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Having studied the classical theory of a real scalar field, we now apply quantum mechanics
to it. Specifically, we will study the theory of the scalar φ(x) described at the classical level
by the Lagrangian density

L =
1

2
(∂φ)2 −

1

2
m2φ2 − Λ , (1)

where Λ is a constant, independent of x and φ. Adding this constant does not affect the
equations of motion. With this Lagrangian, we find the conjugate momentum

Π(x) = ∂tφ(x) , (2)

and the Hamiltonian

H =

∫
d3x

[
1

2
Π2 +

1

2
(~∇φ)2 +

1

2
m2φ2 + Λ

]
. (3)

From this, we see that Λ represents a constant background energy density.

1 Mode Expansions

Before getting to quantization, it will be useful to look a bit more closely at the expansion
of the classical field φ(x) described by the Lagrangian of Eq. (1) in terms of plane waves.
Recall that the general solution to the classical equation of motion was

φ(x) =

∫
d̃k
[
a(~k)e−ik·x + a∗(~k)eik·x

]
, (4)

where k0 = Ek =
√
~k 2 +m2. For the conjugate momentum Π(x), this implies

Π(x) = ∂tφ(x) = −i

∫
d̃k k0

[
a(~k)e−ik·x − a∗(~k)eik·x

]
. (5)

We can also express the Hamiltonian in this way.

In formulating the quantum theory, it will be useful to solve for a and a∗ in terms of φ
and Π. To do this, recall that

∫
d3x ei~p·~x = (2π)3δ(3)(~p) . (6)

Multiplying φ(x) by eip·x, with p0 = Ep =
√

~p2 +m2, and integrating over d3x, we get
∫

d3x eip·xφ(x) =

∫
d3x

∫
d̃k
[
a(~k)e−i(k0−p0)tei(

~k−~p)·~x + a∗(~k)ei(k
0+p0)te−i(~p+~k)·~x

]
(7)

= (2π)3
∫

d̃k
[
e−i(k0−p0)ta(~k)δ(3)(~k − ~p) + ei(k

0+p0)ta∗(~k)δ(3)(~k + ~p)
]
(8)

=
1

2p0
a(~p) +

1

2p0
a∗(−~p)e2ip

0t . (9)
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In going from the first to the second line, we have performed the
∫
d3x integration to obtain

the delta functions of ~k and ~p. Note that ~k = ±~p implies k0 = p0 =
√

~p2 +m2. A similar
calculation on Π gives

∫
d3x eip·xΠ(x) = (−i)

1

2
a(~p) + (i)

1

2
a∗(−~p) e2ip

0t . (10)

Taking linear combinations of these two results, we find

a(~p) = i

∫
d3x eip·x(Π− ip0φ) , (11)

a∗(~p) = −i

∫
d3x e−ip·x(Π + ip0φ) . (12)

It is important to note that even though φ(x) and Π(x) both depend on t, this dependence
cancels out completely in these linear combinations.

2 Going Quantum

We are now set to formulate the quantum theory obtained from the classical field system
described by the Lagrangian of Eq. (1). In the classical Hamiltonian formulation of the
theory, Eq. (3), we have the conjugate variables φ(x) and Π(x). To define a quantum theory,
we elevate φ(x) and Π(x) to Hermitian operators on a Hilbert space. As operators, they
should satisfy commutation relations analogous to the classical Poisson brackets:

[φ(t, ~x), φ(t, ~y)] = 0 = [Π(t, ~x),Π(t, ~y)] (13)

[φ(t, ~x),Π(t, ~y)] = i δ(3)(~x− ~y) (14)

These relations are a natural generalization of the Poisson brackets we obtained in the
classical theory. Note as well that these commutation relations apply specifically when φ

and Π are evaluated at the same time t.1 This might seem a bit funny at first, but
remember that we should think of ~x as a label for different generalized coordinates (i.e.
φ(t, ~x) = q~x(t)), and that our Poisson bracket relations are defined specifically for functions
of qi and pj evaluated at the same time value. For this reason, the relations of Eqs. (13,14)
are sometimes called equal-time commutation relations.

At this point, it is worth going back to the mode expansions we found in Section 1 for the
classical fields. With our quantum field operators, we can define time-independent operators
a(~k) and a†(~k) according to

a(~k) = i

∫
d3x eik·x(Π− ik0φ) |t=t0

, (15)

a†(~k) = −i

∫
d3x e−ik·x(Π + ik0φ) |t=t0

, (16)

1Seriously, take note of this.

2



where k0 = Ek and all operators on the right-hand side are to be evaluated at the arbitrary
reference time t0. At this point, we can also invert these relations to write φ(t0, ~x) and

Π(t0, ~x) in terms of a(~k) and a†(~k), but only at the fixed time t0. We will return to the issue
of time dependence later on.

