New jet techniques for at the LHC

Lian-Tao Wang Princeton University

Early LHC, TRIUMF, January 2011

Friday, January 28, 2011

The importance of hadronic final state:

- "Everywhere" at hadron colliders. p p, or, $p\bar{p}$ initial state.
- Present in (almost) all new physics signals.
 - Many of them only have hadronic channels.
 - TeV new physics states can decay to SM "heavy" particles, e.g. t, W, Z, often look like a cluster of hadrons.
- Understanding of basic structure of QCD and the properties of new physics has lead to the development of a set of modern tools which significantly enhanced the discovery potential.

Cover two aspects.

- Better characterization of QCD jets
 - Improving jet algorithms.
 - Finding ISR.
- Jet substructure and new physics searches.
 - Boosted tops.
 - Higgs search.

Boston Jet Workshop: <u>http://jets.physics.harvard.edu/workshop/Main.html</u>

Boost 2011, May, 23-27, Princeton. http://boost2011.org Better QCD jet

• We would like to preserve $p_{\rm jet} \simeq p_{\rm parton}$.

- Use "smart" jet shapes.
- Control "contamination".

Begin with jet algorithm

- An algorithm of clustering together "close by" objects.
- Basic ingredients of a "sequential" jet algorithm.
- Two types of "distances"
 - Jet-jet distance: d_{ij} "when to cluster"
 - Jet-beam distance: d_{iB} "when to stop clustering"
- Pair wise comparison of all distances
 - If smallest distance at any stage in clustering is jet-jet, add together corresponding four-momenta, else take jet with smallest jet-beam distance and set it aside.
 - Repeat till all jets are set aside.

Recombination Algorithms

• k_T algorithm

$$d_{ij} = \min(p_{Ti}^2, p_{Tj}^2) \left(\frac{\Delta R}{R_0}\right)^2, \ d_{iB} = p_{Ti}^2$$

• C/A algorithm

$$d_{ij} = \left(\frac{\Delta R}{R_0}\right)^2, \ d_{iB} = 1$$

• anti- k_T algorithm

$$d_{ij} = \min(p_{Ti}^{-2}, p_{Tj}^{-2}) \left(\frac{\Delta R}{R_0}\right)^2, \ d_{iB} = p_{Ti}^{-2}$$

$$(\Delta R)^2 \equiv (\Delta \eta)^2 + (\Delta \phi)^2$$

Recombination Algorithms p_{TB}

- **k**_T algorithm $d_{ij} = \min(p_{Ti}^2, p_{Tj}^2) \left(\frac{\Delta R}{R_0}\right)^2, \ d_{iB} = p_{Ti}^2$ A
 B
- C/A algorithm

$$d_{ij} = \left(\frac{\Delta R}{R_0}\right)^2, \ d_{iB} = 1$$

• anti-k_T algorithm

$$d_{ij} = \min(p_{Ti}^{-2}, p_{Tj}^{-2}) \left(\frac{\Delta R}{R_0}\right)^2, \ d_{iB} = p_{Ti}^{-2}$$
$$(\Delta R)^2 \equiv (\Delta \eta)^2 + (\Delta \phi)^2$$

Jet "trimming"

- Effect of the "contamination".
 - Initial state radiation (ISR), multiple interaction (MI), underlying events (UE), pile-up (PU).

Room for improvement!

A closer look at the soft radiations

• ISR scale with the hard collision

 $(p_T^{\text{ISR}})_{\text{max}}^2 \simeq |q|^2 \leq \Lambda_{\text{hard}}^2$

 Λ_{hard} : hard interaction scale

$$\frac{d\sigma}{d(p_{\rm T}^{\rm ISR})^2} \simeq \frac{1}{(p_{\rm T}^{\rm ISR})^2} \left(\alpha_s \log\left(\frac{\Lambda_{\rm hard}^2}{(p_{\rm T}^{\rm ISR})^2}\right) + O(\alpha_s^2)\right)$$

 $\langle p_{\mathrm{T}}^{\mathrm{ISR}} \rangle \propto (p_{T}^{\mathrm{ISR}})_{\mathrm{max}}$

- MI, UE, and pileup "incoherent", independent of the hard collision scale.
 - A "universal" soft background. $\delta(p_T^j) \simeq \Lambda_{\text{soft}} \left(\frac{\Delta R^2}{2} + ... \right)$

Jet trimming.

