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Our remaining task is to justify the photon propagator and external state sums we
presented in the Feynman rules for QED. In doing so, we will also gain some intuition
about how gauge invariance manifests itself within Feynman diagrams.

1 Classical Vector Fields

The classical Lagrangian of electromagnetism (in the absence of sources) is

L = −1

4
FµνF

µν , (1)

where

Fµν = ∂µAν − ∂νAµ . (2)

Under Lorentz transformations, the vector field Aµ transforms as

Aµ(x) = Λµ
νA

ν(Λ−1x) , (3)

corresponding to the 4-vector representation.

Everything looks good so far, but a puzzle arises when we try to quantize the theory.
We know that the photon has two independent polarization states, corresponding to the two
possible helicities of a massless particle. However, the vector field Aµ has four components,
and it would seem that the theory should have four particle states. The solution to this
puzzle will turn out to be gauge invariance.

1.1 Degrees of Freedom: Massive Vector

Before tackling the photon, let us begin with the slightly easier case of a massive vector field
Zµ. Even though this field would seem to have four degrees of freedom, we can use it to
build a quantum theory of a massive particle with spin s = 1, with three degrees of freedom.
To see how, note that under the rotation subgroup of Lorentz a general 4-vector decomposes
into states with s = 0 and s = 1. The s = 0 piece corresponds to the subset of Zµ fields that
can be written as Zµ = ∂µφ for some scalar φ. To project these configurations out to isolate
the s = 1 part, it turns out to be sufficient to apply the constraint ∂µZ

µ = 0.

To see how this works, let us try using a Lagrangian for Zµ that is a simple generalization
of electromagnetism,

L = −1

4
ZµνZ

µν +
1

2
m2ZµZ

µ (4)

=
1

2
Zµ(ηµν∂

2 − ∂µ∂ν)Z
ν +

1

2
m2ZµZ

µ , (5)
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where Zµν = ∂µZν − ∂νZµ, and we have integrated by parts in the second line and dropped
the total derivative that will vanish when inserted into the action. The only new thing here
relative to electromagnetism is the mass term.

The equations of motion implied by this Lagrangian are

0 = (ηµν∂
2 − ∂µ∂ν)Z

ν +m2Zµ (6)

Applying ∂µ to this result, we find the condition

m2∂µZ
µ = 0 . (7)

Thus, the only way to have a non-trivial solution is for the condition ∂µZ
µ = 0 to be satisfied.

This is also consistent with the absence of a s = 0 mode. Consider what happens in this
Lagrangian when Zµ = ∂µφ. The kinetic term gives

Zµν → ∂µ(∂νφ)− ∂ν(∂µφ) = 0 . (8)

In the mass term, we find

m2ZµZ
µ → m2∂µφ ∂

µφ→ −m2φ ∂2φ . (9)

This vanishes as well if we impose the constraint

0 = ∂µZ
µ → ∂µ(∂

µφ) . (10)

Thus, the funny kinetic term plus the constraint imply that the action does not depend at
all on the s = 0 part of Zµ.

It is also possible to couple the massive vector to other stuff without reintroducing a
dependence on the s = 0 part. If we were to write an interaction for Zµ that is linear in the
field, it would have to take the form

L ⊃ Zµj
µ , (11)

for some four-vector operator jµ. Putting Zµ = ∂µφ into Eq. (11), we find

L ⊃ ∂µφ j
µ = −φ (∂µjµ) , (12)

up to a total derivative. This implies that the action will not depend on the s = 0 component
of Zµ if and only if the operator jµ is a conserved current, ∂µj

µ = 0.