With the definitions of Eqs. (15,16), the commutation relations of φ and Π at t0 imply
simple commutation relations for a and a†:

[
a(~k), a(~p)

]
= 0 =

[
a†(~k), a†(~p)

]
, (17)

[
a(~k), a†(~p)

]
= (2π)3 2k0 δ(3)(~k − ~p) . (18)

These relations should look familiar. Up to an overall normalization, they are equivalent to
the commutation relations of the raising and lowering operators for a set of indepdendent
harmonic oscillators, [ai, a

†
j] = i δij . Using this analogy, we can build up the Hilbert space

and find the energy eigenvalues.

The Hamiltonian of the system has the same form as the classical version, Eq. (3), but is
now an operator built from the operators φ and Π. Rewriting it in terms of a and a† using
φ and Π at time t0, we find

H =
1

2

∫
d̃k k0

[
a†(~k)a(~k) + a(~k)a†(~k)

]
+ Λ V (19)

=

∫
d̃k k0 a†(~k)a(~k) +

1

2

∫
d3k k0 δ(3)(0) + Λ V , (20)

where V is the volume of spacetime. The last two terms in the second line are formally infinite
constants that do not affect the dynamics. We will assume that they cancel exactly. The
remaining expression is just a continuous generalization ofH =

∑N

i=1 ωia
†
iai, the Hamiltonian

for a set of N independent oscillators.

Let’s now build up the states. To do so, we make two assumptions:

1. There exists a unique vacuum state |0〉 such that

a(~k)|0〉 = 0 (21)

for all values of ~k.

2. Any operator on the Hilbert space can be built up from φ(x) and Π(x). Equivalently,
any local operator on the Hilbert space defined at time t0 can be constructed out of
a(~k) and a†(~k).

To build the Hilbert space, we will apply powers of a†(~k) to the vacuum.

Consider first the state a†(~p)|0〉 := |~p〉. Applying the Hamiltonian, we find

H|~p〉 =

∫
d̃k k0 a†(~k)a(~k)a†(~p)|0〉 (22)

=

∫
d̃k k0 a†(~k)

[
a†(~p)a(~k) + (2π)32p0δ(3)(~k − ~p)

]
|0〉 (23)

= 0 + p0|~p〉 . (24)
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Therefore |~p〉 is an energy eigenstate with eigenvalue p0 =
√

~p2 +m2. One can also show
that this state is an eigenstate with eigenvalue ~p of the spatial momentum operator P i =∫
d3xT 0i = −

∫
d3x Π∂iφ constructed from the energy momentum tensor (and generalized

to quantum operators).

The physical interpretation of the state |~p〉 is that it represents a particle with three-
momentum ~p and energy p0 =

√
~p2 +m2. In particular, the Lagrangian parameter m

corresponds to the mass of the particle. This might come as a bit of a surprise. After all, we
started with a continuous system, and we have ended up with discrete particle states. On
the other hand, we already know that classical electromagnetism is a field theory that gives
rises to particle excitations, photons, when quantized. Also, quantum mechanics is weird.

The most general state of the system is a linear combination of states of the form

[a†(~k1)]
n1[a†(~k2)]

n2 . . . [a†(~kN)]
nN |0〉 := |~k1, n1;~k2, n2; . . . ;~kN , nN 〉 (25)

This state has energy E =
∑N

i=1 nik
0
i and three-momentum ~P =

∑N

i=1 ni
~ki. It is interpreted

as a multiparticle state consisting of n1 particles of momentum ~k1, n2 particles of momentum
~k2, . . . , and nN particles of momentum ~kN . Thus, we see that the field theory is able to
describe any number of relativistic particles at once.

We can deduce three important properties of the particles described by this theory from
the structure of the states. The first is that the particles have no identifying properties other
than their momenta. They must therefore have spin zero. The second observation is that any
number of particles can have the same momentum and there is no label to tell them apart.
It follows that these particles are bosons. And third, the total energy of any multi-particle
state is just the sum of the energies of the individual constituents. This implies that the
particles do not interact with each other at all. For this reason, the simple quadratic theory
we are studying is said to be a theory of free particles (or a free field theory). We will see
later on that interactions between particles will emerge when we add higher-order terms to
the Lagrangian.

3 More on Time Dependence

The operators we started with, φ(x) = φ(t, ~x) and Π(x) = Π(t, ~x), depend on time. We have

also found quantum states |~k1, n1; . . . ;~kN , nN〉 that are time-independent. Thus, we have
been implicitly working in the Heisenberg picture of quantum mechanics where operators
depend on time and states do not. Even so, there is a gap to fill. The ladder operators a(~k)

and a†(~k) were constructed from φ and Π evaluated at the specific time t0, and so too was
our Hamiltonian. We need to extend these results to arbitrary time values.

