further terms arise from the η-space unitary transfor-
mation proportional to α6, see eq. (3.48), and acting
on H2

40. Using the value for α6 from eq. (3.52), these

∝ g2
aC2

TClass VII

∝ CT

VLO = −
(

ga

2Fπ

)2 !σ1 · !q !σ2 · !q

q2 + m2
π

τ1 · τ2 + CS + CT!σ1 · !σ2

no Δ involved
Δ induced 4NF‘s have been estimated in 
Deltuva et al.,2008 (→ 170 keV in 4He)
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Ingredients of the calculation
•First attempt: 

• perturbative estimate of the 4NF contribution (works well for low cutoffs for 3NF)
• Need to calculate expectation value

• 4He wave function

• spin-isospin channels

• 4NF matrix element                                                   generated using Mathematica  

• Metropolis walk for evaluation based on weight function 

21
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4He wave functions
all estimates are based on realistic 4He wave functions

results will be shown for 

1)  AV18 + Urbana IX / CD-Bonn + TM 

2) LO chiral interactions for cutoffs Λ = 2 ... 7 fm-1

3) NLO & N2LO (including 3NF) wave functions Λ = 2 ... 3 fm-1

22

3He 4He

AV18+Urbana IX -7.72 -28.5

CD-Bonn + TM99 -7.74 -28.4

LO -5.4 ... -11.0 -15.1 ... -39.9

NLO -6.99 ... -7.70 -24.4 ... -28.8

NNLO -7.72 ... -7.81 -27.7 ... -28.3

Expt -7.72 -28.3



• weight function adjusted for low statistics runs

• each production run requires ≈107 sample points 

• calculations performed on JUGENE on ≈ 4000 processors

• calculation of wave function most time-consuming  

• 10 independent calculations of contributions and standard deviation allow to check 

consistency of statistics

• Mersenne Twister random number generator (IBM compilers internal one failed !)
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Complete calculation
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LO wf for large range of cutoffs 
• perturbativity of 4NF for large cutoffs ? 

• all large cutoff results are
 within expected bounds

• Wigner symmetry does not suppress 
4NF contributions in LO

• estimates for higher order wave functions 
are more reliable 
(better description of binding energy)

• typical 4NF contribution is 500 keV 
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Summary of figures for 4NF calculation

17.06.2009
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February 10, 2011

Contribution of the 4NF
•  results of chiral wave functions with consistent CT (CT=+10 GeV-2 for CD-Bonn & AV18)

• 4NF contribution approximately agrees with power counting estimate (≈ 0.5% ≈ 500 keV)
(some cancelations of individual contributions make it smaller)

• strong model / cutoff dependence (the 4NF contribution is non-observable)

Probably good a estimate of typical N3LO contribution:   → 500 keV

Is this relevant? Implementation of 4NF‘s in NCSM?
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February 10, 2011

subleading 3NF 
in part formulated in Bernard et al., 2008 and currently implemented (no results yet)

remaining parts are almost finished (Bernard et al., in progress, 2011) 
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FIG. 1. (Color online) Various topologies that appear in the 3NF at N3LO. Solid and dashed lines represent nucleons and pions, respectively.
Shaded blobs are the corresponding amplitudes. The long-range part of the 3NF considered in this paper consists of (a) 2π exchange graphs,
(b) 2π -1π diagrams, and (c) the so-called ring diagrams. The topologies (d) and (e) involve four-nucleon contact operators and are considered
of shorter range.

where the ci are low-energy constants andN, vµ, and Sµ denote
the large component of the nucleon field, the nucleons four-
velocity, and the covariant spin vector, respectively. We use
standard notation: U (x) = u2(x) collects the pion fields, uµ =
i(u†∂µu − u∂µu†),χ+ = u†χu† + uχ †u includes the explicit
chiral symmetry breaking resulting from the finite light quark
masses, 〈. . .〉 denotes a trace in flavor space, and Dµ is the
chiral covariant derivative for the nucleon field. Notice further
that the first terms in the expansion of U (π) in powers of the
pion fields read

U (π) = 1 + i

Fπ

τ · π − 1
2F 2

π

π2 − iα

F 3
π

(τ · π)3

+ 8α − 1
8F 4

π

π4 + · · · , (2.2)

where τ denote the Pauli isospin matrices and α is an arbitrary
constant. For further notation and discussion, we refer to
Ref. [20]; a recent review is given in Ref. [21]. Following
Weinberg [4,5], we define the dimension % of the Lagrangian
via

