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Leptogenesis is a class of mechanisms for baryogenesis in which a lepton asymmetry is
created and then partially reprocessed into a baryon asymmetry by electroweak sphalerons [1,
2]. A very attractive feature of many leptogenesis mechanisms is that they connect the
observed baryon asymmetry to the origin of neutrino masses and mixings. In these notes
we provide a brief overview of the most simple realization of leptogenesis through the decay
of the very heavy right-handed neutrinos in the Type-I seesaw model for the light neutrino
masses. More detailed reviews of leptogenesis can be found in Refs. [3, 4, 5, 6, 7].

1 Neutrino Masses and Mixings

Neutrinos (and antineutrinos) in the minimal SM are predicted to be massless and to have
one of three definite flavours corresponding to the e, µ, and τ charged leptons. There is
no leptonic equivalent of the CKM matrix in the SM, and lepton flavour is predicted to
be conserved. However, detailed measurements of neutrinos have detected the phenomenon
of neutrino oscillations, in which a neutrino of one flavour transforms into another. These
oscillations are definitive proof of new physics beyond the SM, and they imply further that
at least some of the SM neutrinos have mass [8, 9, 10].

In contrast to the other SM fermions, neutrinos interact exclusively through the weak
vector bosons. This makes them much harder to detect than the other SM fermions, and
allows them to travel very long distances through matter without being scattered. The
flavour of a neutrino when it is produced is deduced from the flavour of the charged lepton
that is created (or decayed) along with it. Similarly, neutrinos are “detected” when they
scatter with other matter, often in conjunction with a charged lepton. Neutrino oscillations
are observed in a difference between the neutrino flavour at detection relative to production.
This can be understood as a misalignment of the flavour eigenstates associated with the
charged lepton at production and decay and the energy eigenstates with definite mass.

The relationship between the flavour and mass eigenstates is given by the unitary Pontecorvo-
Maki-Nakagawa-Sakata (PMNS) matrix,




|νe〉
|νµ〉
|ντ 〉



 =




Ue1 Ue2 Ue3
Uµ1 Uµ2 Uµ3
Uτ1 Uτ2 Uτ3








|ν1〉
|ν2〉
|ν3〉



 . (1)

It is conventional to decompose this matrix according to

U =




1 0 0
0 c23 s23
0 −s23 c23






c13 0 s13e
−iδ

0 1 0
−s13eiδ 0 c13






c12 s12 0
−s12 c12 0
0 0 1






eiα1 0 0
0 eiα2 0
0 0 1


 (2)
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This decomposition is useful because the various mixing angles have been measured in
different systems [11]. The θ12 ≃ 35◦ angle is determined best from measurements of
neutrinos emitted by nuclear reactions in the sun, and is sometimes called the solar mixing
angle. Neutrinos obtained from cosmic ray showers in the atmosphere gave the first good
determination of θ23 ≃ 45◦, and it is sometimes called the atmospheric mixing angle. Recent
measurments of neutrinos produced in nuclear reactors have yielded θ13 ≃ 14◦. Oscillation
measurements also give values for the mass differences of neutrinos, with

∆m2
12 ≃ 7.6× 10−5 eV2 , |∆m2

23| ≃ 2.4× 10−3 eV2 . (3)

There is also a limit on the sum of the SM neutrino masses from cosmological observations of∑
imi . 0.2 eV [16]. Compared to the other fermions of the SM, the neutrinos are orders of

magnitude lighter, and their mixings are significantly larger than those of the CKM matrix.

