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Electroweak baryogenesis (EWBG) is a mechanism to create the baryogen asymmetry in
the course of the electroweak phase transition [1, 2, 3, 4]. If the transition is strongly first
order, it proceeds through the nucleation of bubbles of broken phase within the surrounding
plasma of symmetric phase. These bubbles expand, collide, and coalesce until they eventually
fill the entire universe. Baryon creation in EWBG occurs in the vicinity of the bubble walls,
which provide a strong departure from thermodynamic equilibrium. Particle scattering off
the bubble walls with C and CP violation can generate net chiral asymmetries (e.g. more
left-handed quarks than right-handed quarks) which bias the sphaleron transitions outside
the bubbles to create more baryons than antibaryons. Once baryons are created, they are
quickly swept up into the interior of the expanding bubbles where they are effectively stable.
These processes are illustrated in Fig. 1.

All the basic ingredients needed for EWBG are present in the SM, and initially it was
hoped that this mechanism could explain the baryon asymmetry with known particle physics.
Unfortunately, detailed calculations show that baryogenesis by EWBG within the SM fails
for two reasons. First, the electroweak phase transition is not first order for the measured
value of the Higgs boson mass, and thus it does not produce the electroweak bubbles needed
for EWBG [5]. Second, the CP violation present in the SM from the CKM phase does not
appear to be enough to allow the creation of the observed asymmetry, even if the phase
transition were first-order [6, 7].

Electroweak baryogenesis can be viable in extensions of the SM with new physics near
the weak scale. The new states must couple significantly to the SM(-like) Higgs field in
order to drive a strongly first-order phase transition. As a result, they often modify the
production and decay properties of the Higgs boson. The new physics must also provide
additional sources of CP violation connected to the Higgs. This can give rise to permanent
electric dipole moments (EDMs) well above the level predicted by the SM alone. Both
EWBG requirements also imply that at least some of the new physics must be near the
weak scale, and thus it might be possible to detect it directly at the LHC. These arguments
illustrate why EWBG is exciting and challenging: it can be tested thoroughly by current
and upcoming experiments!

In these notes we give a short introduction to EWBG. We begin with an extremely brief
review of quantum field theory at finite temperature. Next, we apply this machinery to the
evolution of the Higgs field in the early universe and the related electroweak phase transition,
and we discuss what is needed beyond the SM for a strongly first order electroweak phase
transition. Finally, we present a mechanism for the creation of a baryon asymmetry in the
vicinity of electroweak bubble walls. Some reviews of EWBG can be found in Refs. ([4, 8,
9, 10]).
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Figure 1: Schematic diagram of EWBG. The electroweak bubble wall separating the broken
(left) and unbroken (right) phases is advancing from left to right. Fermion scattering off
the wall with CP violation generates a chiral asymmetry that biases the fast sphaleron
transitions outside the wall to create a net baryon charge. This charge is then swept up the
advancing bubble into the broken phase where the sphaleron rate is exponentially suppressed.

1 QFT at Finite Temperature

Quantum field theory (QFT) is usually formulated (for particle physicists) with scattering
in mind. Sets of well-separated particles enter from asymptotic past infinity (t = −∞)
travelling through otherwise empty space, collide with each other, and the collision products
continue on to asymptotic future infinity (t = +∞). This is appropriate for computing rates
in particle colliders, but it can be a very poor approximation in the hot early universe, where
the energetic background can play a very important role. In fact, the effects of the thermal
background can even change the equilibrium state of the system. We discuss these topics
here briefly. More detailed reviews can be found in Refs. [9, 12].

1.1 The Effective Potential at Zero Temperature

Before going thermal, let us start with a reminder of how one computes the ground state of
a QFT at zero temperature. The key object for this is the (1PI) effective action, defined for
a scalar field theory by [9, 13]

Γ[φc] =
∞∑

n=0

1

n!

[
n∏

i=1

∫
d4xi φc(xi)

]
Γ(n)(x1, . . . , xn) , (1)
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where φc(x) is a classical field and Γ(n) are the one-particle-irreducible (1PI) connected n-
point Green’s functions. This definition can also be expanded to theories with fermion and
vector fields. The effective action has all sorts of interesting properties, of which the most
important for us will be its role in giving the vacuum configuration of the theory.

