PHYS 526 Homework #2

Due: Sept. 24, 2013

- 1. Define the operators $a(\vec{k})$ and $a^{\dagger}(\vec{k})$ at the fixed reference time t_0 as in Eqs. (15,16) of **notes-02**. Using the canonical commutation relations of $\phi(t_0, \vec{x})$ and $\Pi(t_0, \vec{x})$, show that they imply that $a(\vec{k})$ and $a^{\dagger}(\vec{k})$ satisfy the commution relations of Eqs. (17,18).
- 2. Energy in the quantum theory.
 - a) Derive the classical expression for the conserved charge corresponding to time translations in our simple free scalar theory using Noether's theorem. Show that it matches the Hamiltonian H for this theory.
 - b) Invert Eqs. (15,16) of notes-02 to write $\phi(t_0, \vec{x})$ and $\Pi(t_0, \vec{x})$ in terms of a and a^{\dagger} operators.
 - c) The H operator in the quantum theory is the same as in the classical theory written in terms of ϕ and Π , but with ϕ and Π elevated to operators. Write $H(t) = H(t_0)$ in the quantum theory in terms of a and a^{\dagger} operators. Your final result should have only a single \widetilde{dk} integration.
 - d) Derive the commutation relations of $a(\vec{k})$ and $a^{\dagger}(\vec{k})$ with $H(t_0)$.
- 3. Time evolution.
 - a) The a and a^{\dagger} ladder operators we defined previously were time-independent. We can also define time-dependent versions of them according to

$$a(t,\vec{k}) = e^{iHt}a(\vec{k})e^{-iHt}$$

and similarly for a^{\dagger} . This implies $\partial_t a(t, \vec{k}) = i[H, a(t, \vec{k})]$. Show that a solution to this operator equation (with the correct boundary condition) is

$$a(t,\vec{k}) = e^{-ik^0 t} a(\vec{k}) \ .$$

Derive the corresponding result for $a^{\dagger}(t, \vec{k})$ as well.

- b) Use this result to extend the expressions for $\phi(t_0, \vec{x})$ and $\Pi(t_0, \vec{x})$ derived above in terms of a and a^{\dagger} to all times. For notational simplicity, set $t_0 = 0$. *Hint: recall that* $\mathcal{O}(t) = e^{iH(t-t_0)} \mathcal{O}(t_0) e^{-iH(t-t_0)}$ for any local operator $\mathcal{O}(t)$.
- 4. Spatial Translations.
 - a) In the classical free scalar theory, derive the Noether currents $j^{\mu i}$ and the conserved charges P^i corresponding to invariance under spatial translations and express them in terms of $\phi(x)$ and $\Pi(x)$.
 - b) The same expressions apply in the quantum theory but with ϕ and Π elevated to operators. There is an ambiguity in how to order the ϕ and Π factors, but for now let us choose to keep all the Π 's to the left of all the ϕ 's. With this choice,

rewrite the charges P^i in terms of $a(\vec{k})$ and $a^{\dagger}(\vec{k})$ modes and simplify until you have a single $d\vec{k}$ integration. Your result will be time-independent if you've done it right.

Hint: a lot of stuff vanishes by symmetry; $\int \widetilde{dk} k^i g(\vec{k}) = 0$ for any function $g(\vec{k})$ such that $g(-\vec{k}) = g(\vec{k})$.

- c) Apply P^i to $[a^{\dagger}(\vec{k}_1)]^{n_1}[a^{\dagger}(\vec{k}_2)]^{n_2} \dots [a^{\dagger}(\vec{k}_N)]^{n_N}|0\rangle$ and show that this state is an eigenvector with eigenvalue $\sum_{i=1}^N n_i \vec{k}_i$.
- d) Show that $[P^i, \phi(t, \vec{x})] = i\partial_i\phi(t, \vec{x})$ and $[P^i, \Pi(t, \vec{x})] = i\partial_i\Pi(t, \vec{x})$. By composing infinitesimal translations, this is equivalent to

$$\phi(t, \vec{x} + \vec{a}) = e^{-i\vec{P} \cdot \vec{a}} \phi(t, \vec{x}) e^{i\vec{P} \cdot \vec{a}}, \quad \Pi(\vec{x} + \vec{a}) = e^{-i\vec{P} \cdot \vec{a}} \Pi(t, \vec{x}) e^{i\vec{P} \cdot \vec{a}}.$$

Thus, \vec{P} generates spatial translations in the quantum theory as well.

e) Combine this result with what we know about time evolution to show that:

$$[P^{\mu},\phi(x)] = -i\partial^{\mu}\phi(x)$$

as well as

$$\phi(x+a) = e^{iP \cdot a}\phi(x)e^{-iP \cdot a}$$

Unsurprisingly, the operator P^{μ} is called the generator of spacetime translations.

5. Starting from the expansion of $\phi(x)$ in terms of the ladder operators, use the contour integration result you found in hw-00 (or its generalization) to show that

$$\langle 0|T\{\phi(x_1)\phi(x_2)\}|0\rangle = D_F(x_1 - x_2) = \int \frac{d^4p}{(2\pi)^4} \frac{i}{p^2 - m^2 + i\epsilon} e^{-ip \cdot (x_1 - x_2)}$$

where ϵ is to be set to zero after doing the dp^0 contour integration. You should treat the $t_1 > t_2$ and $t_1 < t_2$ cases separately.

Hint: for the countour integrals, think carefully about how to close the contour in each of the two cases.