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We have found that quantizing a scalar field theory with V (φ) = 1
2
m2φ2 + Λ produces

a theory of identical free particles with mass m, in which the individual particles do not
interact with each other at all. Due to the simplicity of this theory, we were able to find all
the energy eigenstates and eigenvalues. On the other hand, this simplicity also means that
the theory is not very interesting.

In this note, we will look at more complicated scalar theories with higher-order terms in
the potential. Specifically, we will investigate the Lagrangian

L =
1

2
(∂φ)2 −

1

2
m2φ2 − Λ−∆V (φ) . (1)

In many cases, we will take

∆V =
λ

4!
φ4 , (2)

where λ is a constant parameter. For this choice of ∆V , the classical equation of motion is

(∂2 +m2)φ = −
λ

3!
φ3 . (3)

This is a non-linear partial differential equation. It is much harder to solve than a linear
equation because it is no longer always true that a linear combination of two individual
solutions is also solution. In general, we don’t know how to solve such equations analytically.

Turning to the Hamiltonian formulation of the classical theory, we find the conjugate
momentum

Π(x) = ∂tφ(x) , (4)

and the Hamiltonian

H =

∫
d3x

[
1

2
Π2 +

1

2
(~∇φ)2 +

1

2
m2φ2 + Λ

]
+

∫
d3x ∆V (φ) (5)

:= H̄0 +∆H , (6)

where ∆H =
∫
d3x∆V (φ).
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1 Quantizing

To quantize this theory, we proceed just like before by elevating φ(x) and Π(x) to operators
on a Hilbert space and imposing canonical commutation relations on them at equal times.
Also as before, we can define a(~k) and a†(~k) operators at the fixed reference time t0 = 0
according to

a(~k) = i

∫
d3 eik·x(Π− ik0φ)|t=0 , (7)

a†(~k) = −i

∫
d3 e−ik·x(Π + ik0φ)|t=0 , (8)

where k0 = Ek =
√
~k2 +m2. Using the commutators of φ and Π at t = 0, the commutators

of the a and a† operators are

[a(~k), a†(~p)] = (2π)32k0δ(3)(~k − ~p), [a(~k), a(~p)] = 0 = [a†(~k), a†(~p)] . (9)

Building up the Hamiltonian at t = 0 in terms of the modes, we find

H =

∫
d̃k k0a†(~k)a(~k) +

∫
d3x ∆V (φ) (10)

= H0 +∆H(t = 0) . (11)

Even though we have constructed the Hamiltonian from quantities defined at t = 0, it is still
time-independent,1 and so this expression holds for any time: H(t) = H(0). We can also
expand ∆H(0) in terms of the ladder operators, but the resulting expression will typically
be complicated. For ∆H = λφ4/4!, it will involve products of four a and a† factors.

Using the a and a† operators, we can also build the Hilbert space. As before we assume
there exists a state |0〉 that is annihilated by all the a(~k). In particular, H0|0〉 = 0. A
complete basis of eigenstates of the Hermitian operator H0 can then be formed by applying
powers of a†(~pi) to |0〉. This is good – we have now quantized the theory by specifying the
degrees of freedom and finding a basis for the corresponding Hilbert space.

Now for the bad news. For just about any ∆V that isn’t linear or quadratic in φ, we do
not know how to find the exact time evolution of the system. This difficulty is easiest to
see in the Schrödinger picture, where operators are time-independent and the states evolve
in time. If we try to identify |0〉 with a zero-particle state at t = 0, as time goes by it will
evolve to |0(t)〉 = e−iHt|0〉. Since H = (H0 + ∆H), and the ∆H piece contains stuff like
a[a†]3 (for λφ4/4!), the time-evolved “vacuum” state will contain multi-particle components.

We can also see the challenge in the Heisenberg picture. Starting from a(~k) defined at
t = 0, we can evolve it forward in time in the usual way:

a(t, ~k) := eiHta(~k)e−iHt , (12)

1This is just one of the basic assumptions of quantum mechanics for closed systems.

2



and similarly for a†. In the free theory, we had the very special result that a(t, ~k) = e−ik0ta(~k);
time evolution only changed the mode operators by a phase. Unfortunately, this simple result
no longer holds in the interacting theory, and a(t, ~k) will be a complicated linear combination

of products of multiple a(~k) and a†(~k) operators. In general, we do not how to find the energy
eigenstates of the full Hamiltonian when ∆V 6= 0. Whatever shall we do?

