Subleading chiral few-nucleon forces

Andreas Nogga, Forschungszentrum Jülich
Workshop on „Perspectives of the Ab Initio No-Core Shell Model", February 2011, TRIUMF

- Motivation
- need for three-nucleon interactions
- few-nucleon scattering data
- Leading three-nucleon forces
power counting estimates and numerical results
discussion of results
- Subleading few-nucleon interactions

4 N forces / numerical results
3 N forces / status

- Conclusions \& Outlook

Phenomenological approach

Several NN force models describe the data (~ 4000 data) up to the pion production threshold perfectly using ~ 40 parameters

Long-range part is driven by one-pion exchange
Predictions based on NN forces are reasonable:
Many low energy few-nucleon observables are well \& model independently described!

(see e.g. Witała et al., 2001)

Approximation to the nuclear Hamiltonian does not seem to be too bad, but

Phenomenological approach

Binding energies are not model-independent
\& the results do not agree with experiment

	${ }^{3} \mathrm{H}$	${ }^{4} \mathrm{He}$
CD-Bonn	-8.013	-26.23
AVI8	-7.628	-24.25
Nijm I	-7.74 I	-24.99
Nijm II	-7.659	-24.55
Expt	-8.482	-28.30

(see e.g. A.N. et al., 2002)

3NF's are quantitatively important for binding energies.
Modified NN interactions?

Cancelation of kinetic and potential energy!
Small parts of the nuclear Hamiltonian are relevant

Phenomenological 3NF's

NN interactions can be augmented by phenomenological 3N interactions (Tuscon-Melbourne, Urbana, Illinois, ...)
usually the 3 N force is adjusted so that the
${ }^{3} \mathrm{H}$ binding energy is described correctly (remember Tjon-line correlation)

\rightarrow none of the phenomenological models describes all the data!

relativistic effects are small at these energies (see e.g. Sekiguchi et al., 2005)
These phenomenological combinations are very useful to identify signatures of 3NF's
triggered a lot of experiments for pd scattering (RIKEN, KVI, IUCF, ...) so that the 3 N data base became quite extensive (at intermediate energies)

Low energy puzzles

very few observables at low energy are not well described when 3NF‘s are included
e.g. Ay of pd and nd elastic scattering

Note that Ay deviation is on the 1% level!
(L.E. Marcucci et al., 2009)
e.g. p- ${ }^{3} \mathrm{He} \mathrm{A}_{y}$

Here the deviation for A_{y} is on the 5% level and more at other energies!
e.g. space star configuration in nd breakup

(see e.g. Witała et al., 2001)

Binding energies and 3NF‘s

3NF's improve the description of binding energies, but some discrepancies remain

(S. Pieper, 2011)

Discussion: how accurate do we need to describe BE's and excitation energies?
Improvement of 3NF's and/or 4NF's is required

nd scattering and nuclear structure

Some obvious correlations: e.g. LS splittings with the nd A_{y}

Are there more correlations of 3 N scattering and nuclear structure observables? Up to what energy do we need to describe 3N data?

EFT of QCD: chiral perturbation theory

Aim is the systematically improvement of nuclear forces
EFT enables to related strong interaction to QCD

EFT allows to understand pion mass dependence of nuclear observables connections to lattice QCD results

EFT can be applied to different strong interaction reactions reveals connections of different processes, connects NN, 3N, 4N ... interactions
$Q C D \rightarrow \quad C h E F T$ involving π, N, \ldots
pion mass dependence
\uparrow

EFT of QCD: chiral perturbation theory

symmetries
QCD \& approximate chiral symmetry

Effective Field Theory of QCD: relevant degrees of freedom nucleons \& pions
$\mathcal{L}_{Q C D}=\bar{q} i \not D q-\frac{1}{2} \operatorname{Tr} G_{\mu \nu} G^{\mu \nu}-\bar{q} m q$

Goldstone bosons: pions
spontaneously \& explicitly
broken chiral symmetry
expansion in $\frac{Q}{\Lambda_{\chi}}$
$Q \approx m_{\pi}$, typical momentum
$\Lambda_{\chi} \propto m_{\Delta}-m_{N}, m_{\rho}, \sqrt{m_{\pi} m_{N}}, 4 \pi F_{\pi}, \ldots$ $\approx 300 \mathrm{MeV} \ldots 1200 \mathrm{MeV}$

Chiral Perturbation Theory (ChPT)
„power counting"
a systematic scheme to identify a finite numbers of diagrams contributing at a given order

Chiral nuclear interactions

non-perturbativity of $A \geq 2$ requires to perform chiral expansion for a potential which is used to solve a Schrödinger equation