% = d + 1
2n − 2, (2.3)

where d and n are the number of derivatives or insertions of the
pion mass Mπ and nucleon field operators, respectively. The
pertinent low-energy constants (LECs) of the leading-order
effective Lagrangian are the nucleon axial-vector coupling
gA and the pion decay constant Fπ . Notice that although all
couplings and masses appearing in the effective Lagrangian
should, strictly speaking, be taken at their SU(2) chiral limit
values, to the accuracy we are working, we can use their
pertinent physical values. In addition, we have the LECs
d16, d18, and d̃28 from the πN Lagrangian at order % = 2. The
ellipses in the parentheses in the last line of Eq. (2.1) refer to
terms proportional to the LECs d1,2,3,5,14,15 and d̃24,26,27,28,30,
which generate ππNN vertices [20] but do not contribute to
the 3NF at N3LO as will be shown later. We also omit in
Eq. (2.1) pion vertices with % = 2 and proportional to the
LECs l3,4, which do not show up explicitly in the formulation
based on renormalized pion fields at the considered order; see
Ref. [22] for more details.

For a connected N -nucleon diagram with L loops and
Vi vertices of dimension %i , the irreducible contribution1

1This is the contribution that is not generated through iterations in
the dynamical equation and that gives rise to the nuclear force.

to the scattering amplitude scales as Qν , where Q is a
generic low-momentum scale associated with external nucleon
three-momenta or Mπ and

ν = −4 + 2N + 2L +
∑

i

Vi%i . (2.4)

Consequently, at N3LO, which corresponds to ν = 4, one
needs to take into account two classes of connected diagrams:
tree diagrams with one insertion of the % = 2 interactions
and one-loop graphs involving only lowest order vertices with
% = 0. Notice that it is not possible to draw 3N diagrams
with two insertions of % = 1 vertices at this order. We further
emphasize that similar to the case of the leading four-nucleon
force considered in Refs. [23,24], disconnected diagrams lead
to vanishing contributions to the 3NF and will not be discussed
in what follows.

The structure of the 3NF at N3LO is visualized in Fig. 1
and can be written as

V
(4)

3N = V
(4)

2π + V
(4)

2π-1π + V (4)
ring + V

(4)
1π-cont + V

(4)
2π-cont + V

(4)
1/m.

(2.5)

Whereas the 2π -1π , ring, and two-pion-exchange-contact
(2π -cont) topologies start to contribute at N3LO, the 2π and
one-pion-exchange-contact (1π -cont) graphs already appear at
N2LO, yielding the following contributions to the 3NF [6,8]:

V
(3)

2π = g2
A

8F 4
π

$σ1 · $q1 $σ3 · $q3[
q2

1 + M2
π

][
q2

3 + M2
π

]

×
[
τ 1 · τ 3

(
−4c1M

2
π + 2c3 $q1 · $q3

)
(2.6)

+ c4τ 1 × τ 3 · τ 2 $q1 × $q3 · $σ2
]
,

V
(3)

1π-cont = −gAD

8F 2
π

$σ3 · $q3

q2
3 + M2

π

τ 1 · τ 3 $σ1 · $q3,

where the subscripts refer to the nucleon labels and $qi = $p′
i −

$pi , with $p′
i and $pi being the final and initial momenta of the

nucleon i. Further, qi ≡ |$qi |, σi denote the Pauli spin matrices,
and D refers to the low-energy constant accompanying the
leading πNNNN vertex. Here and throughout this work, the
results are always given for a particular choice of nucleon
labels. The full expression for the 3NF results by taking into
account all possible permutations of the nucleons,2 that is,

V full
3N = V3N + all permutations. (2.7)

2For three nucleons there are altogether six permutations.
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FIG. 1. (Color online) Various topologies that appear in the 3NF at N3LO. Solid and dashed lines represent nucleons and pions, respectively.
Shaded blobs are the corresponding amplitudes. The long-range part of the 3NF considered in this paper consists of (a) 2π exchange graphs,
(b) 2π -1π diagrams, and (c) the so-called ring diagrams. The topologies (d) and (e) involve four-nucleon contact operators and are considered
of shorter range.

where the ci are low-energy constants andN, vµ, and Sµ denote
the large component of the nucleon field, the nucleons four-
velocity, and the covariant spin vector, respectively. We use
standard notation: U (x) = u2(x) collects the pion fields, uµ =
i(u†∂µu − u∂µu†),χ+ = u†χu† + uχ †u includes the explicit
chiral symmetry breaking resulting from the finite light quark
masses, 〈. . .〉 denotes a trace in flavor space, and Dµ is the
chiral covariant derivative for the nucleon field. Notice further
that the first terms in the expansion of U (π) in powers of the
pion fields read