Neutrino masses and mixings require new physics beyond the SM (as we have defined
it). The easiest way to generate them is to add three gauge-singlet right-handed neutrinos
NR i = (1, 1, 0), i = 1, 2, 3, with the Yukawa couplings

−L ⊃ − λAiNR iH ·LA + (h.c.) , (4)

where H = (H+, H0)t, LA = (νLA, eLA)
t, and A·B = ǫabA

aBb with ǫ12 = +1 for any pair of
SU(2)L doublets. After electroweak symmetry breaking, H → (0, v+h/

√
2)t, this generates

a neutrino mass matrix with entries

(mν)AB = (λ v)AB . (5)

In the end, we get three massive Dirac neutrinos and a mixing matrix connecting them to
the charged leptons via the W boson. However, given the extreme smallness of the observed
neutrino masses, many consider this solution unsatisfying on its own.

A popular variation on the simple picture above is called the Type-I neutrino seesaw.
Since the NR are gauge singlets, we can also add (diagonal) Majorana masses for them of
the form

−L ⊃ 1

2
Mi (N c

R i)NR i + (h.c.) , (6)

where N c
R = −iγ2γ0N t

R. Combined with the Dirac mass term of Eq. (4), the full neutrino
mass matrix takes the schematic form

Mν =

(
0 λv
λv MN

)
. (7)

For MN ≫ yNv, the mass eigenstates then consist of six Majorana fermions with mass
eigenvalues of the form

mν ≃
(λv)2

MN

, MN . (8)
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The three light states are identified with the SM neutrinos, while the three heavy neutrinos
are mostly singlets and very difficult to detect. For λ ∼ 1, the SM-like neutrinos have sub-eV
masses for MN ∼ 1013 GeV.

It is also illuminating to look at the EFT obtained by integrating out the very massive
right-handed neutrinos. The leading operator generated from doing so is

−LEFT ⊃
∑

i

λAiλBi
2Mi

(LcA ·H)(LB ·H) + (h.c.) . (9)

This is the lowest-dimensional non-renormalizable operator that can be built out of SM fields
alone. After electroweak symmetry breaking, it generates neutrino masses on the order of
mν ∼ λ2v2/MN , as expected from the neutrino seesaw.

2 Decay Asymmetries

The most popular model of leptogenesis relies on the decays of the heavy right-handed
neutrinos in the Type-I seesaw model to create a lepton asymmetry in the early universe.
Creating such an asymmetry requires both C and CP violation. In this section we investigate
the decay asymmetry due to the lightest of the heavy neutrinos, Ni, and we show its
connection to C and CP .

The partial asymmetry created by Ni decays in lepton flavour A is defined to be

ε1A =
Γ(Ni → ℓA +H)− Γ(Ni → ℓ̄AH

†)∑
B

[
Γ(Ni → ℓB +H) + Γ(Ni → ℓ̄BH†)

] . (10)

The asymmetry can be computed in terms of Feynman diagrams in an expansion in the
(assumed to be small) Yukawa couplings λiA. In Fig. 1 we show the tree-level and one-loop
diagrams for Ni → ℓAH (taken from Ref. [7]). These quantities can all be computed by
brute force and used to find the decay asymmetry explicitly. However, it is instructive to
delve into their general form.

Consider the matrix elements correponding to the diagrams in Fig. 1 as well as for the
conjugate process. These can be written in the schematic form [12]1

M(Ni → ℓAH) = c0 + c1F1 (11)

M(Ni → ℓ̄AH
†) = c∗0 + c∗1F1 ,

where the indices refer to the tree-level and one-loop pieces, and c0 ∝ λ and c1 ∝ λ3 contain
all the factors of the couplings. This form implies

|M|2 − |M|2 = − 4 Im(c0c
∗
1) Im(F1) , (12)

and thus a non-zero asymmetry requires interference between tree- and loop-level contribu-
tions. The first factor contains phases in the couplings that violate C and CP , as expected

1 The non-schematic form has external spinors that give the same result when summed and squared.
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on general grounds. However, we also see that a CP conserving phase is needed in the
one-loop F1 factor above.

