PHYS 526 Homework \#6

Due: Oct. 22, 2012
0. Read Ch. 3 of Peskin \& Schroeder, Chs.2, 33, 34 of Srednicki, and my notes-05.

1. $S U(2)$ representations:
(Except for part g), you should only use the Lie algebra of $S U(2)$ for this question.)
a) Show that $C_{2}=t^{a} t^{a}$ (summed on a) commutes with all three generators.
b) Define $t^{ \pm}=t^{1} \pm i t^{2}$. Find their commutation relations with each other and t^{3}.
c) Suppose we have a simultaneous eigenvector $|C, m\rangle$ of C_{2} and t^{3} with eigenvalues C and m. Show that $t^{ \pm}|C, m\rangle$ is also an eigenvector of both C_{2} and t^{3} and find its eigenvalues.
d) For a finite representation, we need $t^{-}|b\rangle=0$ for some joint eigenstate $|b\rangle$. Let us call the t^{3} eigenvalue $-j$ for some $j \in \mathbb{R}$. Find the C_{2} eigenvalue of this state in terms of j. Hint: write $t^{+} t^{-}$in terms of C and t^{3} and apply it to $|b\rangle$.
e) Apply $t^{+} n$ times to $|b\rangle$. What are the C_{2} and t^{3} eigenvalues?
f) For a finite representation, we must eventually reach a state with $t^{+}|t\rangle=0$. What are the C_{2} and t^{3} eigenvalues in terms of j ? What does this imply for the allowed values of j ?
g) Use this technology to construct explicit matrix representations for the generators of the $S U(2)$ Lie algebra for $j=0, j=1 / 2$ and $j=1$. In each case, take $(0, \ldots, 1)^{t}$ as the bottom state.
Hint: be careful to normalize the states correctly!
2. Construct a complex scalar field theory that is invariant under global $S U(2)$ transformations with the fields $\Phi(x)$ transforming under the $j=1$ representation of the group. Explain how the field transforms, and write out an invariant Lagrangian with non-trivial interactions.

3. Lorentz:

a) Show that $\delta \omega_{\mu \nu}$ must be antisymmetric.
b) Verify that $\left(J_{4}^{\mu \nu}\right)_{\alpha \beta}$ corresponds to the vector representation as claimed.
c) Show that ∂_{μ} transforms as a $(0,1)$ tensor.
d) Given the commutators of J^{i} and K^{i}, work out the commutators of A^{i} and B^{i} defined in the notes.
e) Work out the infinitesimal forms of the transformation matrices $\Lambda^{\mu}{ }_{\nu}$ when only ω_{12} is non-zero and when only ω_{01} is non-zero. What do these correspond to?
4. Derive $\left[P^{\mu}, J^{\rho \sigma}\right]$ by expanding Eq. (66) of notes-05 to linear order for $\Lambda=1+\omega$. Hint: $\omega_{\alpha \beta}=\frac{1}{2}\left(\omega_{\alpha \beta}-\omega_{\beta \alpha}\right)$.
5. Work out the explicit representation matrices for J^{i} and K^{i} acting on a field transforming in the $(0,1 / 2)$ rep of Lorentz. How does this field transform under finite Lorentz transformations?