With the constraint, the equations of motion for the free massive vector become

0 = (∂2 +m2)Zµ − ∂µ(∂νZ
ν) , (13)

which is just a Klein-Gordon equation for each of the components. A general solution is

Zµ =

3∑

λ=1

∫
d̃k

[
a(k, λ)ǫµ(k, λ)e

−ik·x + a∗(k, λ)ǫ∗µ(k, λ)e
ik·x

]
, (14)
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where the polarization 4-vectors ǫµ must satisfy

kµǫµ(k, λ) = 0 . (15)

This condition comes from the ∂µZ
µ = 0 constraint. Three of them are needed to make up

a basis of 4-vectors subject to the one constraint. For kµ = (Ek, 0, 0, k), a convenient choice
for them is

ǫµ(1) = (0, 1, 0, 0), ǫµ(2) = (0, 0, 1, 0), ǫµ(3) =

(
k

m
, 0, 0,

Ek

m

)
. (16)

The first two are called transverse polarizations, while the third is said to be longitudinal.

1.2 Degrees of Freedom: Massless Vector

We turn next to the free photon. The Lagrangian can be rewritten as

L = −1

4
FµνF

µν =
1

2
Aµ(ηµν∂

2 − ∂µ∂ν)A
ν , (17)

where we have again dropped a total derivative. To relate this to a massless particle with
two helicity states is more difficult than the massive case, and is not just a matter of taking
the mass to zero.

The key new feature of the massless vector Lagrangian of Eq. (17) is the invariance under
gauge transformations

Aµ → Aµ +
1

e
∂µα , (18)

for any smooth function α. As discussed in notes-09, there is also a new physical interpre-
tation of the theory to go along with this invariance. Specially, field configurations related
by a gauge transformation are understood to be physically equivalent. In the language that
is typically used in classical electromagnetism, the physical quantities are the electric and
magnetic fields, not the scalar and vector potentials, Aµ = (φ, ~A).

The equations of motion implied by Eq. (17) are

0 = ∂2A0 − ∂0(∂0A
0 + ∂iA

i) = − ~∇2A0 − ∂0(~∇ · ~A) (19)

0 = −∂2Ai − ∂i(∂0A
0 + ∂jA

j) , (20)

where we have written the time and space components separately. Note that Eq. (19) is
just a Poisson equation for A0. It implies that we can solve for A0 in terms of the spatial
components [1],

A0(~x) =
1

4π

∫
d3x′

~∇ · (∂ ~A/∂t)
|~x− ~x′| . (21)

This looks promising for the quantum theory, since it looks like we will be able to remove
A0 as a dynamical variable.
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To actually solve the equations of motion for Aµ, it helps enormously to choose a specific
gauge. A popular example is the Coulomb gauge,

~∇ · ~A = 0 . (22)

In this case, we get A0 = 0 together with ∂2 ~A = ~0. The general solution is

Ai(x) =
∑

λ=1,2

∫
d̃k

[
a(~k, λ)ǫi(~k, λ)e−ik·x + a∗(~k, λ)ǫi ∗(~k, λ)eik·x

]
, (23)

with k0 =
√
~k2. Applying the Coulomb gauge condition, we must have ~k·~ǫ = 0. A convenient

choice of basis 3-vectors for ~k = (0, 0, k) are the linear polarizations

ǫi(1) = (1, 0, 0), ǫi(2) = (0, 1, 0) . (24)

A second popular choice are the right- and left-handed circular polarizations

ǫi(1) =
1√
2
(1, i, 0), ǫi(2) =

1√
2
(1,−i, 0) . (25)

In this gauge, we can interpret ~A as a vector wave propagating at the speed of light with
two independent polarizations. The downside of the Coulomb gauge is that it obscures the
underlying Lorentz invariance of the theory.

A second gauge choice is the Lorentz-invariant Lorenz gauge,1

∂µA
µ = 0 . (26)

A convenient way to impose this condition on the classical theory is to use a Lagrange
multiplier ξ. This means we modify the Lagrangian to

L = −1

4
FµνF

µν − 1

2ξ
(∂µA

µ)2 , (27)

while treating the Aµ fields as being unconstrained but also promoting ξ to a variable of the
system. Without having to worry about the constraint, it is easy to derive the equations of
motion for Aµ,

[
−ηµν∂2 + (1− 1/ξ)∂µ∂ν

]
Aν = 0 . (28)

However, we also have to include the equation of motion for ξ, which yields ∂µA
µ = 0 and

reproduces the constraint.