Systematically improvable NN, 3N, 4N, ... interactions
Qualitatively: NN >> 3N >> 4N ...
What do we know quantitatively on that hierarchy?
Estimate accuracy using cutoffs of the Lippmann-Schwinger equation

Estimated residual \wedge dependence

typical momentum in nuclei is of the order of the pion mass

$$
Q \approx \sqrt{2 m_{N}(E / A)} \approx 130 \mathrm{MeV} / \mathrm{c}
$$

typical cutoff value for chiral interactions $\Lambda \approx 500 \mathrm{MeV}$

order	NN contact forces omitted	$\Lambda[\mathrm{MeV}]$	$\Delta \mathrm{V} / \mathrm{V}$	$\Delta \mathrm{E} / \mathrm{E}$
LO	$(Q / \Lambda)^{2}$	500	7%	70%
NLO	$(Q / \Lambda)^{4}$	500	0.5%	5%
$N^{2} L O$	$(Q / \Lambda)^{4}$	500	0.5%	5%
$N^{3} L O$	$(Q / \Lambda)^{6}$	500	0.03%	0.3%
$N^{2} L O$	$(Q / \Lambda)^{4}$	700	0.1%	1%
$N^{2} L O$	300	3.5%	35%	

Same estimate for NLO and N2LO!

Λ variation gives a lower bound of accuracy
(e.g. accuracy of NLO \& $N^{3} L O$ is less than estimated cutoff dependence!)

Binding energies for ${ }^{3} \mathrm{H}$ (NN forces only)

${ }^{3} \mathrm{H}$ binding energies are based on NN forces only
(LO from AN et al., 2005 NLO and N²LO from Epelbaum et al., 2005, $\mathrm{N}^{3} \mathrm{LO}$ from Entem et al., 2003)

	$\Lambda / \tilde{\Lambda}[\mathrm{MeV}]$	$E_{\mathrm{b}}[\mathrm{MeV}]$	$\mathrm{V}[\mathrm{MeV}]$	$\Delta E_{\mathrm{b}}[\mathrm{keV}]$	$\left\|\Delta \mathrm{E}_{\mathrm{b}} / \mathrm{V}\right\|[\%]$
LO	$500 /$ no loops	-7.50	-51.8	1430	$3.0(7.0)$
	$600 /$ no loops	-6.07			
NLO	$400 / 700$	-8.46		650	$1.6(0.5)$
	$550 / 700$	-7.81	-41.1		
N2 LO	$450 / 700$	-8.42	-38.3	530	$1.3(0.5)$
	$600 / 700$	-7.89			
N3 LO	$500 / D R$	-7.84	-42.3	40	0.1 (0.03)
	$600 / D R$	-7.80			

"power counting" estimates in brackets qualitatively agree
To what order to we need to go? I assume N3³ for this talk.

Explicit form of the leading 3NF's

The explicit form of the 3NF at N2LO (van Kolck, 1994)

$$
\begin{aligned}
V_{3 N F}^{2 \pi} & =\sum_{i<j<k}\left(\frac{g_{A}}{2 F_{\pi}}\right)^{2} \frac{\vec{\sigma}_{i} \cdot \vec{q}_{i} \vec{\sigma}_{j} \cdot \vec{q}_{j}}{\left(\vec{q}_{i}^{2}+m_{\pi}^{2}\right)\left(\vec{q}_{j}^{2}+m_{\pi}^{2}\right)} F_{i j k}^{\alpha \beta} \tau_{i}^{\alpha} \tau_{j}^{\beta} \\
F_{i j k}^{\alpha \beta} & =\delta_{\alpha \beta}\left[-\frac{4 c_{1} m_{\pi}^{2}}{F_{\pi}^{2}}+\frac{2 c_{3}}{F_{\pi}^{2}} \vec{q}_{i} \cdot \vec{q}_{j}\right]+\frac{c_{4}}{F_{\pi}^{2}} \epsilon^{\alpha \beta \gamma} \tau_{k}^{\gamma} \vec{\sigma}_{k} \cdot\left[\vec{q}_{i} \times \vec{q}_{j}\right] \\
V_{3 N F}^{1 \pi} & =-\sum_{i<j<k} \frac{g_{A}}{4 F_{\pi}^{2}} \frac{c_{D}}{F_{\pi}^{2} \Lambda_{x}} \frac{\vec{\sigma}_{j} \cdot \vec{q}_{j}}{\vec{q}_{j}^{2}+m_{\pi}^{2}} \tau_{i} \cdot \tau_{j} \vec{\sigma}_{i} \cdot \vec{\sigma}_{j}
\end{aligned}
$$

$$
V_{3 N F}^{c}=\sum_{i<j<k} \frac{c_{E}}{F_{\pi}^{4} \Lambda_{x}} \tau_{j} \cdot \tau_{k}
$$

