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Quantum Electrodynamics (QED), finally.

1 QED Lite

To get warmed up, let us first do some real calculations in the scalar fermion theory we
studied previously,

L = Ψ̄iγµ · ∂µΨ−mΨ̄Ψ +
1

2
(∂φ)2 −

1

2
M2φ2 − yφΨ̄Ψ . (1)

We will see that this theory is analagous to QED, with Ψ representing the electron and the
scalar playing a similar role to the photon.

e.g. 1. Decay of the Scalar

The easiest physical process to calculate in this theory is the decay of the scalar to a
fermion-antifermion pair, which is allowed by the interaction of Eq. (1) provided M > 2m.
The relevant Feynman diagram (with time going from left to right) is shown in Fig. 1.
Applying the Feynman rules, we get the amplitude for p0 → (p1, s1) + (p2, s2)

− iM = −iy ūc(p2, s2)vc(p1, s1) . (2)

The quantity we are usually the most interested in is the total decay width, where we sum
over the partial decay widths to all possible final momenta and spins. Summing over spins
is also the appropriate thing to do if our detector is unable to measure the spin of the
outgoing fermions. Using our formula for the decay rate, we find

Γ =
1

2M

∫
d3p1

2E1(2π)3

∫
d3p2

2E2(2π)3
(2π)4δ(4)(p0 − p1 − p2) “|M|2

′′
, (3)

where

“|M|2
′′
=

2∑

s1=1

2∑

s2=1

|M|2 . (4)

Having to sum over spins might seem tedious, but it will actually make our lives easier.1

Our first task, however, is to take the complex conjugate of M. We have

M∗/y = [ū2v1]
∗ = [u†

2γ
0v1]

† = v†1(γ
0)†u2 = v̄1u2 . (5)

1If we had wanted to find the result for specific spins, we would have had to use the explicit forms for u

and ū and mutltiplied out the matrices.
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Figure 1: Feynman diagram for the decay of the scalar.

where we have used (γ0)† = γ0 and we have written this in matrix notation. Putting this
into the spin sum and writing the Dirac indices explicitly,

1

y2

∑

s1,s2

|M|2 =
∑

s1,s2

v̄a1u2aū
b
2v1b (6)

= (\p2 +m) b
a

∑

s1

v1bv̄
a
1 (7)

= (\p2 +m) b
a (\p1 −m) a

b (8)

= tr [(\p2 +m)(\p1 −m)] (9)

= 4(p1 · p2)− 4m2 . (10)

In going to the second line we have used
∑

s u(p, s)ū(p, s) = (\p+m) and in going to the
third line we have used

∑
s v(p, s)v̄(p, s) = (\p−m). The Dirac index structure of the third

line is precisely a trace, which is how we got the fourth line. And for the fifth line, we have
used our Dirac trace tricks. This result is representative of what happens in general when
we sum over spins - the Dirac structure reduces to one or more traces in the Dirac space.
With this “summed and squared” amplitude “|M|2

′′
, it is just a matter of doing some

integrals to get the total decay rate Γ.

e.g. 2. Fermion-Fermion Scattering
As a second example, consider the elastic scattering of a pair of fermions mediated by the
scalar. At leading non-trivial order, there are two distinct contributions to this process,
shown in Fig. 2. Each diagram gives its own contribution to the amplitude, and we must
sum them all up. The result is

− iM = −iMt − iMu (11)

= (−iy)2
[

i

(p1 − p3)2 −M2
ūa
3ua1 ū

b
4ub2 −

i

(p1 − p4)2 −M2
ūa
4ua1 ū

b
3ub2

]
,
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where ua1 stands for ua(p1, s1) and so on. The relative minus sign comes from the
contraction structure, much like in the related example discussed in notes-8. Note that
the two diagrams differ by the exchange of the fermions 3 and 4.