2 Perturbing Around the Free Theory

The way out of this pit of despair is to give up on trying to compute the energy eigenstates
exactly, and content ourselves with approximations to the truth. To do this, we will start with
the free theory (∆H = 0), and expand around it in powers of ∆H . Such an expansion will be
useful if ∆H is in some sense small relative to H0. We will also focus on the relatively easy
problem of scattering, where particles come in from spatial infinity at t → −∞, scatter with
each other, and travel off to spatial infinity at t → +∞. This lends itself well to expanding
around the free theory because particles separated by large distances, as they are before and
after scattering, are expected to behave like free particles. On a more technical side, we will
show in notes-04 that the only quantities needed to compute scattering amplitudes are the
n-point functions 〈Ω|T{φ(x1)φ(x2) . . . φ(xn)}|Ω〉, where |Ω〉 is the vacuum state of the full
theory.

The first step in perturbation theory is to construct a set of eigenstates of H0. Note that
even though H0 6= H , it is still a Hermitian operator and its eigenstates will therefore be a
complete and orthonormalizable set. In fact, we have already done this: the lowest state is
|0〉 all the higher states that can be built from it by applying factors of a†(~p).

In expanding around these H0 eigenstates, we will make two physically reasonable as-
sumptions. They can justified when the interaction ∆H is sufficiently small.2 They are:

1. There exists a unique, normalizable, lowest-energy ground state |Ω〉 of the full Hamil-

tonian H with no 3-momentum (i.e. ~P |Ω〉 = 0) and non-zero overlap with |0〉:

〈0|Ω〉 6= 0 . (13)

Note that in general, |0〉 is different from |Ω〉.

2. The next state in the spectrum is an isolated one-particle state with momentum ~p and
energy E =

√
~p2 +M2 for some mass M (possibly different from m). By isolated, we

mean that there is a non-zero energy gap above |Ω〉, and another energy gap between
the one-particle state (in the Lorentz frame with ~p = ~0) and the next set of states.

3. The field has vacuum expectation value of zero, 〈Ω|φ(0)|Ω〉 = 0.

The first assumption means that the interaction does not change the vacuum of the theory
in too radical a way. The second and third imply that we will still be able to associate the
field φ(x) with a specific particle species.

2However, they can be explicitly violated at strong coupling, when ∆H cannot be treated as small.
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2.1 The Interaction Picture

To expand the full theory around the free theory, let us begin by writing φ(0, ~x) in terms of
the ladder operators by inverting Eqs. (7,8):

φ(0, ~x) =

∫
d̃k
[
a(~k)ei

~k·~x + a†(~k)e−i~k·~x
]
. (14)

To evolve the field to later times, we use the full Hamiltonian:

φ(t, ~x) = eiHtφ(0, ~x)e−iHt . (15)

Unfortunately, we don’t know how to simplify this because we don’t know how to move H
through the a(~k) and a†(~k) operators that make up φ(0, ~x).

In the face of this challenge, let us do something easier and define the time-dependent
interaction picture field by

φI(t, ~x) := eiH0tφ(0, ~x)e−iH0t (16)

=

∫
d̃k
[
a(~k)e−ik·x + a†(~k)eik·x

]
, (17)

where H0 is the free Hamiltonian at t = 0. Here, the time evolution is simple because we do
know how to commute H0 with a and a†. We can also generalize this definition to any other
local operator: OI(t) := eiH0tO(0)e−iH0t.

Before moving on, let us briefly take note of the time dependence of the full Hamiltonian
and its pieces. We have

H(t) = eiHtH(0)e−iHt = H(0) (18)

= eiHtH0e
−iHt + eiHt∆H(0)e−iHt (19)

:= H̃0(t) + ∆H(t) . (20)

While the full Hamiltonian is time-independent (since it commutes with itself), the terms
within it need not be. We have defined here a time-dependent version H̃0(t) of the free
Hamiltonian such that H0 = H̃0(0). The tilde is to distinguish it from H0, which is given by
the explicit expression in Eq. (10).