With zero-momentum vacuum states in mind, let us expand the effective action in powers
of derivatives [9, 13]

Γ[φc] =

∫
d4x

[
Veff(φc) +

1

2
Z(φc)(∂φc)

2 + . . .

]
, (2)

where the expression above defines the effective potential. Specializing to constant (spacetime
independent) classical configurations, it is straightforward to show that

Veff (φc) = −
∑

n

φn
c

n!
Γ̃(n)(pi = 0) , (3)

where Γ̃(n)(pi = 0) are the 1PI n-point functions in momentum space evaluated at pi →
0. This result provides a straightforward mechanism to compute the effective potential
in peturbation theory. At tree-level, the 1PI n-point functions at zero momentum are the
standard vertices for the theory, and thus the tree-level effective potential is just the classical
potential. At the next order, we must sum all one loop diagrams with n external φ legs, and
this provides the leading quantum correction to Veff . It turns out that these diagrams can
be summed into a very compact expression.

The physical interpretation of the effective potential Veff(φc) is that it describes the
vacuum energy density of the scalar theory with an implicit source term1 for all normalizable
vacuum states with [13, 15]

1 = 〈a|a〉 , φc = 〈a|φ(x)|a〉 . (4)

It can be shown that the implicit source vanishes when

∂Veff
∂φc

= 0 . (5)

Since this is also the extremization condition with respect to φc, it follows that the the value
of φc that minimizes Veff(φc) corresponds to the vacuum configuration of the physical theory.
Let us also emphasize that the interpretation of Veff(φc) as a vacuum energy is only true for
the original scalar theory at extrema.

Let us now turn to the Standard Model (SM) with tree-level Higgs potential

−L ⊃ − µ2H†H +
λ

2
(H†H)2 , (6)

with the Higgs doublet given by

H =

(
G+

φ+ 1√
2
(h+ iG0)

)
, (7)

1 Adding a source
∫
d4xJ(x)φ(x) to the action shifts the location and energy of the vacuum of the theory.
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where h corresponds to the physical Higgs boson and G+ and G0 are the Nambu-Goldstone
modes. The effective potential in Landau gauge with MS renormalization is found to be

Veff(φ) = V0(φ) + V1(φ) + . . . (8)

with the tree-level contribution

V0(φ) = −µ2φ2 +
λ

2
φ4 , (9)

and the one-loop part

V1(φ) =
∑

i

(−1)2sigim
4
i

[
ln

(
m2

i

µ2

)
− Ci

]
(10)

where µ is theMS renormalization scale, Ci = 3/2 for the scalars and fermions and Ci = 5/6
for the vectors and the most important field dependent mass contributions are

h : gi = 1 m2
i = −µ2φ2 + 3λφ2

G0, G+ : gi = 1, 2 m2
i = −µ2 + λφ2

W : gi = 6 m2
i = g2φ2/2

Z : gi = 3 m2
i = (g2 + g′2)φ2/2

t : gi = 12 m2
i = y2t φ

2

(11)

These loop corrections modify the depth of the standard electroweak minimum slightly, but
they do not change the quantitative result of electroweak symmetry breaking there, with
φ ≃ 174 GeV at the minimum.

1.2 The Effective Potential at Finite Temperature

The properites of a QFT at finite temperature in thermodynamic equilibrium can be de-
scribed by standard statistical mechanics methods. Thermodynamic expectation values are
obtained from the partition function, defined in the usual way by [12]

Z = tr(ρ̂) (12)

where the trace means to sum over a set of basis states of the Hilbert space and the density
operator ρ̂ is

ρ̂ = e−β(H−µAQA) , (13)

where β = 1/T , H =
∫
d3xH is the Hamiltonian, and QA =

∫
d3x j0A are the conserved

charges of the theory.

For a QFT system, the partition function can be expressed in terms of a path integral
in nearly the same way as the path integral for standard (zero temperature) QFTs is
constructed.2 Ignoring chemical potentials for now, the result for scalar fields is [12, 14]

Z =

∫
[Dφ] exp

(
−
∫ β

0

dτ

∫
d3xSE [φ]

)
, (14)

2Recall the key formula 〈φf (tf )|φi(ti)〉 = 〈φf (0)|e−iH(tf−ti)|φi(0)〉 =
∫
[Dφ]

φf

φi
exp(iS[φ]).
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where SE[φ] is the Euclidean action and the sum on configurations runs over classical fields
that are periodic in τ = it with period β: φ(β, ~x) = φ(0, ~x). This periodicity is needed to
ensure a trace over bosonic configurations. An analagous result apply to fermions, but now
the trace requirement implies that the path integral runs over antiperiodic configurations:
ψ(β, ~x) = −ψ(0, ~x) [12, 14].