The origin of the phase in the F1 can be understood from the unitarity of the S ma-
trix [13]. Recall that for asymptotic in and out states |i〉 and 〈f | it is defined by

〈f |S |i〉 ≡ Sfi . (13)

It is conventional to write S = I− iT , in which case we identify

〈f |T |i〉 ≡ Tfi = M(i→ f) , (14)

where M(i→ f) is the matrix element for the i→ f process. Unitarity of S implies

i(T − T †) = T †T . (15)

Sandwiching this relation between arbitrary initial and final states, one finds

i [M(i→ f)−M∗(f → i)] =
∑

{n}

〈f |T † |n〉 〈n| T |i〉 , (16)

where the sum runs over all possible intermediate states. In a weakly-coupled QFT, these
intermediate states correspond primarily to on-shell intermediate particles. In the present
case, we are interested in the decay of Ni with |i〉 = |Ni〉 and 〈f | = 〈ℓA, H|.2 In the limit
of real couplings, we can identify the left-hand side of Eq. (16) with Im(F1) at leading non-
zero order. The right-hand side of this equation then shows that the phase in F1 arises
from intermediate states within the loops going on-shell, corresponding to |n〉 = |ℓB, H〉 and
|ℓ̄B, H†〉, and this phase does not require CP violation.

A full calculation of the asymmetry gives the leading result [6, 7]

εiA =
1

8π

1

(λ†λ)ii

(
∑

j

Im
[
λ∗Ai(λ

†λ)ijλAj
]
g(xji) (17)

+
∑

j

Im
[
λ∗Ai(λ

†λ)jiλAj
] 1

1− xji

)
,

where xji =M2
j /M

2
i and

g(x) = −
√
x

[
2

x− 1
+ ln(1− 1/x)

]
. (18)

This result has a number important features. First, the combinations of couplings are
genuinely CP violating in that they cannot be removed by field redefinitions. Second, both
coupling combinations vanish for i = j. Third, the second term above vanishes when summed
over A and is said to be L conserving but flavor violating.

2There is a slight subtlety here in that Ni is unstable and therefore not a true asymptotic state [6].
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Figure 1: Leading diagrams contribution to the decay asymmetry of the heavy right-handed
neutrino state Ni (from Ref. [7]).

3 Cosmological Lepton and Baryon Production

With decay asymmetries in hand, we turn next to the cosmological processes that create
and destroy lepton and baryon asymmetries in the Type-I seesaw model. Production of
L occurs through the CP -violating decays of the heavy right-handed neutrinos, which is
then converted partially to B by sphaleron transitions. At the same time, inverse decay
and scattering processes tend to erase the L charge created in the decays, and a departure
from thermodynamic equilibrium is needed to avoid this. In this section we examine the
redistribution of B and L charges by electroweak sphalerons in full equilibrium, and we
investigate the cosmological time evolution of these and other charges away from equilibrium.

3.1 Sphaleron Redistribution

As discussed previously, electroweak sphalerons transitions violate (B + L). Recall that in
the SM, these are active with an effective rate greater than Hubble for T ∈ [130, 1012] GeV.
This range covers most of the temperature range relevant for leptogenesis, and the sphaleron
transitions play an essential role in transforming the L charge created into a B charge. We
study how this works in full equilibrium here.

Recall that at high temperatures T ≫ mi, the number density asymmetry of a particle
species ψ in equilibrium is given by

nψ − nψ̄ ≃
{
gψµψT

2/6 ; ψ = fermion
gψµψT

2/3 ; ψ = boson
, (19)

where gψ the number of internal degrees of freedom (like spins and colours). It follows
that we can keep track of particle asymmetries through their chemical potentials. Now,
thermodynamic equilibrium also implies that the chemical potentials are constrained by the
set of fast reactions that can occur. This can be used to compute the final B and L charges
resulting from an instantaneous injection of L (or other) charge [4, 14].