U (π) = 1 + i

Fπ

τ · π − 1
2F 2

π

π2 − iα

F 3
π

(τ · π)3

+ 8α − 1
8F 4

π

π4 + · · · , (2.2)

where τ denote the Pauli isospin matrices and α is an arbitrary
constant. For further notation and discussion, we refer to
Ref. [20]; a recent review is given in Ref. [21]. Following
Weinberg [4,5], we define the dimension % of the Lagrangian
via

% = d + 1
2n − 2, (2.3)

where d and n are the number of derivatives or insertions of the
pion mass Mπ and nucleon field operators, respectively. The
pertinent low-energy constants (LECs) of the leading-order
effective Lagrangian are the nucleon axial-vector coupling
gA and the pion decay constant Fπ . Notice that although all
couplings and masses appearing in the effective Lagrangian
should, strictly speaking, be taken at their SU(2) chiral limit
values, to the accuracy we are working, we can use their
pertinent physical values. In addition, we have the LECs
d16, d18, and d̃28 from the πN Lagrangian at order % = 2. The
ellipses in the parentheses in the last line of Eq. (2.1) refer to
terms proportional to the LECs d1,2,3,5,14,15 and d̃24,26,27,28,30,
which generate ππNN vertices [20] but do not contribute to
the 3NF at N3LO as will be shown later. We also omit in
Eq. (2.1) pion vertices with % = 2 and proportional to the
LECs l3,4, which do not show up explicitly in the formulation
based on renormalized pion fields at the considered order; see
Ref. [22] for more details.

For a connected N -nucleon diagram with L loops and
Vi vertices of dimension %i , the irreducible contribution1

1This is the contribution that is not generated through iterations in
the dynamical equation and that gives rise to the nuclear force.

to the scattering amplitude scales as Qν , where Q is a
generic low-momentum scale associated with external nucleon
three-momenta or Mπ and

ν = −4 + 2N + 2L +
∑

i

Vi%i . (2.4)

Consequently, at N3LO, which corresponds to ν = 4, one
needs to take into account two classes of connected diagrams:
tree diagrams with one insertion of the % = 2 interactions
and one-loop graphs involving only lowest order vertices with
% = 0. Notice that it is not possible to draw 3N diagrams
with two insertions of % = 1 vertices at this order. We further
emphasize that similar to the case of the leading four-nucleon
force considered in Refs. [23,24], disconnected diagrams lead
to vanishing contributions to the 3NF and will not be discussed
in what follows.

The structure of the 3NF at N3LO is visualized in Fig. 1
and can be written as

V
(4)

3N = V
(4)

2π + V
(4)

2π-1π + V (4)
ring + V

(4)
1π-cont + V

(4)
2π-cont + V

(4)
1/m.

(2.5)

Whereas the 2π -1π , ring, and two-pion-exchange-contact
(2π -cont) topologies start to contribute at N3LO, the 2π and
one-pion-exchange-contact (1π -cont) graphs already appear at
N2LO, yielding the following contributions to the 3NF [6,8]:

V
(3)

2π = g2
A

8F 4
π

$σ1 · $q1 $σ3 · $q3[
q2

1 + M2
π

][
q2

3 + M2
π

]

×
[
τ 1 · τ 3

(
−4c1M

2
π + 2c3 $q1 · $q3

)
(2.6)

+ c4τ 1 × τ 3 · τ 2 $q1 × $q3 · $σ2
]
,

V
(3)

1π-cont = −gAD

8F 2
π

$σ3 · $q3

q2
3 + M2

π

τ 1 · τ 3 $σ1 · $q3,

where the subscripts refer to the nucleon labels and $qi = $p′
i −

$pi , with $p′
i and $pi being the final and initial momenta of the

nucleon i. Further, qi ≡ |$qi |, σi denote the Pauli spin matrices,
and D refers to the low-energy constant accompanying the
leading πNNNN vertex. Here and throughout this work, the
results are always given for a particular choice of nucleon
labels. The full expression for the 3NF results by taking into
account all possible permutations of the nucleons,2 that is,

V full
3N = V3N + all permutations. (2.7)

2For three nucleons there are altogether six permutations.