- c_{i} are related to πN scattering and also to the N2LO NN force
- c_{i} are unnaturally large in EFT without explicit Δ (approximately by factor 3)
- large uncertainties in Ci_{i}
- C_{D} and C_{E} can be determined using several strategies

c_{i} constants

How well do we know the strength of the subleading $\pi \mathrm{N}$ vertices?
c_{i} constants link $2 \pi-e x c h a n g e ~ N N-, 3 N$-force and πN scattering

	c_{1}	c_{3}	c_{4}	q^{\prime}
Rentmeester et al. PRC 67,044001	-0.76	-4.78	3.96	NN
Büttiker et al. NPA 668,97	-0.81	-4.70	3.40	TN
Fettes et al. NPA 640, 199	-1.23	-5.94	3.47	TN
Meißner, talk at TRIUMF	-0.9	-4.7	3.5	TN
Entem et al. PRC 66,014002	-0.81	-3.40	3.40	NN
Entem et al. PRC 68,041001(R)	-0.81	-3.20	5.40	NN

(red=input to analysis)
There are sizable error bars > 30% !
Note that the uncertainty is at least comparable to $\mathrm{N}^{3} \mathrm{LO}$ contributions!
Discussion can we improve this situation?

Nevertheless, let's check impact of leading 3NF's on observables

nd scattering and chiral forces

Impact on low energy „puzzles"
C_{i} are chosen consistently to NN

(L.E. Marcucci et al., 2009)
but $\mathrm{p}-{ }^{3} \mathrm{He} \mathrm{A}_{\mathrm{y}}$ is affected !!!
(remember that this is in contrast to Urbana-IX)
(Viviani et al., 2010 preliminary)

Impact of $C D$ \& CE on p-shell nuclei

Survey of $A=6,10-13$ nuclei
 revealed a few observables that are sensitive to C_{D} / C_{E} (Navrátil et al., 2007),

- green area accommodates $B\left(E 2,{ }^{10} B\right)$ and $Q\left({ }^{6} L i\right)$
- other observables are either insensitive to variation of c_{D} or are consistently described
- CD determination difficult because of the numerical accuracy

Choose $c_{D}=-1$ and obtain spectra and their sensitivity on the 3NF

- Clear improvement of description compared to experiment.
- Some corrections are too strong
- c_{i} are fixed at EM values, shall one relax the consistency to the NN force?

3NF contributions - estimate of $\mathrm{N}^{2} \mathrm{LO}$

- 3NF and NN expectation values for ${ }^{4} \mathrm{He}$
- 3NF power counting estimate: 2% of V (based on $\Lambda=500 \mathrm{MeV}$)

	$\Lambda / \tilde{\Lambda}[\mathrm{MeV}]$	$\mathrm{E}_{\mathrm{b}}[\mathrm{MeV}]$	$\mathrm{V}_{\mathrm{NN}}[\mathrm{MeV}]$	$\mathrm{V}_{123}[\mathrm{MeV}]$	$\left\|V_{123} / V_{\mathrm{NN}}\right\|[\%]$
N^{2} LO	$450 / 700$	-27.65	-84.56	-1.11	1.3
	$600 / 700$	-28.57	-93.73	-6.83	7.3
$\mathrm{~N}^{3}$ LO	$500 / D R-3 N F-A$	-28.27	-99.45	-4.06	4.1
	$500 / D R-3 N F-B$	-28.24	-98.92	-7.10	7.2

- 3NF contributions are somewhat more important (Δ not included in EFT, factor 3)
- Naive estimate for N3O contributions (subleading 3NF‘s and 4NF)
based on same expansion parameter is approximately 0.5% of $\vee(\rightarrow 500 \mathrm{keV})$
- Estimate $\mathrm{N}^{3} \mathrm{LO}$ contributions using 4NF (because it is actually simpler to obtain)

Leading chiral 4NF

Five non-vanishing classes of contributions (see E. Epelbaum, 2006,2007)

Class I $\propto g_{a}^{6}$

Class IV $\propto g_{a}^{4} C_{T}$

no Δ involved
Δ induced 4NF's have been estimated in Deltuva et al.,2008 ($\rightarrow 170 \mathrm{keV}$ in ${ }^{4} \mathrm{He}$)