When we square the amplitude to get |M|2 there will be interference between the two
contributions leading to four distinct terms. This can get cumbersome, but we can use the
same methods as before to evaluate them. Putting this result into our formula for
scattering cross sections, we can find the total (or differential) scattering cross section for a
given values of the initial spins s1 and s2 the final spins s3 and s4. However, most
scattering experiments are unpolarized, in that they do not have fixed values for the spins
of the initial states. If this is the case, we should average the cross section over the spins of
the initial states. Furthermore, if the experiment does not measure the spins of the final
states, we should also sum the cross section over final spins. The expression for the total
unpolarized cross section in this case is therefore given by the same expression we had
previously for the total cross section, but with

|M|2 → “|M|2
′′
=

1

4

∑

s1,s2

∑

s3,s4

|M|2 , (12)

where the factor of 1/4 comes from averaging over the 4 = 2× 2 possible initial spins.

To illustrate this, let’s compute a few of the terms that arise. We have

|M|2 = |Mt|
2 +MtM

∗
u +M∗

tMu + |Mu|
2 . (13)

The first term gives

(t−m2)2y2 ×
∑

s,s′

|Mt|
2 =

∑

{s}

(ūa
3u1aū

b
1u3b)(ū

c
4u2cū

d
2u4d) (14)

= tr [(\p3 +m)(\p1 +m)] tr [(\p4 +m)(\p2 +m)] (15)

= 16
[
(p1 · p3) +m2

] [
(p2 · p4) +m2

]
. (16)

The second term is a bit trickier. Here, it really helps to write out the Dirac indices:

(t−m2)(u−m2)y2 ×
∑

{s}

MtM
∗
u = −

∑

{s}

(ūa
3u1a ū

b
4u2b)(ū

c
1u4c ū

d
2u3d) (17)

= −(\p1 +m) c
a (\p4 +m) b

c (\p2 +m) d
b (\p3 +m) a

d (18)

= −tr [(\p1 +m)(\p4 +m)(\p2 +m)(\p3 +m)] (19)

It is straightforward to compute this trace using our trace tricks and I will leave it to you.
You should now also be able to compute the other two terms that contribute to the
summed and squared amplitude.
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Figure 2: Feynman diagram for the elastic scattering of fermions.

2 QED

After this warmup, let us now present the Lagrangian for QED. It is

L = Ψ̄iγµDµΨ−mΨ̄Ψ−
1

4
FµνF

µν , (20)

where

Dµ = ∂µ + ieQAµ , (21)

and

Fµν = ∂µAν − ∂νAµ . (22)

That’s it! We identify the fermion Ψ with the electron and the vector field Aµ with
the photon.2 Indeed, the vector term coincides with the Lagrangian we had for classical
electromagnetism in the absence of sources.

Our convention is to set Q = −1 and to take the coupling e to be the magnitude of the
electron charge. In our natural units it is dimensionless. The experimentally measured value
is

α :=
e2

4π
≃ 1/(137.036) . (23)

We will see that our pertubative expansion in the coupling corresponds to an expansion in
α. Since α ≪ 1, this expansion should converge very quickly.

2.1 Gauge Invariance

The QED Lagrangian has a global U(1) symmetry under the transformations
{

Ψ → eiQαΨ
Aµ → Aµ

, (24)

2We will add other fermions later on.
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for any constant α. The corresponding Noether current is

jµ = Ψ̄γµΨ . (25)

On the other hand, suppose we’re feeling adventurous and decide to elevate the trans-
formation parameter to a function on spacetime: α = α(x). Doing so, we find that the
transformation above is no longer a symmetry of the Lagrangian. In particular,

Ψ̄iγµ∂µΨ → Ψ̄iγµ∂µΨ+ Ψ̄iγµ(iQ∂µα)Ψ. (26)

Evidently the transformation of Eq. (24) is not a symmetry of the theory for non-constant
parameters α(x).

We can restore the invariance of the fermion terms if we also have the vector field
transform according to:

{
Ψ → eiQαΨ
Aµ → Aµ −

1
e
∂µα.

