Two-body scattering revisited

a) Matrix Element Practice

Consider a theory with a Dirac fermion DM particle χ and spin $1 / 2$ nucleus N that we will treat as an elementary fermion of mass m_{N}. Suppose these interact through the effective operator

$$
\begin{equation*}
-\mathscr{L}_{e f f}=\frac{1}{\Lambda^{2}}\left(\bar{\chi} i \gamma^{5} \chi\right)(\bar{N} N) \tag{1}
\end{equation*}
$$

where Λ has dimensions of mass.
a) Compute the summed and squared matrix element for $\chi\left(p_{1}\right)+N\left(p_{2}\right) \rightarrow \chi\left(p_{3}\right)+N\left(p_{4}\right)$.
b) Evaluate this in the lab frame with N initially at rest and the incident χ highly nonrelativistic. Assume that $m_{N} \sim m_{\chi}$ and expand your result to leading order in v.
c) Compute the summed and squared matrix element for $\chi\left(p_{1}\right)+\bar{\chi}\left(p_{2}\right) \rightarrow N\left(p_{3}\right)+\bar{N}\left(p_{4}\right)$.
d) Evaluate this in the CM frame where both the incident χ particles are highly nonrelativistic. Keep the N mass as well.

b) Phase Space Practice

Suppose our theory contains a pair of complex scalars with the interaction

$$
\begin{equation*}
-\mathscr{L} \supset \lambda|\phi|^{2}|\Phi|^{2} . \tag{2}
\end{equation*}
$$

Take ϕ to be massless and Φ to have mass M.
a) Find the summed and squared matrix element for $\phi\left(p_{1}\right)+\Phi\left(p_{2}\right) \rightarrow \phi\left(p_{3}\right)+\Phi\left(p_{4}\right)$.
b) Suppose a ϕ with initial three-momentum $\vec{p}=p \hat{z}$ collides elastically with a Φ particle at rest. After the collision, the three-momentum of the outgoing ϕ will be $\vec{p}_{3}=\left(p^{\prime} s_{\theta}, 0, p^{\prime} c_{\theta}\right)$. Apply energy and momentum conservation to find p^{\prime} in terms of M, p, and θ.
c) Write an expression for the total cross section in this frame, but leave it as an expression with integrals over $d p^{\prime}$ and $d c_{\theta}$ and an energy-conserving delta function.
d) Use the result from c) to compute $d \sigma / d p^{\prime}$.
e) Use the result from c) to compute $d \sigma / d c_{\theta}$.