064004-2

BERNARD, EPELBAUM, KREBS, AND MEIßNER PHYSICAL REVIEW C 77, 064004 (2008)

(a) (b) (c) (d) (e)

FIG. 1. (Color online) Various topologies that appear in the 3NF at N3LO. Solid and dashed lines represent nucleons and pions, respectively.
Shaded blobs are the corresponding amplitudes. The long-range part of the 3NF considered in this paper consists of (a) 2π exchange graphs,
(b) 2π -1π diagrams, and (c) the so-called ring diagrams. The topologies (d) and (e) involve four-nucleon contact operators and are considered
of shorter range.

where the ci are low-energy constants andN, vµ, and Sµ denote
the large component of the nucleon field, the nucleons four-
velocity, and the covariant spin vector, respectively. We use
standard notation: U (x) = u2(x) collects the pion fields, uµ =
i(u†∂µu − u∂µu†),χ+ = u†χu† + uχ †u includes the explicit
chiral symmetry breaking resulting from the finite light quark
masses, 〈. . .〉 denotes a trace in flavor space, and Dµ is the
chiral covariant derivative for the nucleon field. Notice further
that the first terms in the expansion of U (π) in powers of the
pion fields read

U (π) = 1 + i

Fπ

τ · π − 1
2F 2

π

π2 − iα

F 3
π

(τ · π)3

+ 8α − 1
8F 4

π

π4 + · · · , (2.2)

where τ denote the Pauli isospin matrices and α is an arbitrary
constant. For further notation and discussion, we refer to
Ref. [20]; a recent review is given in Ref. [21]. Following
Weinberg [4,5], we define the dimension % of the Lagrangian
via

% = d + 1
2n − 2, (2.3)

where d and n are the number of derivatives or insertions of the
pion mass Mπ and nucleon field operators, respectively. The
pertinent low-energy constants (LECs) of the leading-order
effective Lagrangian are the nucleon axial-vector coupling
gA and the pion decay constant Fπ . Notice that although all
couplings and masses appearing in the effective Lagrangian
should, strictly speaking, be taken at their SU(2) chiral limit
values, to the accuracy we are working, we can use their
pertinent physical values. In addition, we have the LECs
d16, d18, and d̃28 from the πN Lagrangian at order % = 2. The
ellipses in the parentheses in the last line of Eq. (2.1) refer to
terms proportional to the LECs d1,2,3,5,14,15 and d̃24,26,27,28,30,
which generate ππNN vertices [20] but do not contribute to
the 3NF at N3LO as will be shown later. We also omit in
Eq. (2.1) pion vertices with % = 2 and proportional to the
LECs l3,4, which do not show up explicitly in the formulation
based on renormalized pion fields at the considered order; see
Ref. [22] for more details.

For a connected N -nucleon diagram with L loops and
Vi vertices of dimension %i , the irreducible contribution1

1This is the contribution that is not generated through iterations in
the dynamical equation and that gives rise to the nuclear force.

to the scattering amplitude scales as Qν , where Q is a
generic low-momentum scale associated with external nucleon
three-momenta or Mπ and

ν = −4 + 2N + 2L +
∑

i

Vi%i . (2.4)

Consequently, at N3LO, which corresponds to ν = 4, one
needs to take into account two classes of connected diagrams:
tree diagrams with one insertion of the % = 2 interactions
and one-loop graphs involving only lowest order vertices with
% = 0. Notice that it is not possible to draw 3N diagrams
with two insertions of % = 1 vertices at this order. We further
emphasize that similar to the case of the leading four-nucleon
force considered in Refs. [23,24], disconnected diagrams lead
to vanishing contributions to the 3NF and will not be discussed
in what follows.

The structure of the 3NF at N3LO is visualized in Fig. 1
and can be written as

V
(4)

3N = V
(4)

2π + V
(4)

2π-1π + V (4)
ring + V

(4)
1π-cont + V

(4)
2π-cont + V

(4)
1/m.

(2.5)

Whereas the 2π -1π , ring, and two-pion-exchange-contact
(2π -cont) topologies start to contribute at N3LO, the 2π and
one-pion-exchange-contact (1π -cont) graphs already appear at
N2LO, yielding the following contributions to the 3NF [6,8]:

V
(3)

2π = g2
A

8F 4
π

$σ1 · $q1 $σ3 · $q3[
q2

1 + M2
π

][
q2

3 + M2
π

]

×
[
τ 1 · τ 3

(
−4c1M

2
π + 2c3 $q1 · $q3

)
(2.6)

+ c4τ 1 × τ 3 · τ 2 $q1 × $q3 · $σ2
]
,

V
(3)

1π-cont = −gAD

8F 2
π

$σ3 · $q3

q2
3 + M2

π

τ 1 · τ 3 $σ1 · $q3,

where the subscripts refer to the nucleon labels and $qi = $p′
i −

$pi , with $p′
i and $pi being the final and initial momenta of the

nucleon i. Further, qi ≡ |$qi |, σi denote the Pauli spin matrices,
and D refers to the low-energy constant accompanying the
leading πNNNN vertex. Here and throughout this work, the
results are always given for a particular choice of nucleon
labels. The full expression for the 3NF results by taking into
account all possible permutations of the nucleons,2 that is,