Class VII $\propto g_{a}^{2} C_{T}^{2}$

Class $\vee \propto g_{a}^{2} C_{T}$

- many terms with complicated spin/isospin structure!
- all parameters linked to leading NN interaction

$$
\begin{aligned}
& \text { teraction } \\
& V_{L O}=-\left(\frac{g_{a}}{2 F_{\pi}}\right)^{2} \frac{\vec{\sigma}_{1} \cdot \vec{q} \vec{\sigma}_{2} \cdot \vec{q}}{q^{2}+m_{\pi}^{2}} \tau_{1} \cdot \tau_{2}+C_{S}+C_{T} \vec{\sigma}_{1} \cdot \vec{\sigma}_{2}
\end{aligned}
$$

- finite range contributions (some discussed in McManus, Riska (1980), Robilotta (1985))
- contact contributions $\propto C_{T} \quad$ (possibly suppressed due to Wigner symmetry ?)

Ingredients of the calculation

-First attempt:

- perturbative estimate of the 4NF contribution (works well for low cutoffs for 3NF)
- Need to calculate expectation value

$$
\begin{aligned}
& \left\langle V_{4}\right\rangle= \\
& =\sum_{\alpha \alpha^{\prime}} \int d^{3} p_{12} d^{3} p_{3} d^{3} q_{4} d^{3} p_{12}^{\prime} d^{3} p_{3}^{\prime} d^{3} q_{4}^{\prime}\left\langle\Psi \mid \vec{p}_{12} \vec{p}_{3} \vec{q}_{4} \alpha\right\rangle\langle\ldots| V_{4}|\ldots\rangle\left\langle\vec{p}_{12}{ }^{\prime} \vec{p}_{3}{ }^{\prime} \vec{q}_{4}{ }^{\prime} \alpha^{\prime} \mid \Psi\right\rangle \\
& = \\
& \quad \sum_{\alpha \alpha^{\prime}} \int d^{3} p_{12} d^{3} p_{3} d^{3} q_{4} d^{3} p_{12}^{\prime} d^{3} p_{3}^{\prime} d^{3} q_{4}^{\prime} w\left(p_{12}, p_{3}, q_{4} ; p_{12}^{\prime}, p_{3}^{\prime}, q_{4}^{\prime}\right) \\
& \\
& \quad \frac{\left\langle\Psi \mid \vec{p}_{12} \vec{p}_{3} \vec{q}_{4} \alpha\right\rangle\langle\ldots| V_{4}|\ldots\rangle\left\langle\vec{p}_{12}^{\prime} \vec{p}_{3}{ }^{\prime} \vec{q}_{4}{ }^{\prime} \alpha^{\prime} \mid \Psi\right\rangle}{w\left(p_{12}, p_{3}, q_{4} ; p_{12}^{\prime}, p_{3}^{\prime}, q_{4}^{\prime}\right)} \\
& \text { - }{ }^{4} \text { He wave function } \Psi\left(\vec{p}_{12} \vec{p}_{3} \vec{q}_{4}, \alpha\right)
\end{aligned}
$$

- spin-isospin channels $|\alpha\rangle \equiv\left|m_{1} m_{2} m_{3} m_{4} m_{1}^{t} m_{2}^{t} m_{3}^{t} m_{4}^{t}\right\rangle$
- 4NF matrix element $\left\langle\vec{p}_{12} \vec{p}_{3} \vec{q}_{4} \alpha\right| V_{4}\left|\vec{p}_{12}{ }^{\prime} \vec{p}_{3}^{\prime} \vec{q}_{4}{ }^{\prime} \alpha^{\prime}\right\rangle$ generated using Mathematica
- Metropolis walk for evaluation based on weight function

$$
w\left(p_{12}, p_{3}, q_{4} ; p_{12}^{\prime}, p_{3}^{\prime}, q_{4}^{\prime}\right) \propto \prod_{\substack{i=12,3,4, 12^{\prime}, 3^{\prime}, 4^{\prime}}} \frac{1}{\left(p_{i}+C_{i}\right)^{n_{i}}}
$$

${ }^{4} \mathrm{He}$ wave functions

all estimates are based on realistic 4He wave functions
results will be shown for

1) AV18 + Urbana IX / CD-Bonn + TM
2) LO chiral interactions for cutoffs $\Lambda=2 \ldots 7 \mathrm{fm}^{-1}$
3) $\mathrm{NLO} \& \mathrm{~N} 2 \mathrm{LO}$ (including 3NF) wave functions $\wedge=2 \ldots 3 \mathrm{fm}^{-1}$

	3 He	4 He
AVI8+Urbana IX	-7.72	-28.5
CD-Bonn + TM99	-7.74	-28.4
LO	$-5.4 \ldots-\| \| .0$	$-\mid 5 . I \ldots-39.9$
NLO	$-6.99 \ldots-7.70$	$-24.4 \ldots-28.8$
NNLO	$-7.72 \ldots-7.8 \mid$	$-27.7 \ldots-28.3$
Expt	-7.72	-28.3

Complete calculation

- weight function adjusted for low statistics runs
- each production run requires $\approx 10^{7}$ sample points
- calculations performed on JUGENE on ≈ 4000 processors
- calculation of wave function most time-consuming
- 10 independent calculations of contributions and standard deviation allow to check consistency of statistics
- Mersenne Twister random number generator (IBM compilers internal one failed !)

