TRIUMF

Canada's national laboratory for particle and nuclear physics Laboratoire national canadien pour la recherche en physique nucléaire et en physique des particules

Unifying nuclear structure and reactions within the NCSM/RGM

Perspectives of the *Ab Initio* No-Core Shell Model TRIUMF, February 10-12, 2011

Petr Navratil | TRIUMF

Nuclear Landscape Configuration Interaction ensity Functional The

Y Gamma Ray

Proton Neutron

Accelerating Science for Canada In accélérateur de la démarche scientifique canadienne

Owned and operated as a joint venture by a consortium of Canadian universities via a contribution through the National Research Council Canada Propriété d'un consortium d'universités canadiennes, géré en co-entreprise à partir d'une contribution administrée par le Conseil national de recherches Canada

Light nuclei from first principles

- <u>Goal</u>: Predictive theory of structure and reactions of light nuclei
- Needed for
 - Physics of exotic nuclei, tests of fundamental symmetries
 - Understanding of nuclear reactions important for astrophysics
 - Understanding of reactions important for energy generation
- From first principles or *ab initio*:
- Nuclei as systems of nucleons interacting by nucleonnucleon (and three-nucleon) forces that describe accurately nucleon-nucleon (and three-nucleon) systems

Light nuclei from the first principles

First principles for Nuclear Physics: QCD

- Non-perturbative at low energies
- Lattice QCD in the future
- For now a good place to start:
- Inter-nucleon forces from chiral effective field theory
 - Based on the symmetries of QCD
 - Degrees of freedom: nucleons + pions
 - Systematic low-momentum expansion to a given order
 - Hierarchy
 - Consistency
 - Low energy constants (LEC)
 - Fitted to data
 - Can be calculated by lattice QCD

RIUMF Predictive *ab initio* theory must provide a unified description of structure and reactions of light nuclei

- Nuclei are quantum many-body systems with bound states, resonances, scattering states
 - Bound-state techniques not sufficient

- NCSM single-particle degrees of freedom
- RGM clusters and their relative motion

Our many-body technique:

- **Combine** the *ab initio* no-core shell model (NCSM) with the resonating group method (RGM)
- The NCSM: An approach to the solution of the A-nucleon bound-state problem
 - Accurate nuclear Hamiltonian
 - Finite harmonic oscillator (HO) basis
 - Complete $N_{max} h \Omega$ model space
 - Effective interaction due to the model space truncation
 - Similarity-Renormalization-Group evolved NN(+NNN) potential
 - Short & medium range correlations
 - No continuum

- The RGM: A microscopic approach to the A-nucleon scattering of clusters
 - Nuclear Hamiltonian may be simplistic
 - Cluster wave functions may be simplified and inconsistent with the nuclear Hamiltonian
 - Long range correlations, relative motion of clusters

Ab initio NCSM/RGM: Combines the best of both approaches Accurate nuclear Hamiltonian, consistent cluster wave functions Correct asymptotic expansion, Pauli principle and translational invariance

The ab initio NCSM/RGM in a snapshot

• Ansatz:
$$\Psi^{(A)} = \sum_{v} \int d\vec{r} \, \varphi_{v}(\vec{r}) \hat{\mathcal{A}} \, \Phi_{v\vec{r}}^{(A-a,a)}$$
• Many-body Schrödinger equation:
• Many-body Schrödinger equation:
• $H\Psi^{(A)} = E\Psi^{(A)}$
• $T_{rel}(r) + \mathcal{V}_{rel} + \bar{V}_{Coul}(r) + H_{(A-a)} + H_{(a)}$
• $\sum_{v} \int d\vec{r} \left[\mathcal{H}_{\mu v}^{(A-a,a)}(\vec{r}',\vec{r}) - E\mathcal{N}_{\mu v}^{(A-a,a)}(\vec{r}',\vec{r}) \right] \phi_{v}(\vec{r}) = 0$
• Interval in the abinition i

• Non-local integro-differential coupled-channel equations:

$$[\hat{T}_{\rm rel}(r) + \bar{V}_{\rm C}(r) - (E - E_{\rm v})] u_{\rm v}(r) + \sum_{\rm v} \int dr' r' W_{\rm vv'}(r, r') u_{\rm v}(r') = 0$$

r' [fm]

