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The Jeans Instability

1 Gravitational Collapse of Hot Gas

Hot gases over a certain size are likely to undergo gravitational collapse. Consider a gas at a certain
temperature. The thermal fluctuations of the gas is mediated by sound waves propagating at speed
cs. Density fluctuations of the gas will tend to induce gravitational collapse but these will tend to be
smoothed out by thermal fluctuations. However, if the density fluctuation is on a length scale that
is so large that sound waves cannot prevent parts of the gas from free fall then the gas will undergo
gravitational collapse. This is the essence of the Jeans instability. In what follows, we shall flesh this
out in more detail.

The Equations of Fluid Dynamics

Consider a fluid with density ρ, pressure P and velocity v in a gravitational potential φ. Then the
equation of motion of such a fluid is given by Euler’s equation (which is just Newton’s equation for
the fluid):

∂v

∂t
+ v · ∇v = −1

ρ
∇P −∇φ. (1)

In addition, we also have the equation of continuity and Poisson’s equation for gravity:

∂ρ

∂t
+∇ · (ρv) = 0 (2)

∇2φ = 4πGρ, (3)

where G is Newton’s constant.
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Linearized Equations

Consider a uniform and static ideal gas. Then consider the following perturbations

ρ = ρ0 + ρ1

P = P0 + P1

v = v1

φ = φ0 + φ1

where the background field values have been denotes by the subscript 0 (unless it vanishes) and the
small perturbations have been labelled by the subscript 1.

If one counts the number of independent variables and the the number of equations above, it is clear
that this system of equations is underdetermined. So, it needs to be supplemented by the equation
of state

P = P (ρ, S)

where S is the entropy. If we assume an ideal gas and the perturbations are adiabatic then the
density and pressure perturbations are related by,

P1 = c2sρ1,

where c2s = ∂P
∂ρ

∣∣∣
S,0

is the square of the speed of sound in the gas.

• What are the linear versions of equations (1), (2) and (3)?

• Combine these equations to obtain a second order wave equation (with source) for the density
fluctuation.1

• Assume a plane wave ansatz for the density fluctuation. Show that the dispersion relation that
follows from the wave-equation is

ω2 = c2sk
2 − 4πGρ0.

• Derive the Jeans length λJ , i.e. the minimal length above which fluctuations become unstable.

• The Jeans mass is the mass of the matter that is contained in a sphere of radius 1
2λJ . Derive

the Jeans mass.

2 Decoupled Species

a. Suppose a massive particle species χ has number density nχ(tfo) at time tfo when the temperature
of the Universe is Tfo < mχ.

1In deriving the wave equation ignore the zeroth order result of Poisson’s equation: ∇2φ0 = 4πGρ0. The uniformity
of φ0 would imply that we set ρ0 = 0 invalidating the whole exercise. This is knows as the “Jeans swindle”. In a
real hot gas there would be other forces present which ensures the consistency to this analysis.
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i) If the particle species doesn’t interact at all with the cosmological plasma after tfo, what
is the number density of that species today in terms of the scale factor a(t) then and now?
What is its contribution to the energy density today?

ii) The entropy per comoving volume sa3 (where s is the entropy density) remains constant
through much of the evolution of the Universe. Assuming it is constant after tfo, rewrite the
result from part i) in terms of the temperature and number of entropic degrees of freedom
g∗s at tfo and those today (at time t0).
Hint: s = 2π2g∗sT

3/45.

iii) If we had T0 � mχ < Tfo, how would your previous answers differ?

b. Suppose a massless relativistic particle species V in equilibrium with the cosmological plasma at
time tfo suddenly stops interacting at all with itself or anything else. After this happens, the
expansion of spacetime will dilute the number density of V particles as a−3 energy of each V
particle will redshift as a−1.

i) What is the contribution of V to the energy density of the Universe today?

ii) Rewrite this result in terms of temperatures and g∗s factors assuming entropy conservation
after tfo.

iii) One can show that the distribution function for V particles tracks the equilibrium form, but
with a different effective temperature for the V particles. What is this effective temperature
today in terms of the photon temperature and the number of effective degrees of freedom g∗?
Hint: ρ(T ) = π2g∗(T )T 4/30 for this distribution function.
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