The interaction picture is useful because it factors out the time evolution due to the
free Hamiltonian. We can relate any Heisenberg-picture operator to the interaction picture
version by

O(t) = U †
I (t)OI(t)UI(t) , (21)

where

UI(t) = eiH0te−iHt . (22)

Differentiating with respect to t, this implies

i∂tUI(t) = ∆HI(t)UI(t) , (23)
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where ∆HI(t) = eiH0t∆H(0)e−iH0t is the interaction Hamiltonian in the interaction picture.
Note that if ∆H =

∫
d3xλ(m,n)Πmφn, we have ∆HI =

∫
d3xλ(m,n)Πm

I φ
n
I .

The solution to Eq. (23) for t > 0 is derived in detail in Peskin&Schroeder [1], and is
given by Dyson’s equation:

UI(t) = T

{
exp

[
−i

∫ t

0

dt′∆HI(t
′)

]}
(24)

= I+
(−i)

1!

∫ t

0

dt1∆HI(t1) +
(−i)2

2!

∫ t

0

dt1

∫ t

0

dt2 T{∆HI(t1)∆HI(t2)}+ . . .(25)

where the first line is just a compact shorthand for the second. This expression certainly has
the right boundary condition, and it is straightforward to check that it satisfies Eq. (23) by
explicit differentiation. For t < 0, the solution is

UI(t) = T ′

{
exp

[
−i

∫ t

0

dt′∆HI(t
′)

]}
, (26)

where T ′ denotes reverse time ordering

T ′{φ(x1)φ(x2)} = Θ(t1 − t2)φ(x2)φ(x1) + Θ(t2 − t1)φ(x1)φ(x2) . (27)

To combine both cases into a simple notation, let us define T̃ to be time ordering for t > 0
and reverse time ordering for t < 0. Thus,

UI(t) = T̃

{
exp

[
−i

∫ t

0

dt′∆HI(t
′)

]}
. (28)

In terms of U(t), we now have an analytic (but very complicated) relation between φ(t, ~x)
and φI(t, ~x).

We can generalize U(t) by defining

UI(t2, t1) = UI(t2)U
†
I (t1) = eiH0t2e−iH(t2−t1)e−iH0t1 . (29)

It can be shown that this quantity is equal to

UI(t2, t1) = T̃

{
exp

[
−i

∫ t2

t1

dt′∆HI(t
′)

]}
, (30)

where T̃ is time ordering for t2 > t1 and reverse time-ordering for t2 < t1.

The UI(t1, t2) operator has some very nice properties. They include:

1. UI(t1, t1) = I

2. UI(t3, t2)UI(t2, t1) = UI(t3, t1)

3. U †
I (t2, t1) = U−1

I (t2, t1) = UI(t1, t2)
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By definition, UI(t, 0) = UI(t). This implies trivially that φ(x) = U †
I (t, 0)φI(x)UI(t, 0).

Thus, for any product of fields (where φi = φ(xi)):

φnφn−1 . . . φ1 = U †
I (tn, 0)φInUI(tn, 0)U

†
I (tn−1, 0)φIn−1 . . . UI(t2, 0)U

†
I (t1, 0)φI1UI(t1, 0)

(31)

= U †
I (tn, 0)φIn UI(tn, tn−1)φIn−1 . . . φI2 UI(t2, t1)φI1 UI(t1, 0) .

In this expression, the UI factors can be thought of as transfer operators that connect the
interaction-picture operators at different times.

2.2 To Infinity and Beyond

Our goal is to compute the time-ordered operator expectation values 〈Ω|T {φn, . . . φ1} |Ω〉.
Our strategy to do so will be to rewrite them in terms of interaction picture fields sandwiched
between the H0 vacuum |0〉. This will give us something we know how to deal with, since
interaction picture fields act on the |0〉 state exactly like in the free theory. Evaluating them
is then just a matter of commuting a bunch of a and a† operators through each other.