With the partition function in hand, thermodynamic expectation values can be calculated
in the usual way by inserting the corresponding operator into the integrand of the path
integral of Eq. (14). The calculation works just like in standard QFT formulated in terms
of path integrals, with the main exception being the requirement of periodicity (or anti-
periodicity) in Euclidean time direction. For bosons, this means the mode expansion is [12]

φ(τ, ~x) =
√
β

∞∑

n=∞

∫
d3p

(2π)3
φn(~k) e

i(ωnτ+i~k·~x) , (15)

where the ωn = 2π nT are called Matsubara frequencies. A similar mode expansion applies
to fermions, but now with odd Matsubara frequencies only, ωn = (2n+1) π T . With these ex-
pansions, Feynman diagrams can be calculated with propagators and vertices corresponding
to the expansions.

Applying this formalism to a general theory, the one-loop result in Landau gauge is [9]

Veff(φ, T ) = V0(φ) + V1(φ) + ∆V1(φ, T ) , (16)

where V0 and V1 are the same as before, and ∆V1 is the leading thermal correction,

∆V1(φ, T ) =
∑

i=boson

gi
T 4

2π2
Jb(m

2
i /T

2) −
∑

j=fermion

gi
T 4

2π2
Jf(m

2
j/T

2) , (17)

with the boson and fermion thermal functions Jb and Jf given by

Jb/f (x
2) =

∫
dt t2 ln

(
1∓ e−

√
t2+x2

)
. (18)

For x≪ 1, these functions have the asymptotic forms [16]

Jb(x
2) = −π

4

45
+
π2

12
x2 − π

6
x3 − 1

32
x4 ln(x2/ab) +O(x3) , (19)

Jf(x
2) = −7π4

360
− π2

24
x2 − 1

32
x4 ln(x2/ab) +O(x3) , (20)

with ln(ab) ≃ 5.4076 and ln(af ) ≃ 2.6351. For x≫ 1, both functions reduce to

Jb(x
2) = Jf (x

2) =
( x

2π

)3/2

e−x

(
1 +

15

8x
+O(1/x2)

)
. (21)

Note the exponential supprression for particles with mi ≫ T . Numerically, the asymptotic
forms above (expanded to the order shown) work quite well for xi . 2 and xi & 2 respectively.
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The physical interpretation of the finite-temperature effective potential is very similar to
the zero-temperature version. For a given value of φ, it gives the lowest energy configuration
for the system among states forced to have 〈φ(x)〉 = φ. At the (global) minimum it coincides
with the vacuum state of the thermal system, corresponding to the lowest value of the
(Helmholtz) free energy density,

f = ρ− T s , (22)

where ρ is the regular energy density and s is the entropy density. Replacing the regular
energy density with the free energy density takes into account the effects of thermal correc-
tions on the equilibrium state of the system. In some cases, the change in the equilibrium
state compared to T = 0 can be drastic.

1.3 Symmetry Restoration in the SM

Electroweak symmetry breaking in the SM provides an important example of the power of
thermal effects. The thermal effective potential (in Landau gauge withMS renormalization)
is given by the expressions of Eqs. (16,17) with the same contributions as those listed in
Eq. (11). At low temperatures, T ≪ v, we have x ≫ 1 in the most important thermal
functions of Eq. (18) and the effective potential simply reduces to the T = 0 version. In
contrast, at temperatures much higher than the masses of all the SM particles at a given
value of φ, we can use the small x = mi(φ)/T expansions of the thermal loop functions.
Keeping only the leading quadratic corrections, the thermal effective potential becomes

Veff(φ, T ) ≃ − (µ2 −DT 2)φ2 +
λ

2
φ4 (23)

where

D ≃ 1

8

(
2y2t + 3g2 + g′

2
)
. (24)

From this, we see that the net coefficient of the quadratic term in Veff becomes positive
at large temperatures. When it does, the minimum of the potential shifts to φ = 0
corresponding to no electroweak symmetry breaking at very high T ! This is called the
electroweak phase transition.