 $x^{1} x^{1} x^{1$

fm

RIUMF Single-nucleon projectile basis: the Hamiltonian kernel

$$\begin{pmatrix} (1,...,A-1) \\ r' \\ r' \\ (A) \end{pmatrix} H \left(1 - \sum_{j=1}^{A-1} P_{jA} \right) \begin{pmatrix} (1,...,A-1) \\ r \\ (A) \\ r \end{pmatrix}$$

Convergence of the *ab initio* NCSM/RGM: *n*-⁴He phase shifts

- Similarity-renormalization-group (SRG) evolved chiral N³LO NN interaction
- Low-momentum V_{lowk} NN potential
- convergence reached with bare interaction

RIUMF

The best system to start with: *n*+⁴He, *p*+⁴He

⁴He

- NCSM/RGM calculations with
 - N + ⁴He(g.s., 0⁺0)
 - SRG-N³LO NN potential with Λ =2.02 fm⁻¹

- Differential cross section and analyzing power @17 MeV neutron energy
 - Polarized neutron experiment at Karlsruhe

NNN missing: Good agreement only for energies beyond low-lying 3/2⁻ resonance

10

Solar p-p chain

$$\left< {}^{8}\mathbf{B}_{g.s.} \left| E1 \right| {}^{7}\mathbf{Be}_{g.s.} + \mathbf{p} \right>$$

Many theoretical calculations in the past... ...now something new: Starting from first principles

RIUMF

Input: NN interaction, ⁷Be eigenstates

- Similarity-Renormalization-Group (SRG) evolved chiral N³LO NN interaction
 - Accurate
 - Soft: Evolution parameter Λ
- ⁷Be (⁷Li)
 - NCSM up to N_{max} =10 possible
 - Importance Truncated NCSM up to N_{max}=18
 - R. Roth & P. N., PRL 99, 092501 (2007)
 - large $N_{\rm max}$ needed for convergence of
 - Target eigenstates
 - Localized parts of integration kernels

p-⁷Be scattering: Impact of 5/2⁻ states

Impact of higher excited states of ⁷Be

- NCSM/RGM p-⁷Be calculation with more excited states
 – 1/2⁻, 7/2⁻, 5/2⁻, 5/2⁻, 5/2⁻
- ⁸B 2⁺ g.s.
 - Large P-wave 5/2⁻² component

TRIUMF

⁷Be(*p*,γ)⁸B: Impact of 5/2⁻ states

ETRIUMF

Is ⁹He bound? What is its ground state?

- The 1⁺0 ground state bound by 1.9 MeV (expt. 1.47 MeV)
- Calculated T=0 resonances: 3⁺, 2⁺ and 1⁺ in correct order close to expt. energies

NCSM/RGM *ab initio* calculation of *d*-⁴He scattering

- The deuteron polarization and virtual break up must be taken into account
- NCSM/RGM calculates bound states as well as excited states...

- NCSM/RGM a superior theory: Bound states, resonances, scattering
- NCSM efficiently accounts for many-nucleon correlations: Coupling of the NCSM and the NCSM/RGM basis desirable
- Scattering provides a strict test of NN and NNN forces

RIUMF Toward the first *ab initio* calculation of the Deuterium-Tritium fusion

d+³H and *n*+⁴He elastic scattering: phase shifts

- *d*+³H elastic phase shifts:
 - Resonance in the ${}^{4}S_{3/2}$ channel
 - Repulsive behavior in the ²S_{1/2} channel → Pauli principle

- *n*+⁴He elastic phase shifts:
 - d+³H channels produces slight increase of the *P* phase shifts
 - Appearance of resonance in the 3/2⁺ *D*-wave, just above *d*-³H threshold

The D-T fusion takes place through a transition of $d+{}^{3}H$ is S-wave to $n+{}^{4}He$ in D-wave

${}^{3}H(d,n){}^{4}He and {}^{3}He(d,p){}^{4}He cross sections$

• The first results, still preliminary:

- $N_{max} = 13$
- SRG-N³LO NN (Λ =1.5 fm⁻¹) potential
- NNN interaction interaction effects for A=3,4,5 partly included by the choice of Λ
- Only g.s. of d, ³H, ⁴He included above

$$S(E) = E\sigma(E) \exp\left(\frac{2\pi Z_1 Z_2 e^2}{\hbar \sqrt{2mE}}\right)$$

${}^{3}H(d,n){}^{4}He$ and ${}^{3}He(d,p){}^{4}He$ cross sections

- The cross section improves with the inclusion of virtual breakup of the deuteron
 - Deuteron weakly bound: easily gets polarized and easily breaks
 - These effects included below the breakup threshold with continuum discretized by excited deuteron pseudo-states

First *ab initio* results for *d*-T and *d*-³He fusion:

Very promising, correct physics, can become competitive with fitted evaluations ...

