PHYS 526 Homework \#3

Due: Oct. 1, 2013
0. Read Chs. 4.1-4.3 of Peskin \& Schroeder, Chs. 4-5 of Srednicki, and Ch. 3.1-3.4 of Tong. You can find the last here: www.damtp.cam.ac.uk/user/tong/qft/qft.pdf.

1. D_{F} as a Green's function.
a) By differentiating the expression in Eq. (41) of notes-02, show that

$$
\left(\partial_{(x)}^{2}+m^{2}\right)\langle 0| T\{\phi(x) \phi(y)\}|0\rangle=-i \delta^{(4)}(x-y),
$$

where $\partial_{(x)}^{2}$ means that you should differentiate with respect to the components of $x=\left(x^{0}, \vec{x}\right)$ rather than y.
b) Show that $\frac{d}{d x} \Theta\left(x-x^{\prime}\right)=\delta\left(x-x^{\prime}\right)$, in the sense that $\int_{-\infty}^{\infty} d x f(x) \frac{d}{d x} \Theta\left(x-x^{\prime}\right)=f\left(x^{\prime}\right)$ for any reasonable function $f(x)$. Show also that $\frac{d}{d x} \Theta\left(x^{\prime}-x\right)=-\delta\left(x-x^{\prime}\right)$.
c) Use this result to prove the Green's function relation above in a second way: apply $\left(\partial_{\left(x_{1}\right)}^{2}+m^{2}\right)$ to Eq. (37) of notes-02, and make use of $\left(\partial^{2}+m^{2}\right) \phi(x)=0$ (via Eqs. $(28,29)$ of notes-02). (Hint: $\left.f \cdot \partial_{(1)} \delta\left(t_{1}-t_{2}\right)=-\delta\left(t_{1}-t_{2}\right) \cdot \partial_{(1)} f, \Pi=\partial_{t} \phi.\right)$
2. Consider the quantum theory of a complex scalar field with Lagrangian

$$
\mathscr{L}=|\partial \Phi|^{2}-m^{2}|\Phi|^{2}-\Lambda .
$$

The fields $\Phi(x)$ and $\Phi^{*}(x)$ should be thought of as independent degrees of freedom. This is a free theory, and we can expand the fields exactly in terms of two independent mode operators $a(\vec{k})$ and $b(\vec{k})$:

$$
\begin{aligned}
\Phi(x) & =\int \widetilde{d k}\left[a(\vec{k}) e^{-i k \cdot x}+b^{\dagger}(\vec{k}) e^{i k \cdot x}\right] \\
\Phi^{\dagger}(x) & =\int \widetilde{d k}\left[b(\vec{k}) e^{-i k \cdot x}+a^{\dagger}(\vec{k}) e^{i k \cdot x}\right]
\end{aligned}
$$

where $k^{0}=\sqrt{\vec{k}^{2}+m^{2}}$ and the mode operators satisfy

$$
\begin{aligned}
{[a(\vec{k}), a(\vec{p})] } & =0=[b(\vec{k}), b(\vec{p})]=[a(\vec{k}), b(\vec{p})]=\left[a(\vec{k}), b^{\dagger}(\vec{p})\right] \\
{\left[a(\vec{k}), a^{\dagger}(\vec{p})\right] } & =(2 \pi)^{3} 2 p^{0} \delta^{(3)}(\vec{p}-\vec{k})=\left[b(\vec{k}), b^{\dagger}(\vec{p})\right]
\end{aligned}
$$

a) Assuming a unique vacuum $|0\rangle$ annihilated by all the a 's and b 's, build up the Hilbert space in terms of energy-momentum eigenstates. Interpret physically.
b) Use the commutation relations to evaluate the 2-point functions for $\Phi\left(x_{1}\right) \Phi\left(x_{2}\right)$, $\Phi^{\dagger}\left(x_{1}\right) \Phi^{\dagger}\left(x_{2}\right), \Phi^{\dagger}\left(x_{1}\right) \Phi\left(x_{2}\right)$, and $\Phi\left(x_{1}\right) \Phi^{\dagger}\left(x_{2}\right)$. You should express your results in terms of the Feynman propagator $D_{F}\left(x_{1}-x_{2}\right)$ we found for the real scalar theory.
c) Write $\Pi=\partial_{0} \Phi^{\dagger}$ and $\Pi^{\dagger}=\partial_{0} \Phi$ in terms of the mode operators, and compute $[\Phi(t, \vec{x}), \Pi(t, \vec{y})]$ and $\left[\Phi(t, \vec{x}), \Pi^{\dagger}(t, \vec{y})\right]$ by using the mode-operator commutators.
d) Recall from hw-01 that this theory has a conserved charge corresponding to a symmetry under phase rotations. Show that the corresponding charge operator is