2 EWBG: First-Order Electroweak Phase Transtion

We have just seen that the full electroweak gauge invariance becomes manifest at sufficiently
high temperatures. Electroweak baryogenesis operates near the phase transition from the
unbroken phase to the broken. For the mechanism to work, the phase transition must be
first-order. When it is, the transition proceeds through the nucleation of bubbles or broken
phase within the surrounding plasma of symmetric phase. In this section we study the
dynamics of a first-order electroweak phase transition, we discuss what is needed beyond the
SM for it to occur, and we describe experimental searches for the corresponding new physics.
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Figure 2: Left: Illustration of the form of the temperature evolution of the effective
potential needed for a first order phase transition. As T falls below Tc, thermal or quantum
transitions to the deeper global minimum can occur. Right: Bubbles of broken phase
expanding with the plasma of symmetric phase resulting from these transitions.

2.1 Transition Estimates

The structure of the thermal effective potential for a first-order phase transition is shown
in the left panel of Fig. 2. At very high temperatures, the global minimum of the thermal
potential lies at the origin, φ = 0. As the temperature falls, a second symmetry breaking local
minimum forms away from the origin, and becomes degenerate with the origin at the critical
temperature Tc. Cooling further, T < Tc, the second symmetry breaking minimum grows
deeper than origin and becomes to the equilibrium configuration of the system. However,
the system is trapped at the origin at this time by the barrier separating them. Transitions
to the symmetry breaking minimum at T < Tc occur through quantum tunnelling or
thermal fluctuations, whichever is faster. In either case, the transition proceeds through
the nucleation of a finite-sized bubble of broken phase within the surrounding symmetric
phase. If the bubble is large enough, it expands and grows until it coalesces with other
bubbles of broken phase. This is illustrated in the right panel of Fig. 2.

Most of the properties of the electroweak phase transition (EWPT) relevant to EWBG
can be computed (or estimated) from the thermal effective potential. The full thermal
effective potential is complicated and usually calculated numerically in realistic studies. Even
so, a useful approximate analytic understanding can be obtained by studying the leading
terms that contribute to it. Expanding the thermal corrections to quartic order in xi =
mi/T , and keeping only the contributions from particles with mi/T . 2 that avoid strong
exponential suppression, the potential in the SM and many other theories can be written in
the form [9, 16]

Veff(φ, T ) ≃ D(T 2 − T 2
0 )φ

2 −ETφ3 +
λ

2
φ4 , (25)
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where the parameters D, T0, E, and λ are positive and vary slowly with temperature T .
Note that relative to Eq. (23), we have expanded to higher order in xi = mi/T . In the SM
at high temperature, they are given by

DT 2
0 = µ2 + . . . , λ = λ+ . . .

(26)

D =
1

8

(
2y2t + 3g2 + g′

2
)
+ . . . , E =

1

2
√
2π

[
2g3 + (g2 + g′

2
)3/2

]
+ . . .

The extrema of the simplified thermal potential are

φ = 0 ,
1

2λ

[
3ET ±

√
9E2T 2 − 16λD(T 2 − T 2

0 )

]
. (27)

Note that only real and non-negative solutions correspond to physically relevant extrema,
based on how we defined the classical field φ. For E → 0, the φ = 0 extremum is either
the global minimum or a local maximum, and therefore a first-order phase transition is only
possible with non-zero E. When a first-order transition does occur, it is standard practice
to characterize the strength of the transition by the ratio of the field value at the non-zero
minimum to the temperature at the critical temperature, when V (0, Tc) = V (φc, Tc) Using
approximate form of Eq. (25), the result is

φc

Tc
=

E

λ
. (28)

We will see below that successful EWBG requires φc/Tc & 1. Since λ ≃ λ is mostly fixed
by the observed Higgs mass, this condition on the phase transition implies a particle physics
requirement for the E coefficient.3

2.2 New Physics for a Strong Transition

Detailed studies of the electroweak phase transition in the SM find that it is a smooth
crossover for mh = 125 GeV [5]. Therefore EWBG does not operate in the minimal SM.
However, if the SM is extended with new fields that couple significantly to the Higgs, a strong
first order phase transition is possible. There are two main approaches to this. The first is
couple new bosonic fields to the Higgs to modify the thermal effective potential through loop
effects. In the second, new physics connected to the SM Higgs field modifies the effective
potential at tree-level. We give examples of both approaches here [11].

