Two-body scattering revisited

a) Matrix Element Practice

Consider a theory with a Dirac fermion DM particle χ and spin 1/2 nucleus N that we will treat as an elementary fermion of mass m_N . Suppose these interact through the effective operator

$$-\mathscr{L}_{eff} = \frac{1}{\Lambda^2} \left(\bar{\chi} \, i \gamma^5 \chi \right) \left(\bar{N} N \right) \,, \tag{1}$$

where Λ has dimensions of mass.

- a) Compute the summed and squared matrix element for $\chi(p_1) + N(p_2) \rightarrow \chi(p_3) + N(p_4)$.
- b) Evaluate this in the lab frame with N initially at rest and the incident χ highly non-relativistic. Assume that $m_N \sim m_{\chi}$ and expand your result to leading order in v.
- c) Compute the summed and squared matrix element for $\chi(p_1) + \bar{\chi}(p_2) \rightarrow N(p_3) + \bar{N}(p_4)$.
- d) Evaluate this in the CM frame where both the incident χ particles are highly non-relativistic. Keep the N mass as well.

b) Phase Space Practice

Suppose our theory contains a pair of complex scalars with the interaction

$$-\mathscr{L} \supset \lambda \, |\phi|^2 |\Phi|^2 \,. \tag{2}$$

Take ϕ to be massless and Φ to have mass M.

- a) Find the summed and squared matrix element for $\phi(p_1) + \Phi(p_2) \rightarrow \phi(p_3) + \Phi(p_4)$.
- b) Suppose a ϕ with initial three-momentum $\vec{p} = p \hat{z}$ collides elastically with a Φ particle at rest. After the collision, the three-momentum of the outgoing ϕ will be $\vec{p}_3 = (p's_\theta, 0, p'c_\theta)$. Apply energy and momentum conservation to find p' in terms of M, p, and θ .
- c) Write an expression for the total cross section in this frame, but leave it as an expression with integrals over dp' and dc_{θ} and an energy-conserving delta function.
- d) Use the result from c) to compute $d\sigma/dp'$.
- e) Use the result from c) to compute $d\sigma/dc_{\theta}$.