$$
Q=\int \widetilde{d k}\left[a^{\dagger}(\vec{k}) a(\vec{k})-b^{\dagger}(\vec{k}) b(\vec{k})\right]
$$

The physical interpretation is that a^{\dagger} creates positively charged particles and b^{\dagger} creates negatively charged ones. What is the net charge of the states you found in part a)?
3. Consider the theory of a real scalar defined by the Lagrangian

$$
\mathscr{L}=\frac{1}{2}(\partial \phi)^{2}-\frac{1}{2} m^{2} \phi^{2}-\Lambda-\frac{g}{3!} \phi^{3} .
$$

a) In the free theory $(g=0)$, show that $\left\langle\vec{p}_{2}, \vec{p}_{3}\right| e^{-i H t}\left|\vec{p}_{1}\right\rangle=0$.
b) In the full theory $(g \neq 0)$, show that this matrix element can be non-zero (where $\left|\vec{p}_{1}\right\rangle=a^{\dagger}\left(\vec{p}_{1}\right)|0\rangle$ and $\left\langle\overrightarrow{p_{2}}, \vec{p}_{3}\right|=\langle 0| a\left(\overrightarrow{p_{2}}\right) a\left(\vec{p}_{3}\right)$ are defined in terms of the H_{0} basis states and ladder operators constructed in notes-3 at $t=0$).
Hint: look at small t and expand to linear order, and then use the mode expansion of $\phi(0, \vec{x})$. It is enough to show that you can balance the total number of a operators with the total number of a^{\dagger} operators.
4. Time Ordering.
a) What is $\left[T\left\{\phi\left(x_{1}\right) \phi\left(x_{2}\right)\right\}\right]^{\dagger}$ when ϕ is a real scalar field?.

Hint: write out the definition of time ordering in terms of step functions and take the Hermitian conjugate of that. Also, $(A B)^{\dagger}=B^{\dagger} A^{\dagger}$.
b) Find and define explictly an operator operation T^{\prime} analogous to time ordering such that (for the real field ϕ)

$$
T^{\prime}\left\{\phi\left(x_{1}\right) \phi\left(x_{2}\right)\right\}=\left[T\left\{\phi\left(x_{1}\right) \phi\left(x_{2}\right)\right\}\right]^{\dagger}
$$

Show that your definition also applies to products of ϕ and Π fields.
c) Show that $\left[T\left\{\phi\left(x_{1}\right) \phi\left(x_{2}\right)\right\}\right]^{\dagger}+T\left\{\phi\left(x_{1}\right) \phi\left(x_{2}\right)\right\}=\phi\left(x_{1}\right) \phi\left(x_{2}\right)+\phi\left(x_{2}\right) \phi\left(x_{1}\right)$.
d) We defined $U(t)=e^{i H_{0} t} e^{-i H t}$, where H_{0} is the free Hamiltonian and H is the full version, and showed that its time evolution is given by $i \partial_{t} U(t)=\Delta H_{I}(t) U(t)$. Show by explicit differentiation that

$$
U(t)=\widetilde{T}\left\{\exp \left[-i \int_{0}^{t} d t^{\prime} \Delta H_{I}\left(t^{\prime}\right)\right]\right\}
$$

is a solution to this equation with the correct boundary condition, where \widetilde{T} denotes time ordering for $t>0$ and reverse time ordering for $t<0$.
e) What is the equation for the time dependence of $U^{\dagger}(t)$? Propose a solution valid for $t>0$ analogous to the one for $U(t)$ and show that it works by differentiating, but possibly with a modified time-ordering prescription.