In the loop approach to generating a strongly first order electroweak phase transition,
them primary effect comes from loops of new bosons coupled to the Higgs. This can be
understood from the way the thermal functions of Eqs. (19) contributes to the cubic E

3 The condition φc/Tc & 1 should be used with some caution since this quantity is formally gauge
dependent [17, 18].
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coefficient in the simplified form of Eq. (25). A simple explicit example is given by a new
scalar X with gX internal degrees of freedom and interactions [19]

−L ⊃ M2
X |X|2 + K

6
|X|4 +Q |X|2|H|2 . (29)

The third term above is called the Higgs portal operator and is allowed no matter what
gauge charges X might have. As long as X does not develop a VEV, its physical mass as a
function of the Higgs background value is

m2
X =M2

X +Qφ2 . (30)

For T ≫ mX , the x
3 term in Eq. (19) leads to the contribution

∆Veff = − gX
12π

T (M2
X +Qφ2)3/2 . (31)

For M2
X → 0, this contributes to the cubic term with coefficient ∆E = gXQ

3/2/12π,
potentially driving a strongly first order electroweak phase transition for large gX or Q.
Note as well that this approach only works with bosons, since there is no corresponding x3

term in Eq. (20).

This approach to the EWPT faces a significant challenge. The cubic term arises specifi-
cally in the limit of smallM2

X . When this mass parameter is large, the expression of Eq. (31)
can be expanded reliably in powers of (Qφ2/M2

X) and no effective cubic term is generated. In
fact, this challenge is made even worse when higher-order thermal corrections are included.
In the same way that thermal effects alter the effective potential, they also modify the
effective masses of particles in the plasma.4 Resumming these so-called daisy corrections to
leading order, they add a new term to the effective potential [9, 20]:

∆V daisy
1 = − T

12

∑

i=boson′

gi
[
m3

i (φ, T )−m3
i (φ)

]
, (32)

where the sum runs over scalars and longitudinal vectors, and m2
i (φ, T ) is the thermally

corrected mass,

m2
i (φ, T ) = m2

i (φ) + Π(T ) , (33)

and Π(T ) ∼ (T 2 + . . .) ≥ 0 is the thermal self-energy correction. Going back to our scalar
example, this correction changes the potentially cubic term to

∆Veff = − gX
12π

T
(
M2

X +ΠX(T ) +Q2φ2
)3/2

(34)

To obtain a sufficiently strongly first order phase transition, the mass parameter M2
X must

often be negative to cancel the positive thermal mass correction to yield an effective cubic
term, and this tends to drive the physical mass of the new scalar to small values.

4Thermal effects at high T lead to the breakdown of perturbation theory [9]. Daisy resummation
postpones this a little.
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To illustrate the tree-level approach, consider a new gauge singlet scalar field N with
couplings [21]

−L ⊃ m2
NN

2 + ANN
3 + λNN

4 + (AHN + κHN
2)|H|2 + . . . (35)

If both scalar fields develop VEVs they will mix with each other through the AH and κ terms.
When they do, it is often convenient to parametrize the field values using polar coordinates

〈H0〉 = ϕ cosα , 〈N〉 = ϕ sinα , (36)

for some mixing angle α and field parameter ϕ. Expanding the potential in these parameters
leads to a tree-level potential with cubic terms. The new scalar can also contribute to loop-
level cubic terms as above. A diverse range of phase transition dynamics can occur in this
simple model, including a strongly first order electroweak transition.

2.3 Bubble Dynamics

As the universe cools below the critical temperature, it remains stuck initially at the elec-
troweak origin. The electroweak phase transition only occurs some time later when bubbles
of broken phase are nucleated by thermal or quantum tunnelling, and specifically when the
transition rate grows larger than the Hubble rate. It is conventional to define the nucleation
temperature Tn and field minimum φn as the values when this occurs. The ratio φn/Tn gives
a better characterization of the strength of the phase transition than φc/Tc we used earlier.
However, φc/Tc is much easier to compute and tends to be similar or smaller than φn/Tn.