2 Quantizing the Vector

We turn next to quantizing the massless vector. This will turn out to be fairly complicated,
with a number of subtleties due to gauge invariance and the related fact that we have more
field variables than physical states. We will also work specifically within the Lorenz gauge
as in Refs. [1, 2]. See Srednicki [3] for a discussion of photon quantization in the Coulomb
gauge.

1Often called Lorentz gauge, because the corresponding condition is Lorentz invariant. Poor Lorenz.
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2.1 Hamiltonian Formulation

As usual, the first step is to find the classical Hamiltonian. For now, we will not worry about
the gauge choice ∂µA

µ = 0, and just work with Eq. (27) as the defining Lagrangian. We will
also fix ξ = 1. This isn’t necessary, but it greatly simplifies the algebra.

The conjugate momenta to the Aµ are

Πµ =
∂L

∂(∂0Aµ)
= −F0µ . (29)

The Hamiltonian is therefore

H =

∫
d3x [Πµ∂0A

µ − L ] (30)

=

∫
d3x

(
1

2

[
(πi)2 + (~∇Ai)2

]
− 1

2

[
(π0)2 + (~∇A0)2

])
(31)

The negative sign in the A0 piece looks strange, but let’s keep on trucking.

2.2 Going Quantum

The next step is to elevate the field variables and their conjugate momenta to operators on
a Hilbert space. The equal-time commutation relations are

[Aµ(t, ~x), Πν(t, ~x
′)] = i δµν δ

(3)(~x− ~x′) , (32)

[Aµ(t, ~x), Aν(t, ~x′)] = 0 = [Πµ(t, ~x),Πν(t, ~x
′)] . (33)

Note that each of the components of Aµ is treated as an independent variable.

Following the same procedure as for the scalar, we can rewrite the vector field in terms
of mode operators,

Aµ(x) =

∫
d̃k

3∑

λ=0

[
a(k, λ)ǫµ(k, λ)e−ik·x + a†(k, λ)ǫµ ∗(k, λ)eik·x

]
, (34)

where k0 = |~k|, and the four ǫµ(k, λ) form a basis of four vectors. It is convenient (and
always possible) to choose these 4-vectors such that 2

k · ǫ(k, 1) = k · ǫ(k, 2) = 0 (35)

k · ǫ(k, 0) = −k · ǫ(k, 3) (36)

ǫµ(k, λ)ǫµ(k, λ
′) = ηλλ

′

(37)

With this choice, the commutation relations of the mode operators implied by the ETCRs
are

[ak,λ, a
†
p,λ′] = −ηλλ′

(2π)3 2k0 δ(3)(~k − ~p) (38)

[ak,λ, ap,λ′] = 0 = [a†k,λ, a
†
p,λ′] (39)

2For example, if kµ = (k, 0, 0, k), ǫ(0) = (1, 0, 0, 0), ǫ(1) = (0, 1, 0, 0), ǫ(2) = (0, 0, 1, 0), ǫ(3) = (0, 0, 0, 1).
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In terms of these modes operators, the Hamiltonian is given by

H =

∫
d̃k k0

∑

λλ′

(−ηλλ′

)a†k,λak,λ′ (40)

=

∫
d̃k k0

[
3∑

λ=1

a†k,λak,λ − a†k,0ak,0

]
. (41)

To build the Hilbert space, we assume there exists a vacuum state |0〉 such that

ak,λ|0〉 = 0 . (42)

All other states in the space can be built by applying powers of a†k,λ to |0〉. We interpret
these states as free photons with four-momentum kµ and polarization λ.