As a first step, let us expand the H0 eigenstate |0〉 in terms of energy eigenstates {|N〉}
of the full Hamiltonian H in a clever way. For this, recall that H0|0〉 = 0 by construction,
and let us write EΩ as the energy of the true vacuum: H|Ω〉 = EΩ|Ω〉. Multiplying |0〉 by
U−1
I (−τ, 0), we get

U−1
I (−τ, 0)|0〉 = e−iHτeiH0τ |0〉 (32)

= e−iHτ

(
|Ω〉〈Ω|+

∑

N>Ω

|N〉〈N |

)
eiH0τ |0〉 (33)

= e−iEΩτ 〈Ω|0〉 |Ω〉+
∑

N>Ω

e−iENτ 〈N |0〉 |N〉 , (34)

where in the second line we have inserted unity in the form of a complete set ofH eigenstates.
This relation simplifies enormously in the limit τ → ∞(1 − iǫ), with 0 < ǫ ≪ 1. Since
EN > EΩ, the contributions from all the higher modes become exponentially suppressed in
this limit. It follows that

|Ω〉 = lim
τ→∞(1−iǫ)

eiEΩτ

〈Ω|0〉
U−1
I (−τ, 0)|0〉 . (35)

A similar argument gives

〈Ω| = lim
τ→∞(1−iǫ)

eiEΩτ

〈0|Ω〉
〈0|UI(τ, 0) . (36)

The second step is to combine these results with the expression of Eq. (31). This gives

〈Ω|φn . . . φ1|Ω〉 = lim
τ→∞1−iǫ

e2iEΩτ

|〈Ω|0〉|2
〈0|UI(τ, 0)U

†
I (tn, 0)φIn . . . φI1UI(t1, 0)U

−1
I (−τ, 0)|0〉 . (37)
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Making use of the properties of the UI(t, t
′) operators, it is straightforward to show that

UI(τ, 0)U
†
I (tn, 0) = UI(τ, tn) , UI(t1, 0)U

−1
I (−τ, 0) = UI(t1,−τ ∗) . (38)

Thus, we have

〈Ω|φn . . . φ1|Ω〉 = lim
τ→∞(1−iǫ)

e2iEΩτ

|〈Ω|0〉|2
〈0|UI(τ, tn)φInUI(tn, tn−1) . . . φI1UI(t1,−τ ∗)|0〉 . (39)

Everything has contracted nicely.

The last two steps are to deal with the funny prefactor and to focus on time-ordered
products of fields. For the prefactor, the normalization condition on |Ω〉 implies

1 = 〈Ω|Ω〉 (40)

= lim
τ→∞(1−iǫ)

e2iEΩτ

|〈Ω|0〉|2
〈0|UI(τ, 0)U

−1
I (−τ, 0)|0〉 (41)

= lim
τ→∞(1−iǫ)

e2iEΩτ

|〈Ω|0〉|2
〈0|UI(τ,−τ ∗)|0〉 (42)

= lim
τ→∞(1−iǫ)

e2iEΩτ

|〈Ω|0〉|2
〈0|T

{
exp

[
−i

∫ τ

−τ

dt′ ∆HI(t
′)

]}
|0〉 (43)

In the last line, we have just applied the solution for UI(t, t
′) given in Eq. (30).

We can also apply our solution for U(t, t′) to the operator in Eq. (39). If not for the
insertions of φIi in this operator, we could contract up all the U(ti, ti−1) factors to give a
single U(τ,−τ ∗) factor. Unfortunately, φIi and ∆HI(t) typically do not commute and such
a simplication is not possible in general. However, we can make this simplication within a
time-ordering symbol, since the ordering of operators inside the symbol does not matter.3

Therefore, we can write

〈Ω|T{φn . . . φ1}|Ω〉 = lim
τ→∞(1−iǫ)

〈0|T
{
φI1 . . . φIn exp

[
−i
∫ τ

−τ
dt′∆HI(t

′)
]}

|0〉

〈0|T
{
exp

[
−i
∫ τ

−τ
dt′∆HI(t′)

]}
|0〉

. (44)

This result will be used a lot, and we will sometimes call it our master formula.

We will show in notes-04 that time-ordered vacuum matrix elements of fields are pre-
cisely what are needed to compute scattering rates. Since they come up so much, they are
given a special name and an abbreviated notation. The time-ordered product of n fields is
called the n-point function G(n)(x1, . . . , xn), and is often written as

〈Ω|T{φ1 . . . φn}|Ω〉 = G(n)(x1, . . . , xn) = 〈φ1 . . . φn〉 . (45)

Onward!