By assumption, time evolution in quantum mechanics is governed by the Hamiltonian.
In particular, for any Heisenberg-picture operator O(t) we have

[H,O] = −i∂tO . (26)
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By applying this relation to successive infinitesimal time translations, one can show that it
is equivalent to

O(t) = eiH(t−t0)O(t0)e
−iH(t−t0) . (27)

Applying this general property to the φ and Π operators and using their commutation
relations, we find

∂tφ(t, ~x) = i[H, φ(t, ~x)] = Π(t, ~x) , (28)

∂tΠ(t, ~x) = i [H,Π(t, ~x)] = (~∇φ)2 −m2φ . (29)

These reproduce the classical equations of motion. However, they are now to be interpreted
as relations between time-dependent operators.

We also have

φ(t, ~x) = eiH(t−t0)φ(t0, ~x)e
−iH(t−t0), Π(t, ~x) = eiH(t−t0)Π(t0, ~x)e

−iH(t−t0) . (30)

Now, recall that to construct the time-independent operators a(~k) and a†(~k), we used φ and
Π defined at the fixed reference time t0. We can invert Eqs. (15,16) to solve for φ(t0, ~x)
and Π(t0, ~x), and then use Eq. (30) to find the operators defined at any time at all. Taking
t0 = 0, the result is2

φ(t, ~x) =

∫
d̃k
[
a(~k)e−ik0t+i~k·~x + a†(~k)eik

0t−i~k·~x
]
, (31)

and similarly for Π(t, ~x). While this relation looks just like what we had for the classical
fields in Section 1, it is now a non-trivial relationship between quantum operators.

Finally let us mention that when we defined our Hamiltonian earlier, we did so only at the
specific time t0 = 0. However, since ∂tH = [H,H ] = 0, the Hamiltonian is time-independent
and our earlier definition is valid for all t. This can be verified by plugging the general
expansion of Eq. (31) into the expression for H in terms of φ(t, ~x) and Π(t, ~x).

4 More on Operators

Before moving on to study more complicated Lagrangians, it is worth spending a bit more
time with the quantum field operators in the free theory. We interpreted |~p〉 = a†(~p)|0〉 as a
quantum state representing a single free particle with mass m and three-momentum ~p. More
generally, we found that the Hilbert space H can be divided according to

H = |0〉 ⊕ {|1〉} ⊕ {|2〉} ⊕ . . . , (32)

where {|1〉} represents the subspace of one-particle states, {|2〉} the subspace of two-particle
states, and so on.

2For other values of t0, one finds the same result but with t → (t− t0).
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Applying φ(x) to the vacuum, we find

φ(x)|0〉 =

∫
d̃k eik·x|~k〉 . (33)

The quantum field therefore creates a linear combination of one-particle states out of the
vacuum. Let us also define the operator

I1p =

∫
d̃k|~k〉〈~k| . (34)

It is not hard to show that this operator is the identity when acting on the subspace of
one-particle states: I1p|~p〉 = |~p〉.

There are two especially useful operations that can be defined for products of multiple
operators. The first of these is called normal ordering, and applies specifically to the a(~k)
and a†(~p) operators. A normal-ordered operator N{O} is one in which all the a† raising
operators within it are written to the left of all a lowering operators. For example,

N{a(~k1)a
†(~k2)} = a†(~k2) a(~k1) , (35)

N{[a†(~k1)]
n1[a(~k2)]

n2[(a†(~k3)]
n3 ]} = [a†(~k1)]

n1[a†(~k3)]
n3 [a(~k2)]

n2 . (36)

The nice feature of a normal-ordered operator is that it has zero expectation value when
sandwiched between 〈0| and |0〉 unless it is the identity. Furthermore, using the raising and
lowering commutation relations, any operator can be written uniquely as a sum of normal-
ordered operators, each containing an equal or smaller number of a and a† factors. Note
that sometimes normal ordering is denoted by : O : .

The second useful operation that applies to products of φ and Π operators is time
ordering. For a pair of fields, the time-ordered product is

T{φ(t1, ~x1)φ(t2, ~x2)} = Θ(t1 − t2)φ(t1, ~x1)φ(t2, ~x2) + Θ(t2 − t1)φ(t2, ~x2)φ(t1, ~x1) , (37)

where Θ(t) is the usual step function (Θ(t) = 1 for t > 0, Θ(t) = 0 for t < 0). Put another
way, a time-ordered product of a pair of fields means that the field with the larger time is
written to the left. More generally, the time-ordered product of multiple fields is the one
where they are written in order of decreasing time values, from left to right.

