PHYS 526 Homework \#1

Due: Sept. 17, 2013
0. Read Chs.1-3 of Srednicki. It is a nice textbook to own, and you can download a preliminary version of it here:
http://web.physics.ucsb.edu/~mark/qft.html .

1. Electromagnetism from a Lagrangian.
a) Write the components of the field tensor $F_{\mu \nu}$ in terms of the components of the electric and magnetic fields. (Hint: $\sum_{k} \epsilon^{i j k} \epsilon^{\ell m k}=\delta^{i \ell} \delta^{j m}-\delta^{i m} \delta^{j \ell}$.)
b) Show that

$$
S_{e m}=\int d^{4} x\left(-\frac{1}{4} F_{\mu \nu} F^{\mu \nu}\right)=\int d^{4} x-\frac{1}{2} A^{\mu}\left(-\eta_{\mu \nu} \partial^{2}+\partial_{\mu} \partial_{\nu}\right) A^{\nu}
$$

Hint: integrate by parts and remember that surface terms vanish.
c) Use this result to find the equations of motion for the A_{μ} fields.
d) Show that these equations, together with the definitions of \vec{E} and \vec{B} in terms of potentials, are equivalent to Maxwell's equations with no sources.
2. Suppose we have a theory with two real scalar fields ϕ_{1} and ϕ_{2} and the action

$$
S=\int d^{4} x \mathscr{L}=\int d^{4} x\left(\frac{1}{2}\left[\left(\partial \phi_{1}\right)^{2}+\left(\partial \phi_{2}\right)^{2}\right]-\frac{1}{2} m^{2}\left(\phi_{1}^{2}+\phi_{2}^{2}\right)\right)
$$

It is convenient to rewrite these two real fields in terms of a single complex field Φ and its conjugate Φ^{*} :

$$
\Phi=\frac{1}{\sqrt{2}}\left(\phi_{1}+i \phi_{2}\right), \quad \Phi^{*}=\frac{1}{\sqrt{2}}\left(\phi_{1}-i \phi_{2}\right)
$$

a) Rewrite the action in terms of Φ and Φ^{*}.
b) Find the equations of motion for Φ and Φ^{*} directly, without referring to ϕ_{1} and ϕ_{2}.
Hint: in this problem, treat Φ and Φ^{*} as independent generalized coordinates.
c) Find the momenta conjugate to Φ and Φ^{*}. Use them to construct the Hamiltonian.
d) Show that

$$
\Phi(x)=\int \widetilde{d k}\left[a(\vec{k}) e^{-i k \cdot x}+b^{*}(\vec{k}) e^{i k \cdot x}\right]
$$

where $k^{0}=E_{k}=\sqrt{\vec{k}^{2}+m^{2}}$, is a solution to the equations of motion for any complex functions $a(\vec{k})$ and $b(\vec{k})$. It turns out that any solution of the equations of motion for Φ can be written in this way (for some functions a and b).
e) Write Π, the momentum conjugate to Φ, in terms of a and b.
f) Write the Hamiltonian in terms of a and b. You should simplify the result until there is only one $\widetilde{d k}$ integral left.
Hint: remember that exponentials can integrate to delta functions.
3. A symmetry.
a) Show that the Lagrangian you found above has a symmetry under

$$
\Phi \rightarrow e^{i \alpha} \Phi
$$

for any constant α.
b) Find the conserved Noether current j^{μ} corresponding to this symmetry. Hint: again, treat Φ and Φ^{*} as independent generalized variables.
c) Use the equations of motion to show that the current is conserved, $\partial_{\mu} j^{\mu}=0$.
d) Write the corresponding conserved charge in terms of the functions a and b. Simplify the result so there is only one $\widetilde{d k}$ left at the end.
e) Suppose the transformation parameter (α) isn't a constant, but varies over spacetime: $\alpha=\alpha(x)$. Is the rephasing still a symmetry of the theory?
4. Fun with exponentials.
a) A function of a matrix should be viewed as a formal power series in the matrix.
i) If $M=\operatorname{diag}\left(m_{1}, m_{2}, \ldots, m_{n}\right)$ is an $n \times n$ diagonal matrix, show that $e^{M}=$ $\operatorname{diag}\left(e^{m_{1}}, e^{m_{2}}, \ldots, e^{m_{n}}\right)$.
ii) Generalize this to show that $f(M)=\operatorname{diag}\left(f\left(m_{1}\right), f\left(m_{2}\right), \ldots, f\left(m_{n}\right)\right)$.
iii) Suppose that P is not diagonal, but $U^{\dagger} P U=\operatorname{diag}\left(p_{1}, \ldots, p_{n}\right)$ is, where U is unitary. Show that $e^{P}=U \operatorname{diag}\left(e^{p_{1}}, \ldots, e^{p_{n}}\right) U^{\dagger}$.
b) In the Schrödinger picture of QM, states typically evolve in time by $|\psi(t)\rangle=$ $U(t)|\psi(0)\rangle$ with $U(t)=e^{-i H t}$ and H independent of time.
i) Prove that $U(t)$ is unitary.
ii) Show that $|\psi(t)\rangle=U\left(t, t_{0}\right)\left|\psi\left(t_{0}\right)\right\rangle$, where $U\left(t, t_{0}\right)=U(t) U^{\dagger}\left(t_{0}\right)$.
iii) Show that $U\left(t_{1}, t_{1}\right)=1, U^{\dagger}\left(t_{2}, t_{1}\right)=U^{-1}\left(t_{2}, t_{1}\right)=U\left(t_{1}, t_{2}\right)$, and $U\left(t_{2}, t_{0}\right) U\left(t_{0}, t_{1}\right)=$ $U\left(t_{2}, t_{1}\right)$.
iv) Use these results to derive the Schrödinger equation: $\frac{d}{d t}|\psi(t)\rangle=-i H|\psi(t)\rangle$.
c) In the Heisenberg picture of QM, states are time independent while operators evolve according to $\mathcal{O}(t)=U^{\dagger}(t) \mathcal{O}(0) U(t)$.
i) Show that the Schrödinger and Heisenberg pictures predict the same value for any operator expectation value in the system.
ii) Derive the Heisenberg-picture operator equation of motion: $\frac{d}{d t} \mathcal{O}(t)=i[H, \mathcal{O}(t)]$.