(27)

Together, this implies that

(∂µ + ieQAµ)Ψ ≡ DµΨ → eiQαDµΨ, (28)

and therefore ΨiγµDµΨ is invariant under the transformation for arbitrary α(x) provided the
vector field also transforms as indicated. The differential operator Dµ is sometimes called a
covariant derivative. Even better, if we look at the effect of this shift on the photon kinetic
term, we find that it remains unchanged as well:

Fµν = (∂µAν − ∂νAµ) → (∂µAν − ∂νAµ)−
1

e
(∂µ∂ν − ∂ν∂µ)α = Fµν + 0. (29)

Thus, QED is invariant under the transformations of Eq. (27) for any reasonable arbitrary
function α(x).

At first glance this invariance might just seem like a clever trick, but the river beneath
these still waters runs deep. Thinking back to regular electromagnetism (of which QED
is just the quantized version), one often deals with scalar and vector potentials. These
potentials are not unique and are therefore not observable (for the most part), and the true
“physical” quantities are the electric and magnetic fields. The invariance of the Lagrangian
reflects this fact. These transformations are called gauge transformations, and the photon
derived from Aµ is sometimes said to be a gauge boson.

Keeping in mind the story from electromagnetism, the interpretation of the quantum
fields in QED is that only those quantities that are invariant under the trans-

formations of Eq. (27) are physically observable. In particular, the vector field Aµ

that represents the photon is not itself an observable quantity, but the gauge-invariant field
strength Fµν is. Put another way, the field variables we are using are redundant, and the
transformations of Eq.(27) represent an equivalence relation: any two set of fields (Ψ, Aµ)
related by such a transformation represent the same physical configuration. Sometimes
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the invariance under Eq. (27) is called a local or gauge symmetry, but it is not really a
symmetry at all. A true symmetry implies that different physical configurations have the
same properties. Gauge invariance is instead a statement about which configurations are
physically observable.

Gauge invariance is also sensible if we consider the independent polarization states of the
photon, of which there are two. The vector field Aµ represents the photon, but it clearly
has four independent components. Of these, the timelike polarization component is already
non-dynamical on account of the form of the vector kinetic term. Invariance under gauge
transformations effectively removes the additional longitudinal polarization leaving behind
only the two physical transverse polarization states. Note as well that if the photon had
a mass term, L ⊃ m2AµA

µ/2, the theory would no longer be gauge invariant. Instead,
the longitudinal polarization mode would enter as physical degree of freedom. Equivalently,
gauge invariance forces the photon to be massless.

In the discussion above we started with the QED Lagrangian and showed that it was
gauge-invariant. However, the modern view is to take gauge invariance as the fundamental
principle. Indeed, the only way we know of to write a consistent, renormalizable theory of
interacting vector fields is to have an underlying gauge symmetry. For QED, we could have
started with a local U(1) gauge invariance for a charged fermion field and built up the rest
of the Lagrangian based on this requirement. In this context, the vector field is needed to
allow us to define a sensible derivative operator on the fermion field, which involves taking a
difference of two fields at different spacetime points with apparently different transformation
properties, and corresponds to something called a connection.3 Gauge invariance completely
fixes the photon-fermion interactions up to the overall charge Q, illustrating why it is so
powerful.

2.2 Feynman Rules

It turns out that quantizing the vector field Aµ using the tools we’ve developed is a bit tricky
on account of the gauge redundancy. We will come back to this a bit later. For now, we will
simply present the result of the quantization procedure in the form of Feynman rules for the
photon and the electron. This is all that is needed to compute scattering processes.

The photon field Aµ has a mode expansion similar to that of the fermion in that every
momentum mode has a polarization associated to it. In this case, we need two (possibly
complex) polarization basis vectors ǫµ(p, λ), λ = 1, 2. These states are orthogonal,

ǫµ(p, λ)ǫ∗µ(p, λ
′) = δλλ

′

, (30)

and they satisfy a truncated completeness relation,

∑

λ

ǫµ(p, λ)ǫν ∗(p, λ) = −ηµν + (pµ stuff) . (31)

3 See Ch.15 of Peskin&Schroeder for a nice explanation of these slightly cryptic comments.
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Figure 3: Feynman rules for QED.