At the temperatures relevant for leptogenesis, the SM gauge interactions are in equilib-
rium with µY = µW = µg = 0 for the corresponding vector bosons. This implies that all

5



the components of a given gauge multiplet have the same chemical potential. Thus, we will
write

µQi
= µuL i

= µdL i
, µℓi = µνL i

= µeL i
, (20)

where i labels the generation number. Applying this to the SM Yukawa interactions,3

0 = µQi + µH − µu j = µQi − µH − µd j = µL i − µH − µe i (21)

where µui, µdi, and µei refer to the right-handed fermions. Hypercharge neutrality of the
universe (corresponding to electric charge neutrality) implies

0 =
∑

i

[
6

(
1

6

)
µQi

+ 3

(
2

3

)
µui − 3

(
1

3

)
µdi − 2

(
1

2

)
µℓi − µei +

2·2
ng

(
1

2

)
µH

]
, (22)

where ng = 3 is the number of SM generations and the extra factor of 2/ng for the Higgs
comes from the fact there is only one Higgs copy and the factor of two for bosons in Eq. (19).
Finally (and most importantly), there are additional relations implied by the sphaleron
transitions. For the SU(2)L sphalerons, we have

0 =
∑

i

(3µQi
+ µℓi) (23)

while for the strong SU(3)c sphalerons we get

0 =
∑

i

(2µQi
− µui − µdi) . (24)

These relations can be used to relate B and L in equilibrium.

Let us now define baryon and lepton chemical potentials by4

nB = µBT
2/6 , nL = µLT

2/6 , (25)

where nB and nL refer to the charge density asymmetries. It follows that

µB =
∑

i

(2µQi
+ µui + µdi) , µL =

∑

i

(2µℓi + µei) . (26)

Combining these definitions with the relations above and solving, the relationship between
charges in full SM equilibrium is

µB = cs(µB − µL) (27)

µL = (cs − 1)(µB − µL) , (28)

with cs = (8ng + 4)/(22ng + 13)
ng→3−→ 28/79. Combined with Eq. (25), this result implies

that that final B density after equilibration is proportional to the total (B − L) charge For
leptogenesis, suppose the instanteneous decay of a heavy neutrino creates a lepton density
asymmetry yield of YL(ti). Equilibration by sphaleron and other processes after the decay
will then produce a final baryon asymmetry yield today (t = t0) equal to

YB(t0) ≃ −csYL(ti) . (29)

Let us also point out that SM interations do not change (µB − µL)

3 The equilibration of the light fermion Yukawas is not guaranteed during leptogenesis and can interesting
effects, but we neglect this here.

4 The notation B ≡ µB and L ≡ µL is often used.
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3.2 Cosmological Density Evolution

Successful baryogenesis requires a departure from thermodynamic equilbrium, and for lepto-
genesis this enters in the production and decay of the heavy neutrinos. This can be described
by a set of semi-classical Boltzmann equations for the evolution of the Ni and (B−L) number
densities. To simplify the presentation, we focus on the scenario where M1 ≪ M2, M3 and
N1 gives the dominant contribution to the lepton asymmetry.

The approximate Boltzmann equations for the system are [3, 4, 5, 6, 7]

dYN1

dz
= −(D + S)(YN1

− Y eq
N1
) , (30)

dYB−L

dz
= −ε1D(YN1

− Y eq
N1
)−WYB−L , (31)

where z = M1/T , Yi = ni/s, s = 2π2g∗ST
3/45, ε1 =

∑
A ε1A is the total decay asymmetry,

and Y eq
N1
(z) is the equilibrium yield of N1. The D term in these equations is an effective

decay rate of N1, S corresponds to ∆L = 1 scattering processes, and W term is the rate of
lepton number washout by inverse decays and scattering processes.