3After all, their order will be completely determined by the time ordering, e.g. T {φ1φ2} = T {φ2φ1}.
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2.3 Computing Stuff, Finally

After all this formalism, let’s actually compute something. The way the exact result of
Eq. (44) is usually too complicated to compute exactly. Instead, it usually computed
perturbatively by expanding it in powers of ∆HI . The right-hand side of Eq. (44) is written in
terms of interaction-picture fields and theH0 vacuum |0〉. This is nice because the interaction
picture fields have exactly the same expansion in terms of the a and a† ladder operators as
a free field, Eq. (17). Since we know how these act on |0〉 and how they commute with each
other, we know how to compute all the matrix elements.

To be concrete, let us specialize to the case of

∆H =

∫
d3x

g

3!
φ3 . (46)

It follows that ∆HI(t) =
∫
d3x g

3!
φ3
I(t, ~x). With this in mind, we will evaluate Eq. (44) as an

expansion in the coupling g.

The easiest thing to compute is the expectation value of the identity operator. For this,
Eq. (44) simply gives

〈I〉 = 1 . (47)

Not so bad at all.

A slightly more challenging quantity is the 2-point function,

〈φ1φ2〉 =
〈0|T

{
φI1φI2 exp

[
−i
∫
d4z g

3!
φ3
I(z)

]}
|0〉

〈0|T
{
exp

[
−i
∫
d4z g

3!
φ3
I(z)

]}
|0〉

. (48)

To leading non-trivial order, which is g0 in this case, the numerator is

〈0|T{φI(x1)φI(x2)}|0〉 = DF (x1 − x2) , (49)

while the denominator is equal to unity. There are higher-order contributions, but it is
reassuring that we reproduce the free theory result at lowest order.

A quantity that only arises at order g1 in this theory is the 3-point function. Evaluating
it at this order,

G(3)(x1, x2, x3) = 〈0|T{φI(x1)φI(x2)φI(x3)

[
1− i

∫
d4z

g

3!
φ3
I(z)

]
|0〉+ . . . (50)

= 0 +
(−i)g

3!

∫
d4z 〈0|T{φI(x1)φI(x2)φI(x3)φ

3
I(z)}|0〉+ . . . (51)

The terms omitted in each line are higher-order in g (g2 or higher). In particular, at this order
we can set the denominator to unity. The second line can be evaluated by expanding the
fields in terms of ladder operators, arranging their time ordering, and commuting the ladder
operators to put everything in normal order. This requires a lot of brute-force calculation
to do in general, but fortunately there is a systematic way of computing them called Wick’s
Theorem.
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3 Wick’s Theorem

To compute the vacuum matrix elements of time-ordered products of interacting fields,
Eq. (44) tells us we need to manipulate products of a and a† operators sandwiched between
〈0| and |0〉. This is straightforward to do in principle, but the many different terms that
arise make it very tedious in practice. Wick’s Theorem is way to reduce the amount of work.

Wick’s Theorem is a statement about free fields that also applies to fields in the interac-
tion picture. In words, it is

T {φ(x1) . . . φ(xn)} = N {φ(x1) . . . φ(xn) + all contractions} . (52)

We will explain what we mean by a contraction below, but for now let us just say that
it takes two field operators and turns them into a number. The power of this formula is
that a normal-ordered operator vanishes when sandwiched between 〈0| and |0〉 unless it is
proportional to the identity. This means that only the terms on the right-hand side that
are fully contracted, such that no field operators are left, can contribute to the vacuum
expectation value.

To describe Wick’s theorem, it will be useful to split up the free-field operator into two
pieces:

φ(x) =

∫
d̃k
[
a(~k)e−ik·x + a†(~k)eik·x

]
= φ−(x) + φ+(x) , (53)

with4

φ−(x) =

∫
d̃k a(~k)e−ik·x, φ+(x) =

∫
d̃k a†(~k)eik·x . (54)

From this definition, we find that

[φ−(x1), φ−(x2)] = 0 = [φ+(x1), φ+(x2)] , (55)

together with

φ†
−(x) = φ+(x) , (56)

as well as

[φ−(x1), φ+(x2)] =

∫
d̃k e−ik·(x1−x2) := D(x1 − x2) . (57)

In terms of φ− and φ+, a product of fields is normal-ordered if and only if all the φ− pieces
lie to the right of all the φ+ pieces.

