PHYS 526 Homework #6

Due: Oct. 22, 2012

- 0. Read Ch.3 of Peskin & Schroeder, Chs.2, 33, 34 of Srednicki, and my notes-05.
- 1. SU(2) representations: (*Except for part g*), you should only use the Lie algebra of SU(2) for this question.)
 - a) Show that $C_2 = t^a t^a$ (summed on a) commutes with all three generators.
 - b) Define $t^{\pm} = t^1 \pm i t^2$. Find their commutation relations with each other and t^3 .
 - c) Suppose we have a simultaneous eigenvector $|C, m\rangle$ of C_2 and t^3 with eigenvalues C and m. Show that $t^{\pm}|C, m\rangle$ is also an eigenvector of both C_2 and t^3 and find its eigenvalues.
 - d) For a finite representation, we need $t^-|b\rangle = 0$ for some joint eigenstate $|b\rangle$. Let us call the t^3 eigenvalue -j for some $j \in \mathbb{R}$. Find the C_2 eigenvalue of this state in terms of j. Hint: write t^+t^- in terms of C and t^3 and apply it to $|b\rangle$.
 - e) Apply t^+ n times to $|b\rangle$. What are the C_2 and t^3 eigenvalues?
 - f) For a finite representation, we must eventually reach a state with $t^+|t\rangle = 0$. What are the C_2 and t^3 eigenvalues in terms of j? What does this imply for the allowed values of j?
 - g) Use this technology to construct explicit matrix representations for the generators of the SU(2) Lie algebra for j = 0, j = 1/2 and j = 1. In each case, take $(0, \ldots, 1)^t$ as the bottom state. Hint: be careful to normalize the states correctly!
- 2. Construct a complex scalar field theory that is invariant under global SU(2) transformations with the fields $\Phi(x)$ transforming under the j = 1 representation of the group. Explain how the field transforms, and write out an invariant Lagrangian with non-trivial interactions.
- 3. Lorentz:
 - a) Show that $\delta \omega_{\mu\nu}$ must be antisymmetric.
 - b) Verify that $(J_4^{\mu\nu})_{\alpha\beta}$ corresponds to the vector representation as claimed.
 - c) Show that ∂_{μ} transforms as a (0, 1) tensor.
 - d) Given the commutators of J^i and K^i , work out the commutators of A^i and B^i defined in the notes.
 - e) Work out the infinitesimal forms of the transformation matrices Λ^{μ}_{ν} when only ω_{12} is non-zero and when only ω_{01} is non-zero. What do these correspond to?

- 4. Derive $[P^{\mu}, J^{\rho\sigma}]$ by expanding Eq. (66) of notes-05 to linear order for $\Lambda = 1 + \omega$. Hint: $\omega_{\alpha\beta} = \frac{1}{2}(\omega_{\alpha\beta} - \omega_{\beta\alpha})$.
- 5. Work out the explicit representation matrices for J^i and K^i acting on a field transforming in the (0, 1/2) rep of Lorentz. How does this field transform under finite Lorentz transformations?