V full
3N = V3N + all permutations. (2.7)

2For three nucleons there are altogether six permutations.
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FIG. 1. (Color online) Various topologies that appear in the 3NF at N3LO. Solid and dashed lines represent nucleons and pions, respectively.
Shaded blobs are the corresponding amplitudes. The long-range part of the 3NF considered in this paper consists of (a) 2π exchange graphs,
(b) 2π -1π diagrams, and (c) the so-called ring diagrams. The topologies (d) and (e) involve four-nucleon contact operators and are considered
of shorter range.

where the ci are low-energy constants andN, vµ, and Sµ denote
the large component of the nucleon field, the nucleons four-
velocity, and the covariant spin vector, respectively. We use
standard notation: U (x) = u2(x) collects the pion fields, uµ =
i(u†∂µu − u∂µu†),χ+ = u†χu† + uχ †u includes the explicit
chiral symmetry breaking resulting from the finite light quark
masses, 〈. . .〉 denotes a trace in flavor space, and Dµ is the
chiral covariant derivative for the nucleon field. Notice further
that the first terms in the expansion of U (π) in powers of the
pion fields read

U (π) = 1 + i

Fπ

τ · π − 1
2F 2

π

π2 − iα

F 3
π

(τ · π)3

+ 8α − 1
8F 4

π

π4 + · · · , (2.2)

where τ denote the Pauli isospin matrices and α is an arbitrary
constant. For further notation and discussion, we refer to
Ref. [20]; a recent review is given in Ref. [21]. Following
Weinberg [4,5], we define the dimension % of the Lagrangian
via

% = d + 1
2n − 2, (2.3)

where d and n are the number of derivatives or insertions of the
pion mass Mπ and nucleon field operators, respectively. The
pertinent low-energy constants (LECs) of the leading-order
effective Lagrangian are the nucleon axial-vector coupling
gA and the pion decay constant Fπ . Notice that although all
couplings and masses appearing in the effective Lagrangian
should, strictly speaking, be taken at their SU(2) chiral limit
values, to the accuracy we are working, we can use their
pertinent physical values. In addition, we have the LECs
d16, d18, and d̃28 from the πN Lagrangian at order % = 2. The
ellipses in the parentheses in the last line of Eq. (2.1) refer to
terms proportional to the LECs d1,2,3,5,14,15 and d̃24,26,27,28,30,
which generate ππNN vertices [20] but do not contribute to
the 3NF at N3LO as will be shown later. We also omit in
Eq. (2.1) pion vertices with % = 2 and proportional to the
LECs l3,4, which do not show up explicitly in the formulation
based on renormalized pion fields at the considered order; see
Ref. [22] for more details.

For a connected N -nucleon diagram with L loops and
Vi vertices of dimension %i , the irreducible contribution1

1This is the contribution that is not generated through iterations in
the dynamical equation and that gives rise to the nuclear force.

to the scattering amplitude scales as Qν , where Q is a
generic low-momentum scale associated with external nucleon
three-momenta or Mπ and

ν = −4 + 2N + 2L +
∑

i

Vi%i . (2.4)

Consequently, at N3LO, which corresponds to ν = 4, one
needs to take into account two classes of connected diagrams:
tree diagrams with one insertion of the % = 2 interactions
and one-loop graphs involving only lowest order vertices with
% = 0. Notice that it is not possible to draw 3N diagrams
with two insertions of % = 1 vertices at this order. We further
emphasize that similar to the case of the leading four-nucleon
force considered in Refs. [23,24], disconnected diagrams lead
to vanishing contributions to the 3NF and will not be discussed
in what follows.