At leading order in the couplings, the D term is given by [7]

D(z) = z

〈
1

γ

〉
Γ1

H(z = 1)
(32)

where 〈1/γ〉 = 〈M1/E1〉 is a thermal average of the time dilation factor for the decay with
numerical value

〈
1

γ

〉
≃ K1(z)

K2(z)
≃
{

1 ; z ≫ 1
z/2 ; z ≪ 1

, (33)

where Kα(z) is the modified Bessel function of order α. In Eq. (30), the D term describes
the change in number density of N1 from decays. Note that if YN1

< Y eq
N1
, inverse decays of

the form ℓ +H → N1 and ℓ̄ +H† → N1 dominate over regular decays and tend to increase
the N1 density. A similar expression weighted by ε1 appears in Eq. (31) since N1 decays
create a net lepton number by their decay asymmetry. We will neglect the scattering S term
in the discussion to follow.

For the washout term W , we will focus exclusively on the leading contribution (in the
couplings) from inverse decays, although it can also receive significant contributions from
∆L = 1, 2 scattering processes. The explicit expression for W is then [7]

W (z) =
1

2
D(z)

Y eq
N1
(z)

Y eq
ℓ

. (34)

Washout of lepton number from inverse decays occurs because a positive asymmetry in
L implies there are more ℓH states than ℓ̄H† states in the plasma, and thus the process
ℓ+H → N1 is more likely to occur than ℓ̄+H† → N1.
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A formal solution for the (B − L) density is [4, 7]

YB−L(z) = YB−L(zi) e
−
∫ z

zi
dz′W (z′) −

∫ z

zi

dz′ ε1D(YN1
− Y eq

Ni
) e−

∫ z

z′
dz′′W (z′′) , (35)

where zi is where we start the evolution. The first term describes the washout of an initial
asymmetry, while the second gives the asymmetry production from N1 decays away from
equilibrium. Let us now set zi → 0, and take YB−L(zi →) since we expect zero initial
asymmetry. Turning to the second term, simple approximate solutions can be found in the
weak washout (K ≪ 1) and strong washout (K ≫ 1), where the parameter K is defined by

K =
ΓN1

H(z = 1)
. (36)

It is instructive to look at both limits.

For weak washout, we have slow decays at T =M1 implying exp
∫
W → 1. The integrand

of the second term of Eq. (35) then turns into a total derivative via Eq. (30), giving [4, 7]

YB−L(z → ∞) ≃ ε1YN1
(0) . (37)

Note that this requires an initial density of YN1
(0), and is therefore sensitive to initial

conditions. However, for YN1
(0) → 0 there is still a subleading contribution (beyond our

level of approximation) to the asymmetry from N1 created by inverse decays, given by [4, 7]

YB−L(z → ∞) ≃ ε1K
2Y eq

N1
(0) (for YN1

(0) → 0) . (38)

In the regime of strong washout, the relation K > 1 implies that N1 decays are fast
compared to the Hubble rate at T = M1. This implies that the N1 density will track its
equilibrium value closely until the inverse decays turn off due to kinematics at some value
of z = zf > 1, corresponding to W (zf ) → 1. Taking Eq. (30) and solving in an expansion in
∆YN1

= YN1
− Y eq

N1
, the leading term in an expansion in (1/K) is [4, 7]

∆YN1
(z) ≃ 1

D

dY eq
N1

dz
, (39)

where we have equated YN1
→ Y eq

N1
in the derivative term since it is not enhanced by a factor

of K. Going to Eq. (31) and similarly setting YB−L → Y eq
B−L = 0 in the derivative, the result

is

YB−L(z → ∞) ≃ −ε 1

W

dY eq
N1

dz
(40)

≃ − π2

6zfK
ε1Y

eq
N1
(0) .

In the above, we have set YB−L(z → ∞) ≃ YB−L(zf), the point at which inverse decays cease
and the N1 density deviates from equilibrium. Note that this result is largely independent
of initial conditions.
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Figure 2: Left: Efficiency factor κ = η for standard leptogenesis in the Type-I seesaw model
as a function of m̃1/eV = (2.3×10−3)K assuming either a dominant, thermal, or zero initial
N1 density (from Ref. [10]). Right: Ranges of m̃1/eV and M1 (within the boundary curves)
consistent with the observed baryon asymmetry from leptogenesis (from Ref. [10]).