Conclusions and Outlook

- With the NCSM/RGM approach we are extending the *ab initio* effort to describe low-energy reactions and weakly-bound systems
- The first ${}^{7}Be(p,\gamma){}^{8}B$ ab initio S-factor calculation
 - Both the bound and the scattering states from first principles
 - No fit

- SRG-N³LO NN potential selected to match closely the experimental threshold (∧≈1.8~2 fm⁻¹)
- Prediction of new ⁸B resonances

• New results with SRG-N³LO *NN* potentials:

- Initial results for ³H(*d*,*n*)⁴He & ³He(*d*,*p*)⁴He fusion and *d*-⁴He scattering
- First steps towards ³He+⁴He scattering
 - Wataru Horiuchi
- To do:
 - Inclusion of NNN force
 - Alpha clustering: ⁴He projectile
 - NCSM with continuum (NCSMC)
 - Three-cluster NCSM/RGM and treatment of three-body continuum

 $(A) \qquad \qquad \vec{r}_{A-a,a} \qquad \qquad (A) \qquad \qquad (A-a) \qquad \qquad (A) \qquad (A)$

Collaborators

Sofia Quaglioni (LLNL)

Robert Roth (TU Darmstadt)

E. Jurgenson (LLNL), Dick Furnstahl (OSU)

V. Gueorguiev (UC Merced), J. P. Vary (ISU), W. E. Ormand (LLNL), A. Nogga (Julich)

دی تھا Connection to the real world: neutron-triton elastic scattering at 14 MeV

3**H**

- Important for the National Ignition Facility physics
 - deuteron-triton fusion generates 14 MeV neutrons
- Experimental situation confusing
- Good data for p+³He elastic scattering

Use NCSM/RGM calculation to relate the two reactions and predict n+3H cross section

p-⁷Be scattering NCSM/RGM coupled channel calculations 7Be 4.57 - ⁷Be states 3/2⁻,1/2⁻, 7/2⁻ - Soft NN potential (SRG-N³LO with Λ = 1.8 fm⁻¹) 150 0^{+} l=1 120 - 1⁺ s=1 l=1 $J^{\pi}=3; T=1$ -2^{+} s=2 l=1 89.5% - 3⁺ l=1 ⁷Be ⁸B 2^+ g.s. **bound** by 126 keV (expt. bound by 137 keV) Ie 0^+ -30 New 0^+ , 1^+ , 2^+ resonances $p + {}^{7}\text{Be}(g.s. + 1/2 + 7/2)$ 2.32 predicted 0.25 $^{7}\text{Be}(p,p') \,^{7}\text{Be}(1/2)$ Scattering length: 7695 0.2 É Expt: $a_{02} = -7(3)$ fm <u>a</u> 0.15 0.1375 Calc: a_{02} = -10.2 fm ⁷Be+p $J^{\tau}=2^{+}(T=1)$ ⁸B 0.1 $(\Lambda = 2.02 \text{ fm}^{-1})$ 0.05

 $E_{\rm kin}$ [MeV]

30

0

P. N., R. Roth, S. Quaglioni,

PRC 82, 034609 (2010)

⁷Be(p, γ)⁸B radiative capture S-factor

- NCSM/RGM coupled channel calculations 7Be
 - ⁷Be states 3/2⁻,1/2⁻, 7/2⁻
 - Soft NN potential (SRG-N³LO with Λ = 1.8 fm⁻¹)

The first ever *ab initio* calculations of ${}^{7}\text{Be}(p, \gamma){}^{8}\text{B}$ (still preliminary)

4.57

RIUMF Toward the first *ab initio* calculation of the Deuterium-Tritium and *d*-³He fusion