The vacuum expectation value of the time-ordered product of a pair of fields will be of
particular importance to us. Assuming t1 > t2, we have

〈0|T{φ(x1)φ(x2)}|0〉 =

∫
d̃k

∫
d̃p 〈0|a(~k)a†(~p)|0〉e−ik·x1eip·x2 (38)

=

∫
d3k

(2π)3
1

2k0
e−ik·(x1−x2) (39)

=

∫
d3k

(2π)3

∫ ∞

−∞

dx

(2π)

i

x2 − ~k2 −m2 + iǫ
e−ix(t1−t2)+i~k·(~x1−~x2) . (40)

In the last line, we have rewritten the preceeding line using the integral relation you derived

in hw-00. Note that the iǫ picks out the pole at x = k0 =
√
~k2 +m2 for t1 > t2. For t1 < t2,
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it turns out that we obtain the same final result, but now the iǫ selects the pole at x = −k0

in the x integration. This expression is so important we give it a special name: the Feynman
propagator DF . It can be rewritten in the form

DF (x− y) =

∫
d4p

(2π)4
i

p2 −m2 + iǫ
e−ip·(x−y) , (41)

where now p0 is a free variable unrelated to
√

~p2 +m2.

We will see that the Feynman propagator describes a particle (or antiparticle) propagating
from one point to another, possibly before and after scattering with other stuff. It also has
a couple of useful properties. The first is that DF is really simple if we Fourier transform it:

∫
d4x eik·xDF (x) =

i

k2 −m2 + iǫ
:= D̃F (k) , (42)

with k0 still independent of
√
~k2 +m2. The second special property of the Feynman propa-

gator is that it almost satisfies the Klein-Gordon equation:

(∂2 +m2)DF (x− y) = −iδ(4)(x− y) . (43)

Because of this, DF is said to be a Green’s function of the Klein-Gordon equation.

5 Wave Functionals

We have constructed our quantum field theory in terms of states and operators in the
Heisenberg picture. It can also formulated in a way that is analagous to the wavefunction
formulation of single-particle quantum mechanics in the Schrödinger picture. This formu-
lation isn’t used very much, but it’s fun to see. More detailed accounts can be found in
Refs. [3, 4].

Recall that for a single particle quantum system (in one dimension), we can define a
position operator x̂ and eigenstates such that3

x̂|x′〉 = x′|x′〉 , 〈x′|x′′〉 = δ(x′ − x′′) , I =

∫
dx′ |x′〉〈x′| . (44)

The wavefunction of a state |Ψ〉 is then given by

Ψ(x) = 〈x|Ψ〉 . (45)

This generalizes straightforwardly to multiple spatial dimensions.

The analagous set of states in a quantum theory are

φ̂(0, ~x) |φ′〉 = φ′(~x) |φ′〉 . (46)

3 Note that I’ve put a hat on the operator to distinguish it from the eigenvalue. I’ll do so in this section
for clarity, but nowhere else.
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Here, φ̂(0, ~x) is the field operator at t = 0 while φ′(~x) is a just a function that specifies

the configuration of the field system at each point in space. Since φ̂(0, ~x) is a Hermitian
operator, these states form a complete set for the system, and the different eigenvalues are
mutually orthogonal. Completeness translates into

I =

∫
[Dφ′] |φ′〉〈φ′| . (47)

Here,
∫
[Dφ′] denotes a functional integral, in which all possible field configurations φ′(~x) of

the system are summed over. The statement of orthogonality takes the form

〈φ′|φ′′〉 = δ[φ′ − φ′′] , (48)

where δ[f ] is the delta functional, equal to zero unless f = 0 and infinite (in a controlled
way) otherwise.4 The normalization of the delta functional is such that

∫
[Dφ′] δ[φ′ − φ′′]F [φ′] = F [φ′′] (49)

for any functional F .

Given a quantum state |Ψ〉 of the theory, the corresponding wavefunctional is

Ψ[φ′] = 〈φ′|Ψ〉 . (50)

Alternatively, Ψ[φ′] is just the expansion coefficient when expanding this state in the {|φ′〉}
basis. We can also expand operators in this basis, and represent them as operators on
wavefunctionals. The results for φ̂(~x) and Π̂(~x) are

φ̂(0, ~x) → φ(~x), Π̂(0, ~x) → −i
δ

δφ(~x)
. (51)

The φ case should be obvious, while for Π, note that for any functional Ψ[Φ]

[
φ(~x) , −i

δ

δφ(~y′)

]
Ψ[φ′] = iδ(3)(~x− ~y)Ψ[φ′] . (52)

This is precisely the commutator we want.

With this functional representation in hand, we can now expand the general Schrödinger
equation in the {|φ′〉} basis to obtain a Schrödinger equation for wavefunctionals. We have

i
d

dt
Ψ[φ] =

1

2

∫
d3x

([
−i

δ

δφ(~x)

]2
+ (~∇φ)2 +m2φ2

)
Ψ[φ] . (53)

This is nothing more than a continuous generalization of the simple harmonic oscillator.

4 Recall that a functional is an object that takes in a function and outputs a single number. A familiar
example is the classical action S[φ].
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