Once the yield YB−L(z → ∞) has been computed, the baryon yield can be obtained from
the result of Eq. (27). Converting to a fraction relative to photons, the baryon asymmetry
today from leptogenesis is often written in the form

η ≡ nB
nγ

≃ − κε1 , (41)

where κ is called the efficiency factor. The parameter ε1 corresponds to C and CP violation,
and κ measures the degree of departure from equilibrium. We show a plot of κ (labelled as
η) in the left panel of Fig. 2 (from Ref. [10]) as a function of m̃1 ≡ (2.3 × 10−3 eV) × K.
The shaded grey band indicates the range the efficiency factor can take in the weak washout
regime.

Let us also emphasize that our treatment of leptogenesis has concentrated on the basic
story. Many other effects that we have neglected can modify the final baryon density
(typically by an order unity amount). These include thermal corrections, flavor effects,
resonance effects, and much more [3, 4, 5, 6, 7].

3.3 Connection to Neutrino Observables

Leptogenesis is a very attractive mechanism for baryogenesis because it connects the source
of the baryon asymmetry to the new physics underlying neutrino oscillations. Despite
this connection, the new right-handed neutrinos responsible for standard leptogenesis must
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typically be very heavy if they are to generate the observed baryon density. Furthermore, low-
energy measurements of neutrino properties at lower energies, such as masses and mixings via
neutrino oscillations and other observables, are not enough to fully characterize the massive
neutrino theory.

A counting of independent parameters in the standard Type-I seesaw model (with three
heavy neutrinos) gives 21 independent parameters in the lepton sector [6, 10]. In contrast,
there are twelve independent parameters in the lepton sector of the SM effective theory valid
well below the heavy neutrino masses. These can be taken to be [6]

me, mµ, mτ , m1, m2, m3, s12, s13, s23, δCP , α1, α2 . (42)

In fact, not all of the low-energy parameters have been measured yet! Many different
parametrizations of the full 21 lepton-sector parameters exist. In general, it can be shown
that a full knowledge of the low-energy parameters is not enough to completely fix the
predictions of the theory for leptogenesis.

Even though we are not able to make unambigous predictions for leptogenesis in the
Type-I seesaw theory with only low-energy data, it is possible to place a lower bound on the
mass scale of the heavy neutrinos if they are to create the full baryon asymmetry (assuming
it is dominated by N1 with much heavier non-degenerate N2 and N3) [15]. Comparing the
expression for light neutrino masses with that for the asymmetry due to N1, the Davidson-
Ibarra bound can be derived,

|ε1| ≤ 3

16π

M1

v2
(mmax −mmax) =

3

16π

M1

v2

( |∆m2
23|

mmax +mmin

)
(43)

where mmax and mmin are the largest and smallest of the SM-like neutrino masses and
|∆m2

23|2 is the largest of the observed mass differences. Given the cosmological upper bound
on the sum of light neutrino masses,

∑
imi . 0.2 eV [16], this relation implies a lower

bound on the heavy mass M1 if leptogenesis is to be large enough to create the full baryon
asymmetry [15]. The precise bound depends on the efficiency factor defined in Eq. (41), but
is typically M1 & 108 GeV. This relation can also be used to derive an upper bound on the
combination of neutrino parameters

m̃1 ≡ v2

M1

∑

A

|λA1|2 = 8π
v2

M1

ΓN1
. (44)

It can be shown that this quantity is greater than the smallest SM-like neutrino mass,
m̃ ≥ mmin[15]. The range of m̃ and M1 consistent with standard Type-I seesaw leptogenesis
is shown in the right panel of Fig. 2 (from Ref. [10]). Let us emphasize that these limits
apply to the specific scenario we have presented, and can be weakened in other realizations
of leptogenesis.

4 Other Realizations of Leptogenesis

. . .
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