4Note that my + and − are flipped relative to P&S.
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Since T{I} = N{I} and T{φ(x)} = N{φ(x)} are both trivial, let’s look at the product
of two fields:

T{φ(x1)φ(x2)} = Θ(t1 − t2) [φ−(x1) + φ+(x1)] [φ−(x2) + φ+(x2)] (58)

+Θ(t2 − t1) [φ−(x2) + φ+(x2)] [φ−(x1) + φ+(x1)]

= Θ12 (φ1−φ2− + φ1+φ2+ + φ1+φ2− + φ2+φ1− + [φ1−, φ2+]) (59)

+ Θ21 (φ2−φ1− + φ2+φ1+ + φ2+φ1− + φ1+φ2− + [φ2−, φ1+])

= φ1−φ2− + φ1+φ2− + φ2+φ1− + φ1+φ2+ (60)

+ Θ(t1 − t2)D(x1 − x2) + Θ(t2 − t1)D(x2 − x1)

= N{φ1φ2}+DF (x1 − x2) . (61)

In the third line, we have used Θ12+Θ21 = 1, while in the fourth we have combined the two
D functions into a DF .

5 Let us now define the contraction of two fields to be

φ(x1)φ(x2) = DF (x1 − x2) . (62)

With this in place, we have

T{φ(x1)φ(x2)} = N{φ(x1)φ(x2) + φ(x1)φ(x2)} . (63)

Note that since DF is just a function proportional to the unit operator, we can freely move
it inside the normal ordering. This is consistent with our statement of Wick’s Theorem.

Doing the same calculation for three fields, one obtains

T{φ1φ2φ3} = N{φ1φ2φ3 + φ1 φ2φ3+φ2 φ3φ1+φ3 φ1φ2} (64)

= N{φ1φ2φ3 + φ1DF (x2−x3) + φ2DF (x1−x3) + φ3DF (x1−x2)}. (65)

For four fields,

T{φ1φ2φ3φ4} = N{φ1φ2φ3φ4 + φ1φ2 φ3φ4 + φ1φ3 φ2φ4 + φ1φ4 φ2φ3

+φ2φ3 φ1φ4 + φ2φ4 φ1φ3 + φ3φ4 φ1φ2 (66)

+φ1φ2 φ3φ4+φ1φ3 φ2φ4+φ1φ4 φ2φ3} .

Oof.

The proof of Wicks’ theorem goes by induction. Suppose it holds for any product of n
fields. For (n+ 1) fields labelled such that t1 > t2 > . . ., we get

T{φ1φ2 . . . φn+1} = φ1T{φ2 . . . φn+1} (67)

= (φ1+ + φ1−)N{φ2 . . . φn+1 + contractions′} (68)

where contractions′ means all contractions that do not involve φ1. In this expression, the φ1+

term is already in normal order, so we only need to move φ1− through to the right. This will

5Check this for yourself by expanding out the fields in the definition of DF .
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eventually produce something that is normal-ordered together with a bunch of contractions,
noting that [φ−(x1), φ+(xi)] = DF (x1−xi) since we have t1 > ti for all i. All that remains to
show is that all possible contractions involving φ1 are produced. We can do this by giving an
algorithm to build a given contraction given φ1− on the left and the terms already assumed
to be present in the inductive step. I won’t do this explicitly, but it isn’t too difficult with
a bit of fiddling.

Our statement and (partial) proof of Wick’s Theorem was for free scalar fields. However,
it also applies to scalar fields in the interaction picture since they obey the same commutation
relations and have the same ladder operator expansions as free fields. Therefore Wick’s the-
orem allows us to systematically evaluate the operators that arise in the vacuum expectation
values of time-ordered products of fields.

4 A First Look at Feynman Diagrams and Rules

The contractions that arise in computing n-point functions can be represented by diagrams.
These Feynman diagrams help to keep track of all the possible terms. Even better, it is
possible to assign a value to each Feynman diagram. Computing n-point functions can thus
be reduced to drawing a set of pictures and computing their values using a set of Feynman
rules.

