PHYS 526 Homework \#7

Due: Oct. 29, 2013
0. Read Chs.35-40 of Srednicki and notes-06.

1. Pauli Matrices
a) Show that $e^{-i \alpha^{a} \sigma^{a} / 2}=\cos (\alpha / 2)-i \sigma^{a}\left(\alpha^{a} / \alpha\right) \sin (\alpha / 2)$, where $\alpha=\sqrt{\alpha^{a} \alpha^{a}}$.
b) Prove the ϵ trick.
c) Show explicitly that $\left(\bar{\sigma}^{\mu}\right)^{\dot{\alpha} \alpha}=\epsilon^{\dot{\alpha} \dot{\beta}} \epsilon^{\alpha \beta} \sigma_{\beta \dot{\beta}}^{\mu}$
d) The space of 2×2 complex matrices forms a vector space over \mathbb{C}. We can use $\mathbb{I}=\sigma^{0}$ and the σ^{i} matrices as a basis for this space.
i) Show that any matrix M in this space can be expanded in the form

$$
M=\sum_{m=0}^{3} a_{m} \sigma^{m}
$$

for some complex coefficients a_{m}.
Hint: how many basis elements do you need?
ii) Define an inner product on the space by $\langle M \mid N\rangle=\operatorname{tr}\left(M^{\dagger} N\right)$.

Show that the basis $\left\{\sigma^{m}\right\}$ is orthogonal with respect to it.
iii) Use this fact to solve for the coefficients a_{m} in terms of traces.
2. $1 / 2 \otimes 1 / 2=0 \oplus 1$
a) Compute $\Lambda^{\mu}{ }_{\nu} \sigma^{\nu}$ for $\Lambda^{\mu}{ }_{\nu}=\delta^{\mu}{ }_{\nu}+\omega^{\mu}{ }_{\nu}$ infinitesimal. Do the $\mu=0$ and $\mu=i$ cases separately.
b) Let $\theta^{a}=\frac{1}{2} \epsilon^{a b c} \omega_{b c}$ and $\beta^{a}=\omega_{0 a}$. Compute $M^{t}\left(\alpha^{a}\right) \epsilon \sigma^{\mu} \bar{M}\left(\alpha^{a}\right)$ for $\mu=0$ and compare to part a).
c) Compute $M^{t}\left(\alpha^{a}\right) \epsilon \sigma^{\mu} \bar{M}\left(\alpha^{a}\right)$ for $\mu=i$ and compare to part a).

Hint: $2 \sigma^{a} \sigma^{b}=\left[\sigma^{a}, \sigma^{b}\right]+\left\{\sigma^{a}, \sigma^{b}\right\}$
Hint: Use $\epsilon^{a b c} \epsilon^{a l m}=\left(\delta^{b l} \delta^{c m}-\delta^{b m} \delta^{c l}\right)$ to solve for $\omega_{a b}$ in term of θ^{c}.
d) Use these results to show that $\psi \sigma^{\mu} \bar{\chi}$ transforms like a 4 -vector under Lorentz.
3. Spinor Kinetic Terms
a) Show that $\psi \sigma^{\mu} \bar{\chi}=-\bar{\chi} \bar{\sigma}^{\mu} \psi$. Make sure you show how the indices get moved around.
b) Use this result to show that $\psi i \sigma^{\mu} \partial_{\mu} \bar{\chi}=\bar{\chi} i \bar{\sigma}^{\mu} \partial_{\mu} \psi$ up to total derivatives that vanish when integrated over $\int d^{4} x$.
c) Prove that the 2-spinor kinetic term written in notes-06 is real.

Hint: $a^{*}=a^{\dagger}$ for any complex number.

4．γ Matrices
a）Show that the trace of an odd number of γ^{μ} matrices vanishes． Hint：insert $1=\left(\gamma^{5}\right)^{2}$ and anticommute away．
b）Show that $\operatorname{tr}\left(\gamma^{\mu} \gamma^{\nu}\right)=4 \eta^{\mu \nu}$ ．
c）Prove $\operatorname{tr}\left(\gamma^{\mu} \gamma^{\nu} \gamma^{\rho} \gamma^{\sigma}\right)=4\left(\eta^{\mu \nu} \eta^{\rho \sigma}-\eta^{\mu \rho} \eta^{\nu \sigma}+\eta^{\mu \sigma} \eta^{\nu \rho}\right)$ ．
Hint：use the cyclicity of the trace and $\left\{\gamma^{\mu}, \gamma^{\nu}\right\}=2 \eta^{\mu \nu}$ to rearrange things until you get back to where you started plus something else．
d）Compute $\gamma^{\mu} \gamma^{\nu} \gamma_{\mu}$ ．
5．More Fun with γ Matrices．
a）Calculate $\operatorname{tr}\left[\left(\phi_{1}+m\right)\left(\lambda_{2}+m\right)\right]$ ，where $k=p_{\mu} \gamma^{\mu}$ ．
b）Find $\operatorname{tr}\left[\left(k_{1}+m\right) \gamma^{\mu}\left(k_{2}+m\right) \gamma^{\nu}\right]$ ．
c）Evaluate $\operatorname{tr}\left[\lambda_{1} 巾_{2} 巾_{3} 巾_{4} P_{L}\right]$ ．
d）Compute $\operatorname{tr}\left[k_{1} P_{R} k_{2} k_{3} P_{L} k_{4}\right]$ ．
Hint：think before you compute．