2.3 Problems with this Quantum Theory

As it stands, the quantum theory we’ve just developed has a number of puzzling features.
We collect here a list of the worst of them. In the next subsection, we will present a way to
fix them.

i) One-Particle States

This theory has four one-particle states, corresponding to |k, λ〉 = a†k,λ|0〉 for λ = 0, 1, 2, 3.
However, we know that a real photon has only two independent polarizations. This isn’t too
surprising because we haven’t used gauge invariance yet.

ii) Commutators

The commutator of Eq. (38) looks just like what we would expect for independent scalar
fields for λ = 1, 2, 3, but it has the opposite sign for λ = λ′ = 0.

iii) Inner Products

Consider the inner product of a pair of one-particle states,

〈k, λ|p, λ′〉 = −ηλλ′

(2π)3 2k0 δ(3)(~k − ~p) . (43)

Again, this is fine for λ = 1, 2, 3, but it is negative for λ = λ′ = 0. The inner product
therefore fails to be positive definite. This same problem can arise for multi-particle states
as well.

iv) Energies
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The Hamiltonian of Eq. (41) seems to have the wrong sign for the a†k,0ak,0 term. Applying
it to the one-particle state |p, λ = 0〉, one finds

H|p, 0〉 = −p0|p, 0〉 , (44)

so the eigenvalue is negative. However, the expectation value of the Hamiltonian for this
state is positive due to the negative inner product of the state with itself,

〈p, 0|H|p, 0〉 = −p0〈p, 0|p, 0〉 = +p0|〈p, 0|p, 0〉| . (45)

v) Lorentz Gauge

Things look bad, but we will see that gauge invariance saves things. However, implementing
gauge is a little bit tricky. For example, just forcing the Lorenz gauge condition ∂µA

µ = 0
is not consistent with the ETCRs. Explicitly,

[∂µA
µ(t, ~x), Aν(t, ~x′)] = iην0δ(3)(~x− ~x′) 6= 0 . (46)

2.4 Imposing the Gauge Condition

Recall that we started off with the free QED Lagrangian, added the gauge fixing term
−(∂µA

µ)/2ξ to it as in Eq. (27), and then set ξ = 1 (rather than treating it as a genuine
Lagrange multiplier). With this modified Lagrangian, we derived the conjugate momenta
and the classical Hamiltonian, and we applied the usual canonical quantization procedure
to it. The resulting quantum theory seems to have many undesirable properties.

The way to fix up the theory to describe physical photons is to find a way to impose
the gauge condition ∂µA

µ = 0. Just imposing this condition as an operator equation is
too strong, because it conflicts with the ETCRs. Instead, we will only demand that this
condition hold in a weakened form when acting on a subset of states in the Hilbert that we
will identify with physical configurations of the system. This method is sometimes called
the Gupta-Bleuler method after the two people who came up with it.

The key insight of Gupta and Bleuler is that only a subset of the states in the Hilbert
should be identified with physical particle excitations. Given a state |ψ〉, the “physicality”
condition is

∂µA
µ
−|ψ〉 = 0 , (47)

where

Aµ
−(x) =

4∑

λ=0

∫
d̃k ak,λǫ

µ(k, λ)e−ik·x . (48)

Note that Aµ = Aµ
− + Aµ

+ with Aµ
+ = (Aµ

−)
†. Applying the derivative to this expansion and

using the properties of the polarization 4-vectors, Eq. (47) implies that

Lk|ψ〉 := (ak,0 − ak,3)|ψ〉 = 0 . (49)
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Taking the conjugate, we also have 〈0|L†
k = 0.

The G-B condition is trivially satisfied by the vacuum |0〉. Going to 1-particle states,
|k, 1〉 and |k, 2〉 are both physical excitations, but |k, 0〉 and |k, 3〉 individually are not.
The standard terminology is that the λ = 1, 2 are called the transverse modes, λ = 3 is
longitudinal, and λ = 0 is timelike. More generally, we have for any physical state |ψ〉

〈ψ|a†k,3ak,3|ψ〉 = 〈ψ|a†k,0ak,0|ψ〉 , (50)

as well as

〈ψ|H|ψ〉 =
2∑

λ=1

∫
d̃k k0a†k,λak,λ . (51)

Thus, only the transverse modes contribute to the (non-negative) energy of a physical state.