To illustrate how Feynman diagrams work, let us return to the interacting scalar theory
with ∆V = gφ3/3! and evaluate the leading-order expression for the 3-point function we
found in Eqs. (50,51). Applying Wick’s Theorem,

〈0|T{φI(x1)φI(x2)φI(x3)φ
3
I(z)}|0〉 = (69)

(3!)DF (x1 − z)DF (x2 − z)DF (x3 − z) + 3DF (x1 − z)DF (x2 − x3)DF (z − z)

+ 3DF (x2 − z)DF (x1 − x3)DF (z − z) + 3DF (x3 − z)DF (x1 − x2)DF (z − z)

Note that only fully contracted terms in theWick expansion contribute to the matrix element.
The numerical prefactors are just the number of ways to get each specific contraction.

We can represent this set of contractions in pictures. To each term, we associate a distinct
Feynman diagram. The set of diagrams corresponding to Eq. (69) is shown in Fig. 1. The
rules for drawing a diagram are as follows:

1. For each coordinate xi, draw a dot.

2. A contraction producing a factor of DF (xi−xj) is represented by a line connecting the
dot for xj to the dot for xi.

3. Each factor of DF (z − z) is depicted as a loop connecting z to itself.

The utility of these rules is that we can invert them, using diagrams to figure out all the
possible contractions, and then associating a number to each diagram. Instead of wading
through a mire of raising and lowering operators, we only need to connect up some dots.
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Figure 1: Feynman diagrams for the 3-point function at O(g) of Eq. (69).

Let’s now build up a set of Feynman rules for computing time-ordered vacuum matrix
elements of fields in the gφ3/3! theory. These rules will specify how to draw a set of Feynman
diagrams for a given matrix element and assign a numerical value to each diagram. They
are based on the master formula of Eq. (44), which we treat by expanding the exponentials
it contains in a power series in g up to some fixed order gM . At this order, the perturbation
theory estimate for the matrix element is given by the sum of each of the individual g0,
g1, . . . , gM contributions. If g is small enough, keeping only the first few terms in the
expansion should give a good approximation to the truth.

The Feynman rules to compute the gM contribution to the n-point functionG(n)(x1, . . . , xn) =
〈Ω|T{φ(x1) . . . φ(xn)}|Ω〉 in the gφ3/3! theory are:

1. Draw a dot for each xi coordinate. We call these external points.

2. Draw another M dots and associate a coordinate zj (j = 1, 2, . . .M) to each of them.
We call these vertices.

3. Draw Feynman diagrams by connecting the dots with lines in all possible ways following
two simple rules:
a) Each external point has a single line connected to it.
b) Each vertex has three lines connected to it.

4. Remove all the diagrams in which there is a vacuum bubble – a vertex point that not
connected by any path to any of the external points.

5. Write the number corresponding to each Feynman diagram:
a) For every vertex with coordinate zj , write a factor of −ig

∫
d4zj .
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b) For every line connecting points a and b (external or vertex),
add a factor of the Feynman propagator DF (a− b).

c) Any diagram with an unconnected dot or an unpaired line is equal to zero.
d) Multiply the result for each diagram by 1/M ! and a symmetry factor.

The net gM contribution is then the sum of all the diagrams.

To see how this works in practice, let us begin with the 2-point function and work to
second order (g2) in the perturbative expansion. From our master formula, we have

G(2)(x1, x2) = 〈0|T

{
φ1φ2

[
1 +

(−i)g

3!

∫
d4z φ3

z +
(−i)2g2

3!3!2!

∫
d4z1

∫
d4z2 φ

3
z1
φ3
z2

]}
|0〉

(70)/
〈0|T

{
1 +

(−i)g

3!

∫
d4z φ3

z +
(−i)2g2

3!3!2!

∫
d4z1

∫
d4z2 φ

3
z1
φ3
z2

}
|0〉

Following the rules and drawing the Feynman diagrams, we find the set shown in Fig. 2. At
leading order g0, we only have the first diagram in the figure and associate to it the number

G(2)(x1, x2)|g0 = DF (x1 − x2) . (71)

This matches what we would have found from applying Wick’s Theorem to the matrix
element. There are no contributions proportional to g1 because it is impossible to connect
up all the dots and all the lines. Again, this matches what the matrix element would produce.
Going to g2, we find the second row of diagrams in Fig. 2. Their sum is

G(2)(x1, x2)|g2 = (72)[
1

2

](
2!