The structure of the 3NF at N3LO is visualized in Fig. 1
and can be written as
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Whereas the 2π -1π , ring, and two-pion-exchange-contact
(2π -cont) topologies start to contribute at N3LO, the 2π and
one-pion-exchange-contact (1π -cont) graphs already appear at
N2LO, yielding the following contributions to the 3NF [6,8]:
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where the subscripts refer to the nucleon labels and $qi = $p′
i −

$pi , with $p′
i and $pi being the final and initial momenta of the

nucleon i. Further, qi ≡ |$qi |, σi denote the Pauli spin matrices,
and D refers to the low-energy constant accompanying the
leading πNNNN vertex. Here and throughout this work, the
results are always given for a particular choice of nucleon
labels. The full expression for the 3NF results by taking into
account all possible permutations of the nucleons,2 that is,

V full
3N = V3N + all permutations. (2.7)

2For three nucleons there are altogether six permutations.
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FIG. 1. (Color online) Various topologies that appear in the 3NF at N3LO. Solid and dashed lines represent nucleons and pions, respectively.
Shaded blobs are the corresponding amplitudes. The long-range part of the 3NF considered in this paper consists of (a) 2π exchange graphs,
(b) 2π -1π diagrams, and (c) the so-called ring diagrams. The topologies (d) and (e) involve four-nucleon contact operators and are considered
of shorter range.

where the ci are low-energy constants andN, vµ, and Sµ denote
the large component of the nucleon field, the nucleons four-
velocity, and the covariant spin vector, respectively. We use
standard notation: U (x) = u2(x) collects the pion fields, uµ =
i(u†∂µu − u∂µu†),χ+ = u†χu† + uχ †u includes the explicit
chiral symmetry breaking resulting from the finite light quark
masses, 〈. . .〉 denotes a trace in flavor space, and Dµ is the
chiral covariant derivative for the nucleon field. Notice further
that the first terms in the expansion of U (π) in powers of the
pion fields read

U (π) = 1 + i

Fπ

τ · π − 1
2F 2

π

π2 − iα

F 3
π

(τ · π)3

+ 8α − 1
8F 4

π

π4 + · · · , (2.2)

where τ denote the Pauli isospin matrices and α is an arbitrary
constant. For further notation and discussion, we refer to
Ref. [20]; a recent review is given in Ref. [21]. Following
Weinberg [4,5], we define the dimension % of the Lagrangian
via

% = d + 1
2n − 2, (2.3)

where d and n are the number of derivatives or insertions of the
pion mass Mπ and nucleon field operators, respectively. The
pertinent low-energy constants (LECs) of the leading-order
effective Lagrangian are the nucleon axial-vector coupling
gA and the pion decay constant Fπ . Notice that although all
couplings and masses appearing in the effective Lagrangian
should, strictly speaking, be taken at their SU(2) chiral limit
values, to the accuracy we are working, we can use their
pertinent physical values. In addition, we have the LECs
d16, d18, and d̃28 from the πN Lagrangian at order % = 2. The
ellipses in the parentheses in the last line of Eq. (2.1) refer to
terms proportional to the LECs d1,2,3,5,14,15 and d̃24,26,27,28,30,
which generate ππNN vertices [20] but do not contribute to
the 3NF at N3LO as will be shown later. We also omit in
Eq. (2.1) pion vertices with % = 2 and proportional to the
LECs l3,4, which do not show up explicitly in the formulation
based on renormalized pion fields at the considered order; see
Ref. [22] for more details.

For a connected N -nucleon diagram with L loops and
Vi vertices of dimension %i , the irreducible contribution1

1This is the contribution that is not generated through iterations in
the dynamical equation and that gives rise to the nuclear force.

to the scattering amplitude scales as Qν , where Q is a
generic low-momentum scale associated with external nucleon
three-momenta or Mπ and

ν = −4 + 2N + 2L +
∑

i

Vi%i . (2.4)

Consequently, at N3LO, which corresponds to ν = 4, one
needs to take into account two classes of connected diagrams:
tree diagrams with one insertion of the % = 2 interactions
and one-loop graphs involving only lowest order vertices with
% = 0. Notice that it is not possible to draw 3N diagrams
with two insertions of % = 1 vertices at this order. We further
emphasize that similar to the case of the leading four-nucleon
force considered in Refs. [23,24], disconnected diagrams lead
to vanishing contributions to the 3NF and will not be discussed
in what follows.

The structure of the 3NF at N3LO is visualized in Fig. 1
and can be written as

V
(4)

3N = V
(4)

2π + V
(4)

2π-1π + V (4)
ring + V

(4)
1π-cont + V

(4)
2π-cont + V

(4)
1/m.