The thermal and quantum nucleation rates can be estimated from thermal effective
potential. Thermal transitions correspond to thermal fluctuations over the potential barrier.
Their rate per unit volume has the form [22]

Γ3 ≃ T 4e−S3[ϕ3]/T , (37)

where S3 is the 3-dimensional Euclidean action

S3[ϕ3] =

∫
d3x

[
1

2
(~∇ϕ3)

2 + Veff(ϕ3/
√
2, T )

]
. (38)

It is to be computed specifically for the time independent thermal bounce solution ϕ3

connecting the φ = 0 and φ 6= 0 phases. For the spherically symmetric bounce, which
usually dominates the rate, ϕ3 is the solution of

∂2rϕ3 +
2

r
∂rϕ3 = +

∂Veff
∂ϕ3

, (39)

with boundary conditions

ϕb(r → ∞) → 0 , ∂rϕb(r = 0) = 0 . (40)
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Similarly, the quantum tunnelling rate per volume is obtained from [23, 24]

Γ4 ≃ m4
We

−S4[ϕ4] , (41)

with S4 now the 4-dimensional Euclidean action

S4[ϕ4] =

∫
d4xE

[
1

2

(
dϕ4

dt

)2

+
1

2
(~∇ϕ4)

2 + Veff(ϕ4/
√
2, T )

]
, (42)

where now ϕ4 is the 4-dimensional Euclidean bounce solution connecting the phases. Note
the bounce for both mechanisms is computed using the effective potential. A very nice tool
for doing this numerically is CosmoTransitions [25].5 In addition to controlling the nucleation
rate, the bounce solution also gives the field profile of the bubble wall as it transitions from
φ 6= 0 inside to φ = 0 outside.

2.4 Experimental Tests

Higgs tests, direct searches, gravitational waves...

3 EWBG: Baryon Creation near Bubbles

Electroweak bubbles are a necessary ingredient for EWBG, but they are only the stage
upon which the intricate drama of baryon creation takes place. A schematic overview of the
process is shown in Fig. 1. Interactions in the vicinity of the advancing bubble wall generate
temporary charge asymmetries outside the bubble that bias the sphalerons to create more
baryons than antibaryons. The baryons made this way are then swept up into the interior
where they are (nearly) stable. Computing the baryon asymmetry from EWBG is very
challenging and still very much a work in progress. We only give a broad overview here.

The guiding relation for the calculation of the EWBG baryon asymmetry is the evolution
equation for B due to sphalerons, whose rates are modified very slightly in the presence of
fermion densities. The leading effect can be derived from the property that in (or close to)
thermodynamic equilibrium, the ratio of transition rates between states with free energies
F+ and F− is

Γ+

Γ−
= e−∆F/T , (43)

where ∆F = F+−F−. This relation is needed to ensure that the net transition rates balance
out to zero in equilibrium. Applying this very general relation to the weak sphalerons, we

5See also Ref. [26] for a related tool.
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have [8, 27]

dnB

dt
= −ng(Γ− − Γ+)

= −ngΓsp(1− e−∆F/T ) (44)

= −ngΓsp

∑

i

(3µQi
+ µℓi)/T

where we have used ∆B = ng in each sphaleron transition, Γ− ≃ Γsp (i.e. the sphaleron rate
neglecting fermions), and ∆F =

∑
i(3µQi

+ µℓi) as the small change in free energy from the
sphaleron transition. Rearranging this expression, it becomes

dnB

dt
= Γsp

∑

a

Aa

(µa

T

)
− ng C

Γsp

T 3
nB , (45)

where Aa and C are dimensionless, and nB ≃
∑

i(2µQi
+µui

+µdi)T
3/6. The first term above

is a linear combination of chemical potentials independent from µB, and it acts as a source
for B creation by sphalerons when it is non-zero. The second term presents a challenge,
since it tends to wash out any B charge that has been created.

There are three steps in computing the EWBG baryon density with Eq. (45):

1. Derive sources terms for µa from CP violation in the bubble walls.

2. Incorporate these in diffusion and transfer equations to find the creation, evolution,
and transport of the charges corresponding to the µa.

3. Apply Eq. (45) to find the baryon density created by the source term from the µa, and
check that it is not washed out.

All three steps present theoretical challenges.

3.1 Bubbles and Charges

Bubble wall profile, Fig. 3. Define wall-frame coordinate z = x− vwt.