Things are looking up, but there is still the question of how to interpret the longitudinal
and timelike polarizations. While neither |k, 0〉 nor |k, 3〉 are physical, there is a particular
linear combination of them that is,

L†
k|0〉 = |k, 0〉 − |k, 3〉 . (52)

The physicality of this state follows from [Lk, L
†
k] = 0. This state also has HL†

k|0〉 = 0.
We interpret this state as being physically equivalent to the vacuum |0〉 (up to a possible
normalization factor). More generally, it can be shown that any physical state can be written
in the form [2]

|ψ〉 = G|ψT 〉 , (53)

where |ψT 〉 contains only transverse photons (with the same transverse content at |ψ〉) and
the operator G consists exclusively of sums and products of L†

k operators.3 Furthermore,
one can also show that [2]

〈ψ|Aµ(x)|ψ〉 = 〈ψT |Aµ(x)|ψT 〉+ 〈ψT |∂µα(x)|ψT 〉 , (54)

for some scalar function α. Thus, we also interpret |ψ〉 and the corresponding |ψT 〉 states as
being physically equivalent, and related by a gauge transformation.

2.5 Propagation

To derive Feynman rules, we will need to generalize Wick’s theorem to include photon
field contractions. As before, the contraction is equal to the time-ordered 2-point function.
Applying the mode expansion of Aµ(x) and the completeness relations for the polarization
4-vectors, the result is

〈0|T{Aµ(x)Aν(x′)}|0〉 =
∫

d4k

(2π)4
−iηµν
k2 + iǫ

e−ik·(x−x′) . (55)

3More precisely, G = 1 +
∫
d̃k1 A1(k1)L

†
k1

+
∫
d̃k1

∫
d̃k2 A2(k1, k2)L

†
k1
L
†
k2

+ . . .
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We call this the photon propagator.

Two comments about this result are in order. First, all four polarizations contribute to
it, which should not be too surprising given that the operator AµAν is not gauge-invariant.
Second, this result corresponds to the specific choice of ξ = 1 for the gauge fixing parameter.
Going through the same procedure for an arbitrary value of ξ, the propagator turns out to
be

〈0|T{Aµ(x)Aν(x′)}|0〉 =
∫

d4k

(2π)4
i

k2 + iǫ

[
−ηµν + (1− ξ)

kµkν

k2

]
e−ik·(x−x′) . (56)

Our choice of ξ = 1 is sometimes called Feynman gauge. Other useful values are ξ = 0
(Landau gauge) and ξ = 3 (Yennie gauge). We will see shortly that ξ should not appear in
any physical observable.

3 Interacting Photons

Let us turn next to QED, with its fermion interactions,

L = −1

4
FµνF

µν + Ψ̄iγµDµΨ−mΨ̄Ψ (57)

= (free theory)− Aµ

(
eQ Ψ̄γµΨ

)
. (58)

From this, we see that the only coupling in QED connects the vector field to jµ = QΨ̄γµΨ,
the conserved Noether current corresponding to the symmetry of the theory under global
rephasing. This has an important implication for scattering matrix elements computed in
the theory.

Consider a general QED scattering matrix element with an external photon of momentum
k. Given our Feynman rules, the matrix element will have the form (for an incoming photon)

M = ǫµ(k, λ) Mµ(k) , (59)

for some quantity Mµ. Since Aµ always connects with a jµ in a vertex, we have Mµ(k) [4]

Mµ(k) ∼ LSZ

∫
d4x e−ik·x〈jµ(x)O〉 , (60)

where O is whatever operator that is needed to make up the rest of the amplitude. This
implies that

kµMµ(k) = i

∫
d4x (∂µe

−ik·x) 〈jµ(x)O〉 (61)

= −i
∫
d4x e−ik·x〈∂µjµ(x)O〉 (62)

= 0 , (63)

where we have integrated by parts to get the second line. This result, kµMµ(k) is called the
Ward identity. It is on account of the Ward identity that we can ignore any pµ terms in the
photon polarization sums, so that

∑
λ ǫ

µ(p, λ)ǫν∗(p, λ) → −ηµν .
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