(2.5)

Whereas the 2π -1π , ring, and two-pion-exchange-contact
(2π -cont) topologies start to contribute at N3LO, the 2π and
one-pion-exchange-contact (1π -cont) graphs already appear at
N2LO, yielding the following contributions to the 3NF [6,8]:

V
(3)

2π = g2
A

8F 4
π

$σ1 · $q1 $σ3 · $q3[
q2

1 + M2
π

][
q2

3 + M2
π

]

×
[
τ 1 · τ 3

(
−4c1M

2
π + 2c3 $q1 · $q3

)
(2.6)

+ c4τ 1 × τ 3 · τ 2 $q1 × $q3 · $σ2
]
,

V
(3)

1π-cont = −gAD

8F 2
π

$σ3 · $q3

q2
3 + M2

π

τ 1 · τ 3 $σ1 · $q3,

where the subscripts refer to the nucleon labels and $qi = $p′
i −

$pi , with $p′
i and $pi being the final and initial momenta of the

nucleon i. Further, qi ≡ |$qi |, σi denote the Pauli spin matrices,
and D refers to the low-energy constant accompanying the
leading πNNNN vertex. Here and throughout this work, the
results are always given for a particular choice of nucleon
labels. The full expression for the 3NF results by taking into
account all possible permutations of the nucleons,2 that is,

V full
3N = V3N + all permutations. (2.7)

2For three nucleons there are altogether six permutations.
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1π-exchange terms
(new spin structures 
        & shifts!)

2π-1π exchange terms
   (new spin structures!)

ring diagrams not equal to Illinois
    (new spin structures!)

shorter-range diagrams  and 1/m corrections are not 
completely formulated yet
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FIG. 3. 2π -1π diagrams at N3LO. Graphs resulting from the interchange of the nucleon lines are not shown. For notation see
Figs. 1 and 2.

lines of Ref. [24]. From the remaining graphs in Fig. 2, diagram
(11) does not contribute at the considered order owing to the
1/m suppression caused by the time derivative entering the
Weinberg-Tomozawa vertex.3 For the same reason, diagram
(25) also leads to a vanishing result at the order considered.
Here, the time derivative acts either on the pions exchanged
between two nucleons, leading to a 1/m suppression, or on
the pion in the tadpole, giving an odd power of the loop
momentum l0 to be integrated over. Further, it is easy to see
that Feynman diagrams (18) and (21) also do not contribute.
Diagram (29) involves one insertion of the ππNN vertices of
dimension ν = 2. The relevant vertices are proportional to the
LECs d1,2,3,5,14,15 and d̃24,26,27,28,30. The corresponding 3NF is
shifted to higher orders since all these vertices involve at least
one time derivative (see Ref. [20] for explicit expressions).
Last but not least, we also found that diagram (33) does not
generate any 3NF. Thus, we are left with diagrams (5)–(7),
(19), and (20). The 3NF contribution from diagrams (5)–(7)
can be evaluated straightforwardly by using the expressions
for the effective Hamilton operator from Ref. [24]. Diagrams
(19) and (20) do not involve reducible topologies and can
be evaluated by using the Feynman graph technique. Notice
that the individual contributions from graphs (19) and (20) in
Fig. 2 and from diagram (20) in Fig. 3 depend on the
arbitrary constant α, which specifies the parametrization of the
matrix U [see Eq. (2.2)]. Clearly, their sum is α-independent.

3This graph does not involve reducible time-ordered topologies. Its
contribution to the nuclear force is, therefore, most easily obtained
by using the Feynman graph technique. The 1/m suppression from
the time derivative entering the Weinberg-Tomozawa vertex follows
then simply from the four-momentum conservation.

We are now in the position to present our results. The
expressions for diagrams (5)–(7) and (19) can be cast into
the form of Eq. (2.6), leading only to shifts in the values of
the LECs ci :

c1 → c̄1 = c1 − g2
A Mπ

64πF 2
π

, c3 → c̄3 = c3 + g4
A Mπ

16πF 2
π

,

c4 → c̄4 = c4 − g4
A Mπ

16πF 2
π

, (2.8)

with δc1 = −0.13 GeV−1 and δc3 = −δc4 = 0.52 GeV−1.
These shifts are of the order of 20% to 30% of the correspond-
ing LECs and thus cannot be neglected in precision studies
of 3NFs. In contrast to this, the contribution from graph (20)
takes a more complicated form compared to Eq. (2.6) and is
given by

V
(4)

2π = g4
A

256πF 6
π

#σ1 · #q1 #σ3 · #q3[
q2

1 + M2
π

][
q2

3 + M2
π

]

×
[
τ 1 · τ 3

(
Mπ

(
M2

π + 3q2
1 + 3q2

3 + 4#q1 · #q3
)

+
(
2M2

π + q2
1 + q2

3 + 2#q1 · #q3
)

(2.9)

×
(
3M2

π + 3q2
1 + 3q2

3 + 4#q1 · #q3
)
A(q2)

)

− τ 1 × τ 3 · τ 2 #q1 × #q3 · #σ2

×
(
Mπ + (4M2

π + q2
1 + q2

3 + 2#q1 · #q3)A(q2)
)]

.