2!

)
(−ig)2

∫
d4z1

∫
d4z2 DF (x1 − z1)DF (z1 − z2)DF (z1 − z2)DF (z2 − x2)

+

[
1

2

](
2!

2!

)
(−ig)2

∫
d4z1

∫
d4z2DF (x1 − z1)DF (z1 − z2)DF (z2 − z2)DF (z1 − x2)

+

[
1

4

](
2!

2!

)
(−ig)2

∫
d4z1DF (x1 − z1)DF (z1 − z1)

∫
d4z2DF (x2 − z2)DF (z2 − z2)

The factors of (2!/2!) come from the (1/2!) in the expansion of the exponential together with
the fact that since z1 and z2 are integrated over, diagrams differing only by the permutation of
z1 and z2 have the same value. The numerical prefactors in the square brackets (1/2, 1/2, 1/4)
are the symmetry factors. Note as well that we have omitted the lower row of diagrams in
Fig. 2 (surrounded by dotted boxes) because they have a vacuum bubble, in which one or
more vertices are not connected to any of the external points in any way. The full 2-point
function in the interacting theory up to order g2 in perturbation theory is therefore

G(2)(x1, x2) = G(2)(x1, x2)|g0 +G(2)(x1, x2)|g2 + . . . . (73)

This is just a number to be evaluated.

Most of the Feynman rules are easy to relate to what’s going on in matrix element after
applying Wick’s Theorem. However, rules 4 and 5d) might seem a bit strange. For rule 4,
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Figure 2: Feynman diagrams for the 2-point function at O(g2).

the reason we can drop these diagrams is that they are cancelled off by the expansion of the
denominator in Eq. (44). We can see this explicitly here by studying the matrix element.
Applying Wick’s theorem to the denominator in Eq. (70), we get

Denom. = 1 +

[
1

12

]
(−i)2g2

∫
d4z1

∫
d4z2 [DF (z1 − z2)]

3 (74)

+

[
1

8

]
(−i)2g2

∫
d4z1

∫
d4z2 DF (z1 − z2)DF (z1 − z1)DF (z2 − z2)

:= (1 + g2∆) .

Using 1/(1 + g2∆) = 1− g2∆+ g4∆2 + . . ., the net result up to order g2 is

G(2)(x1, x2) =
[
DF (x1 − x2) + g2(. . .)

]
× (1− g2∆) (75)

= DF (x1 − x2)(1− g2∆) + g2(. . .) , (76)

where the g2(. . .) term corresponds to all the stuff in the numerator of the matrix element
proportional to g2. Some of the terms in the numerator will be the diagrams in the bottom
row of Fig. 2 that contain vacuum bubbles. Using the Feynman rules, it is easy to show
that these diagrams with vacuum bubbles sum to to DF (x1 − x2)∆. These diagrams are
therefore cancelled off at this order by the expansion of the denominator. It turns out that
such a cancellation between the denominator and diagrams in the numerator containing
vacuum bubbles is a general feature, and a proof can be found in Peskin&Schroeder [1].
This explains the origin of rule 4.

Some diagrams also require an additional symmetry factor. In many cases, summing
over all the contractions cancels off the (1/3!) in our definition of ∆V = gφ3/3!. However,
sometimes this cancellation is incomplete and we need to correct for it with an additional
factor, called the symmetry factor of the diagram. In general, it is equal to one divided by
the number of ways to that internal lines can be reconnected to give the same diagram [1, 2].
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As a practical matter, most people just work out the number of contractions corresponding
to each diagram by counting contractions using Wick’s theorem.

Finally, let us also mention that the denominator factor of 2! from the expansion of the
exponential cancelled against the factor of 2! arising from the fact that for each diagram with
fixed z1 and z2, there was a corresponding diagram with z1 ↔ z2 having the same numerical
value. This is also a general feature at any order because all the internal zi coordinates are
integrated over. Thus, we can slightly modify our Feynman rule 5d) and leave out the 1/M !
factor (at order gM) with the understanding that we are only to include those diagrams that
remain distinct when the zi coordinates are permuted.
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