φ(z) =
φn

2

[
1− tanh

(
z

Lw

)]
(46)

3.2 CPV Sources

3.3 Experimental Tests

EDM searches, direct searches, precision Higgs...
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Figure 3: Bubble wall profile of width Lw moving right at speed vw. The blue dot represents
a random spot in front of the wall, and illustrates our coordinate system.

References

[1] V. A. Kuzmin, V. A. Rubakov and M. E. Shaposhnikov, “On the Anomalous Electroweak
Baryon Number Nonconservation in the Early Universe,” Phys. Lett. 155B, 36 (1985).
doi:10.1016/0370-2693(85)91028-7

[2] M. E. Shaposhnikov, “Possible Appearance of the Baryon Asymmetry of the Universe in
an Electroweak Theory,” JETP Lett. 44, 465 (1986) [Pisma Zh. Eksp. Teor. Fiz. 44, 364
(1986)].

[3] M. E. Shaposhnikov, “Baryon Asymmetry of the Universe in Standard Electroweak
Theory,” Nucl. Phys. B 287, 757 (1987). doi:10.1016/0550-3213(87)90127-1

[4] A. G. Cohen, D. B. Kaplan and A. E. Nelson, Ann. Rev. Nucl. Part. Sci. 43, 27 (1993)
doi:10.1146/annurev.ns.43.120193.000331 [hep-ph/9302210].

[5] M. D’Onofrio and K. Rummukainen, Phys. Rev. D 93, no. 2, 025003 (2016)
doi:10.1103/PhysRevD.93.025003 [arXiv:1508.07161 [hep-ph]].

[6] M. B. Gavela, P. Hernandez, J. Orloff and O. Pene, “Standard model CP violation and
baryon asymmetry,” Mod. Phys. Lett. A 9, 795 (1994) doi:10.1142/S0217732394000629
[hep-ph/9312215].

[7] M. B. Gavela, P. Hernandez, J. Orloff, O. Pene and C. Quimbay, Nucl. Phys. B 430, 382
(1994) doi:10.1016/0550-3213(94)00410-2 [hep-ph/9406289].

[8] A. Riotto, “Theories of baryogenesis,” hep-ph/9807454.

[9] M. Quiros, “Finite temperature field theory and phase transitions,” hep-ph/9901312.

[10] J. M. Cline, “Baryogenesis,” hep-ph/0609145.

13



[11] D. E. Morrissey and M. J. Ramsey-Musolf, “Electroweak baryogenesis,” New J. Phys.
14, 125003 (2012) doi:10.1088/1367-2630/14/12/125003 [arXiv:1206.2942 [hep-ph]].

[12] J. I. Kapusta and C. Gale, “Finite-temperature field theory: Principles and applica-
tions,” Cabridge, UK: Cambridge University Press, 2006 442p.

[13] R. H. Brandenberger, Rev. Mod. Phys. 57, 1 (1985). doi:10.1103/RevModPhys.57.1

[14] J. Polchinski, “String theory. Vol. 1: An introduction to the bosonic string,” Cambridge,
UK: Cambridge University Press (1998) 424 p.

[15] E. J. Weinberg and A. q. Wu, “Understanding Complex Perturbative Effective
Potentials,” Phys. Rev. D 36, 2474 (1987). doi:10.1103/PhysRevD.36.2474

[16] G. W. Anderson and L. J. Hall, “The Electroweak phase transition and baryogenesis,”
Phys. Rev. D 45, 2685 (1992). doi:10.1103/PhysRevD.45.2685

[17] H. H. Patel and M. J. Ramsey-Musolf, “Baryon Washout, Electroweak Phase Transition,
and Perturbation Theory,” JHEP 1107, 029 (2011) doi:10.1007/JHEP07(2011)029
[arXiv:1101.4665 [hep-ph]].

[18] M. Garny and T. Konstandin, “On the gauge dependence of vacuum transitions at finite
temperature,” JHEP 1207, 189 (2012) doi:10.1007/JHEP07(2012)189 [arXiv:1205.3392
[hep-ph]].

[19] T. Cohen, D. E. Morrissey and A. Pierce, “Electroweak Baryogenesis and Higgs
Signatures,” Phys. Rev. D 86, 013009 (2012) doi:10.1103/PhysRevD.86.013009
[arXiv:1203.2924 [hep-ph]].