Here, we have used dimensional regularization to evaluate the
loop integrals. In this framework, the loop function A(q) is
given by

A(q) = 1
2q

arctan
q

2Mπ

. (2.10)
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these terms do not involve Δ  
          (→ 500 keV to 4He ?)
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subleading 3NF 
Issues of the implementation:

     

        - many structures make an analytical partial wave decomposition difficult

                       numerical pwa required (see Golak et al.,2010)

                       long range part is local

                       1/m corrections will be non-local

                       How to get the HO basis version for the NCSM?
  

        - shifts of ci are sizeable & ci are not very well known

                   Is an independent fit of the ci  for the 3NF anyway mandatory?
            Are the ci   of the NN force after SRG or vlowk evolution still relevant?

27
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lines of Ref. [24]. From the remaining graphs in Fig. 2, diagram
(11) does not contribute at the considered order owing to the
1/m suppression caused by the time derivative entering the
Weinberg-Tomozawa vertex.3 For the same reason, diagram
(25) also leads to a vanishing result at the order considered.
Here, the time derivative acts either on the pions exchanged
between two nucleons, leading to a 1/m suppression, or on
the pion in the tadpole, giving an odd power of the loop
momentum l0 to be integrated over. Further, it is easy to see
that Feynman diagrams (18) and (21) also do not contribute.
Diagram (29) involves one insertion of the ππNN vertices of
dimension ν = 2. The relevant vertices are proportional to the
LECs d1,2,3,5,14,15 and d̃24,26,27,28,30. The corresponding 3NF is
shifted to higher orders since all these vertices involve at least
one time derivative (see Ref. [20] for explicit expressions).
Last but not least, we also found that diagram (33) does not
generate any 3NF. Thus, we are left with diagrams (5)–(7),
(19), and (20). The 3NF contribution from diagrams (5)–(7)
can be evaluated straightforwardly by using the expressions
for the effective Hamilton operator from Ref. [24]. Diagrams
(19) and (20) do not involve reducible topologies and can
be evaluated by using the Feynman graph technique. Notice
that the individual contributions from graphs (19) and (20) in
Fig. 2 and from diagram (20) in Fig. 3 depend on the
arbitrary constant α, which specifies the parametrization of the
matrix U [see Eq. (2.2)]. Clearly, their sum is α-independent.

3This graph does not involve reducible time-ordered topologies. Its
contribution to the nuclear force is, therefore, most easily obtained
by using the Feynman graph technique. The 1/m suppression from
the time derivative entering the Weinberg-Tomozawa vertex follows
then simply from the four-momentum conservation.

We are now in the position to present our results. The
expressions for diagrams (5)–(7) and (19) can be cast into
the form of Eq. (2.6), leading only to shifts in the values of
the LECs ci :

c1 → c̄1 = c1 − g2
A Mπ

64πF 2
π

, c3 → c̄3 = c3 + g4
A Mπ

16πF 2
π

,

c4 → c̄4 = c4 − g4
A Mπ

16πF 2
π

, (2.8)

with δc1 = −0.13 GeV−1 and δc3 = −δc4 = 0.52 GeV−1.
These shifts are of the order of 20% to 30% of the correspond-
ing LECs and thus cannot be neglected in precision studies
of 3NFs. In contrast to this, the contribution from graph (20)
takes a more complicated form compared to Eq. (2.6) and is
given by
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(4)

2π = g4
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256πF 6
π
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π

][
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π

]

×
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)
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− τ 1 × τ 3 · τ 2 #q1 × #q3 · #σ2

×
(
Mπ + (4M2
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.

Here, we have used dimensional regularization to evaluate the
loop integrals. In this framework, the loop function A(q) is
given by

A(q) = 1
2q

arctan
q

2Mπ

. (2.10)
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Conclusions & Outlook
• 3NF‘s are necessary

     INOY has shown deviations previously, JISP?

• Leading order 3NF improves the description of the data

   Ay puzzle in 3N and 4N, LS splittings in p-shell nuclei, transition matrix elements, ...  

• Few-nucleon scattering data should constrain 3NF

   What data is relevant for nuclear structure? 

   Energy range?  Correlations of few-nucleon data with nuclear structure data? 

   Fit 3NF parameters independently of the NN force? 

• N3LO contributions to 4He are of the order of 500 keV

      Naive estimate, 4NF results and cutoff variation agree
Is this relevant? Is N3LO enough? 

• N3LO 3NF‘s are partly known and will be completely formulated in short time

       technical performance of NCSM calculations for these more complicated terms
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