PHYS 526 Homework #7

Due: Oct. 29, 2013

- 0. Read Chs.35-40 of Srednicki and notes-06.
- 1. Pauli Matrices

a) Show that
$$e^{-i\alpha^a \sigma^a/2} = \cos(\alpha/2) - i\sigma^a(\alpha^a/\alpha)\sin(\alpha/2)$$
, where $\alpha = \sqrt{\alpha^a \alpha^a}$.

- b) Prove the ϵ trick.
- c) Show explicitly that $(\bar{\sigma}^{\mu})^{\dot{\alpha}\alpha} = \epsilon^{\dot{\alpha}\dot{\beta}}\epsilon^{\alpha\beta}\sigma^{\mu}_{\beta\dot{\beta}}$
- d) The space of 2×2 complex matrices forms a vector space over \mathbb{C} . We can use $\mathbb{I} = \sigma^0$ and the σ^i matrices as a basis for this space.
 - i) Show that any matrix M in this space can be expanded in the form

$$M = \sum_{m=0}^{3} a_m \sigma^m \; ,$$

for some complex coefficients a_m .

Hint: how many basis elements do you need?

- ii) Define an inner product on the space by $\langle M|N\rangle = tr(M^{\dagger}N)$. Show that the basis $\{\sigma^m\}$ is orthogonal with respect to it.
- iii) Use this fact to solve for the coefficients a_m in terms of traces.

2.
$$1/2 \otimes 1/2 = 0 \oplus 1$$

- a) Compute $\Lambda^{\mu}_{\ \nu}\sigma^{\nu}$ for $\Lambda^{\mu}_{\ \nu} = \delta^{\mu}_{\ \nu} + \omega^{\mu}_{\ \nu}$ infinitesimal. Do the $\mu = 0$ and $\mu = i$ cases separately.
- b) Let $\theta^a = \frac{1}{2} \epsilon^{abc} \omega_{bc}$ and $\beta^a = \omega_{0a}$. Compute $M^t(\alpha^a) \epsilon \sigma^{\mu} \overline{M}(\alpha^a)$ for $\mu = 0$ and compare to part a).
- c) Compute $M^t(\alpha^a)\epsilon\sigma^{\mu}\overline{M}(\alpha^a)$ for $\mu = i$ and compare to part a). *Hint:* $2\sigma^a\sigma^b = [\sigma^a, \sigma^b] + \{\sigma^a, \sigma^b\}$ *Hint:* Use $\epsilon^{abc}\epsilon^{alm} = (\delta^{bl}\delta^{cm} - \delta^{bm}\delta^{cl})$ to solve for ω_{ab} in term of θ^c .
- d) Use these results to show that $\psi \sigma^{\mu} \bar{\chi}$ transforms like a 4-vector under Lorentz.
- 3. Spinor Kinetic Terms
 - a) Show that $\psi \sigma^{\mu} \bar{\chi} = -\bar{\chi} \bar{\sigma}^{\mu} \psi$. Make sure you show how the indices get moved around.
 - b) Use this result to show that $\psi i \sigma^{\mu} \partial_{\mu} \bar{\chi} = \bar{\chi} i \bar{\sigma}^{\mu} \partial_{\mu} \psi$ up to total derivatives that vanish when integrated over $\int d^4 x$.
 - c) Prove that the 2-spinor kinetic term written in notes-06 is real. Hint: $a^* = a^{\dagger}$ for any complex number.

- 4. γ Matrices
 - a) Show that the trace of an odd number of γ^{μ} matrices vanishes. Hint: insert $1 = (\gamma^5)^2$ and anticommute away.
 - b) Show that $tr(\gamma^{\mu}\gamma^{\nu}) = 4\eta^{\mu\nu}$.
 - c) Prove $tr(\gamma^{\mu}\gamma^{\nu}\gamma^{\rho}\gamma^{\sigma}) = 4(\eta^{\mu\nu}\eta^{\rho\sigma} \eta^{\mu\rho}\eta^{\nu\sigma} + \eta^{\mu\sigma}\eta^{\nu\rho})$. *Hint: use the cyclicity of the trace and* $\{\gamma^{\mu}, \gamma^{\nu}\} = 2\eta^{\mu\nu}$ *to rearrange things until you get back to where you started plus something else.*
 - d) Compute $\gamma^{\mu}\gamma^{\nu}\gamma_{\mu}$.
- 5. More Fun with γ Matrices.
 - a) Calculate $tr [(p_1 + m)(p_2 + m)]$, where $p = p_{\mu}\gamma^{\mu}$.
 - b) Find $tr[(p_1+m)\gamma^{\mu}(p_2+m)\gamma^{\nu}].$
 - c) Evaluate $tr [k_1 k_2 k_3 k_4 P_L]$.
 - d) Compute $tr [\aleph_1 P_R \aleph_2 \aleph_3 P_L \aleph_4]$. Hint: think before you compute.