February 10, 2011

LO wf for large range of cutoffs

- perturbativity of 4NF for large cutoffs ?
- all large cutoff results are within expected bounds
- Wigner symmetry does not suppress 4NF contributions in LO
- estimates for higher order wave functions are more reliable (better description of binding energy)
- typical 4NF contribution is 500 keV

Contribution of the 4NF

- results of chiral wave functions with consistent $\mathrm{C}_{\top}\left(\mathrm{C}_{\top}=+10 \mathrm{GeV}^{-2}\right.$ for CD-Bonn \& AV18)
- 4NF contribution approximately agrees with power counting estimate ($\approx 0.5 \% \approx 500 \mathrm{keV}$) (some cancelations of individual contributions make it smaller)
- strong model / cutoff dependence (the 4NF contribution is non-observable)

Probably good a estimate of typical N3LO contribution: $\rightarrow 500 \mathrm{keV}$
Is this relevant? Implementation of 4NF's in NCSM?

subleading 3NF

in part formulated in Bernard et al., 2008 and currently implemented (no results yet) remaining parts are almost finished (Bernard et al., in progress, 2011)

ring diagrams not equal to Illinois
(new spin structures!)

$$
\begin{aligned}
& c_{1} \rightarrow \bar{c}_{1}=c_{1}-\frac{g_{A}^{2} M_{\pi}}{64 \pi F_{\pi}^{2}}, \\
& c_{4} \rightarrow \bar{c}_{4}=c_{4}-\frac{g_{A}^{4} M_{\pi}}{16 \pi F_{\pi}^{2}},
\end{aligned}
$$ (new spin structures

$$
c_{3} \rightarrow \bar{c}_{3}=c_{3}+\frac{g_{A}^{4} M_{\pi}}{16 \pi F_{\pi}^{2}}
$$

$2 \pi-1 \pi$ exchange terms (new spin structures!)
these terms do not involve Δ $\left(\rightarrow 500 \mathrm{keV}\right.$ to $\left.{ }^{4} \mathrm{He} ?\right)$

shorter-range diagrams and $1 / m$ corrections are not completely formulated yet

subleading 3NF

Issues of the implementation:

- many structures make an analytical partial wave decomposition difficult
\longrightarrow numerical pwa required (see Golak et al.,2010) long range part is local
1/m corrections will be non-local
How to get the HO basis version for the NCSM?
- shifts of c_{i} are sizeable \& c_{i} are not very well known

$$
\begin{aligned}
& c_{1} \rightarrow \bar{c}_{1}=c_{1}-\frac{g_{A}^{2} M_{\pi}}{64 \pi F_{\pi}^{2}}, \quad c_{3} \rightarrow \bar{c}_{3}=c_{3}+\frac{g_{A}^{4} M_{\pi}}{16 \pi F_{\pi}^{2}}, \\
& c_{4} \rightarrow \bar{c}_{4}=c_{4}-\frac{g_{A}^{4} M_{\pi}}{16 \pi F_{\pi}^{2}},
\end{aligned}
$$

Is an independent fit of the $\mathbf{c}_{\mathbf{i}}$ for the 3NF anyway mandatory?
Are the c_{i} of the NN force after SRG or vlowk evolution still relevant?

Conclusions \& Outlook

- 3NF's are necessary

INOY has shown deviations previously, JISP?

- Leading order 3NF improves the description of the data

Ay puzzle in 3 N and 4 N , LS splittings in p-shell nuclei, transition matrix elements, ...

- Few-nucleon scattering data should constrain 3NF

What data is relevant for nuclear structure?
Energy range? Correlations of few-nucleon data with nuclear structure data?
Fit 3NF parameters independently of the NN force?

- $\mathrm{N}^{3} \mathrm{LO}$ contributions to ${ }^{4} \mathrm{He}$ are of the order of 500 keV

Naive estimate, 4NF results and cutoff variation agree Is this relevant? Is $\mathrm{N}^{3} \mathrm{LO}$ enough?

- N^{3} LO 3NF's are partly known and will be completely formulated in short time technical performance of NCSM calculations for these more complicated terms