[20] D. Curtin, P. Meade and H. Ramani, “Thermal Resummation and Phase Transitions,”
arXiv:1612.00466 [hep-ph].

[21] S. Profumo, M. J. Ramsey-Musolf and G. Shaughnessy, “Singlet Higgs phenomenology
and the electroweak phase transition,” JHEP 0708, 010 (2007) doi:10.1088/1126-
6708/2007/08/010 [arXiv:0705.2425 [hep-ph]].

[22] A. D. Linde, “Decay of the False Vacuum at Finite Temperature,” Nucl. Phys. B 216,
421 (1983) Erratum: [Nucl. Phys. B 223, 544 (1983)]. doi:10.1016/0550-3213(83)90293-6,
10.1016/0550-3213(83)90072-X

[23] S. R. Coleman, “The Fate of the False Vacuum. 1. Semiclassical Theory,”
Phys. Rev. D 15, 2929 (1977) Erratum: [Phys. Rev. D 16, 1248 (1977)].
doi:10.1103/PhysRevD.15.2929, 10.1103/PhysRevD.16.1248

[24] C. G. Callan, Jr. and S. R. Coleman, “The Fate of the False Vacuum. 2. First Quantum
Corrections,” Phys. Rev. D 16, 1762 (1977). doi:10.1103/PhysRevD.16.1762

14



[25] C. L. Wainwright, “CosmoTransitions: Computing Cosmological Phase Transi-
tion Temperatures and Bubble Profiles with Multiple Fields,” Comput. Phys.
Commun. 183, 2006 (2012) doi:10.1016/j.cpc.2012.04.004 [arXiv:1109.4189 [hep-ph]],
https://pypi.python.org/pypi/cosmoTransitions.

[26] J. E. Camargo-Molina, B. O’Leary, W. Porod and F. Staub, “Vevacious: A Tool For
Finding The Global Minima Of One-Loop Effective Potentials With Many Scalars,” Eur.
Phys. J. C 73, no. 10, 2588 (2013) doi:10.1140/epjc/s10052-013-2588-2 [arXiv:1307.1477
[hep-ph]].

[27] L. P. Csernai and J. I. Kapusta, “Nucleation of relativistic first order phase transitions,”
Phys. Rev. D 46, 1379 (1992). doi:10.1103/PhysRevD.46.1379

15

https://pypi.python.org/pypi/cosmoTransitions


[28] M. E. Peskin and D. V. Schroeder, “An Introduction To Quantum Field Theory,”
Reading, USA: Addison-Wesley (1995) 842 p

[29] C. P. Burgess and G. D. Moore, “The standard model: A primer,” Cambridge, UK:
Cambridge Univ. Pr. (2007) 542 p

[30] C. Patrignani et al. [Particle Data Group], “Review of Particle Physics,” Chin. Phys. C
40, no. 10, 100001 (2016);
http://pdg.lbl.gov/

[31] E. Eichten, K. Gottfried, T. Kinoshita, K. D. Lane and T. M. Yan, “Charmonium: Com-
parison with Experiment,” Phys. Rev. D 21, 203 (1980). doi:10.1103/PhysRevD.21.203

[32] R. Gupta, “Introduction to lattice QCD: Course,” hep-lat/9807028.

[33] U. Wiese, “An Introduction to Lattice Field Theory,”
www.itp.uni-hannover.de/saalburg/Lectures/wiese.pdf.

[34] H. Georgi, “Weak Interactions,”
http://www.people.fas.harvard.edu/ hgeorgi/weak.pdf

[35] D. B. Kaplan, “Five lectures on effective field theory,” [nucl-th/0510023].

[36] A. Pich, “Effective field theory: Course,” [hep-ph/9806303].

[37] D. E. Morrissey, “PHYS 528 Notes #4,”
http://trshare.triumf.ca/ dmorri/Teaching/PHYS528-2014/notes-04.pdf

[38] J. F. Donoghue, E. Golowich and B. R. Holstein, “Dynamics of the standard model,”
Camb. Monogr. Part. Phys. Nucl. Phys. Cosmol. 2, 1 (1992) [Camb. Monogr. Part. Phys.
Nucl. Phys. Cosmol. 35 (2014)].
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