We will see shortly that the pµ stuff can be ignored. In terms of these polarization basis
vectors, the mode expansion is

Aµ(x) =

∫
d̃k

[
a(k, λ)ǫµ(k, λ)e−ik·x + a†(k, λ)ǫµ ∗(k, λ)eik·x

]
, (32)

where k0 =
√
~k2.

Much like for external fermion states, an outgoing external photon will contribute a factor
of ǫ∗µ(p, λ) to the amplitude, and an incoming photon will give ǫµ(p, λ). Also like for fermions,
the photon propagator takes the form

∑
λ ǫ

µ(p, λ)ǫν ∗(p, λ)

p2 + iǫ
=

i

p2 + iǫ
(−ηµν + pµ stuff) . (33)

Again, we will see that the pµ stuff can be ignored.

Having made these introductions, we can now state the Feynman rules for QED. They
are identical to those we had for QED Lite, but with photon stuff instead of scalar stuff.
This leads to three essential differences that we summarize in Fig. 3. The first is that the
photon-fermion-antifermion vertex is

Vertex = −iQeγµ . (34)
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Figure 4: Diagrams for Bhabha scattering at leading order.

The second is that we use a photon propagator (dropping the pµ stuff) instead of the scalar
propagator. And third, external photon lines contribute polarization vectors ǫ(∗)(p, λ) to the
value of the diagram. At the end of the day, all vector indices should be contracted.

3 Computing Stuff

Knowing how to compute things in QED is the first step to doing research in particle physics.
These skills also transfer over to many other areas of physics. We present here a few specific
examples of standard QED processes.

e.g. 3. Electron-Positron (Bhabha) Scattering

The antiparticle of the electron, the antielectron, is sometimes also called the positron. At
leading order, there are two diagrams for this process shown in Fig. 4. The amplitude is
therefore

− iM = −i(Mt +Ms) (35)

= (−ieQ)2
[
(ū3γ

µu1) (v̄2γ
νv4)

−iηµν
(p1 − p3)2 + iǫ

+ (v̄2γ
µu1) (ū3γ

νv4)
−iηµν

(p1 + p2)2 + iǫ

]
.

The relative sign between the two pieces requires a slightly careful examination of the
contraction structure. It is straightforward to square this and sum over spins.

e.g. 4. Compton Scattering

Compton scattering corresponds to electron-photon scattering, eγ → eγ. There are two
diagrams at leading order, shown in Fig. 5. They are equal to

− iM = −i(Ms +Mt) (36)

= (−ieQ)2
[
ū3γ

µ i(\q +m)

q2 −m2
γνu1 + ū3γ

ν i(\k +m)

k2 −m2
γµu1

]
ǫ∗µ(p4) ǫν(p2) ,
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Figure 5: Diagrams for Compton scattering at leading order.

where q = (p1 + p2) and k = (p1 − p4). Note the specific contraction of indices and that we
made sure to use the same momentum label for the distinguishable outgoing particles.

To illustrate how to deal with external photons, let us look at the summed and squared
amplitude. In many experiments, we only measure the total rate and not the specific
polarizations of the outgoing photons (or the fermion spins). Furthermore, the initial
beams often have no net polarization. In this case, we should average over initial
polarizations and spins and sum over final ones. The summed and squared matrix element
that goes into the formula for the total unpolarized cross section is therefore

“|M|2
′′
=

1

2

1

2

∑

s1,s3

∑

λ2λ4

|M(s1, s3, λ2, λ4)|
2 , (37)

where we have divided by the number of intial spins (2) and initial polarizations (2). The
s-channel contribution is

“|Ms|
2′′ ∝

∑

s1,s3

[ū3γ
µ(\q +m)γνu1] [ū1γ

β(\q +m)γαu3]
∑

λ2,λ4

(ǫ∗µ4ǫα4) (ǫν2ǫ
∗
β2) (38)

= tr[(\p3 +m)γµ(\q +m)γν(\p1 +m)γβ(\q +m)γα] (−ηµα)(−ηνβ) . (39)

This is pretty complicated, but it can be simplified with lots of work or by using clever
tricks. A useful one is \p u(p) = mu(p). The t-channel piece goes through similarly.
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