- Introducing a "cut" on soft radiation.
 - Discard "stuff" below the cut after jet clustering.
- Our implementation.
 - Cluster all calorimeter data using any algorithm
 - Take the constituents of each jet and recluster with smaller radius Rsub (Rsub = 0.2 seems to work well).
 - Discard the subjet i if $p_{Ti} < f_{cut} \cdot \Lambda_{hard}$ \leftarrow ISR argument.
- Best choice of the hard scattering scale and fcut.
 - Process dependent.
 - Can be optimized experimentally.

Related but different "jet grooming"approaches: Filtering: J. Butterworth, A. Davison, M. Rubin, G. Salam, arXiv:0802.2470 Pruning: S. Ellis, C. Vermilion, J. Walsh, arXiv:0903.5081

-0.5

-1

₹^{1.5}

0.5

-0.5

-1.5⊑ -1.5

Reassemble

2

1.5 Δη

0.5

0

Friday, January 28, 2011

Start

Simple test case: di-jet resonance

• We provide plugins fully compatible with Fastjet.

http://jthaler.net/jets/VR_Jets.html http://jthaler.net/jets/Jet_Trimming.html

Finding ISR jet. D. Krohn, L. Randall, LTW, arXiv:1108.0810 Tagging gr Phe Gifferent jet.

* Tag

- Take three hardest jets. Look for those
- 1. Distinguished in pT

OR

2. Distinguished in rapidity

OR

3. Distinguished in m/pT

- * Check
 - * Require the candidate ISR jet
 - 1. Not be central
- AND 2. Remain somewhat isolated in rapidity
 - And, require that the implicit FSR jets be

1. Close in pT

Simple kinematical tagger works well.

Spectrum		Efficiencies [%]		
$m_{ ilde q}/m_{ ilde g}$	$m_{ m LSP}$	Trigger	Mistag	
$500 { m ~GeV}$	$100 \mathrm{GeV}$	42	15	
$500 { m GeV}$	$450 \mathrm{GeV}$	42	12	
$1 { m TeV}$	$100 \mathrm{GeV}$	41	11	
$1 { m TeV}$	$950~{ m GeV}$	41	9	
$500 { m GeV}$	$100 {\rm GeV}$	13	22	
$500 { m GeV}$	$400 \mathrm{GeV}$	15	10	
$1 { m TeV}$	$100 \mathrm{GeV}$	12	25	
1 TeV	$900 \mathrm{GeV}$	16	8	

- Further developments underway.
 - Asymmetric toplogy?
 - More inclusive?

Many potential applications.

- Reducing combinatorics.
 - SUSY decay chain, ttbar,
- ISR could be the main component of the signal.
 - Squeezed SUSY spectrum, ...
- Measuring mass
 - ISR spectrum is proportional to the scale of hard interaction.
 - Even more directly:

For any FSR with
$$p_{\bar{T}_i} = \vec{p}_{T_i} \cdot \hat{p}_T^{\text{ISR}}$$
, and assuming M_{test} ,
 $p_{\bar{T}_i} \rightarrow \frac{p_T^{\text{ISR}}}{M_{\text{test}}} E_i + \sqrt{1 + (p_T^{\text{ISR}}/M_{\text{test}})^2} p_{\bar{T}_i}$.

Example: squark pair production

• Produced near threshold, $M_0 \sim 2m_{\tilde{q}}$

Examples: squark pair production

$$\sigma = +1 \ (-1) \text{ if } \sum_{i} p_{\bar{T}_i} > 0 \ (<0), \ \langle \sigma \rangle = \sum_{j=1}^N \sigma_j / N$$

QCD Jets: current and future

- Well established the new improved jet algorithms will be instrumental in new physics discovery.
 - Optimization.
 - LHC experimental groups are testing them.
- More flexible, more dynamical.
- Jet tagging.
 - ISR. q vs g, charge?
- Better theoretical understanding.
 - Factorization

Jet substructure, and applications in new physics searches.

Jet substructure.

• When produced at TeV-scale energies, they have a large boost.

Jets with substructure.

Challenge: distinguishing them from QCD jets (q and g).

When to consider substructure

• Have to consider the boosted objects.

For example, boost tops Brooijmans; Lillie, Randall, LTW; Thaler, LTW; D. Kaplan, K. Reherman, M. Schwartz, B. Tweedie; L. Almeida, S. Lee, G. Perez, G. Sterman, I. Sung, J.Virzi

• It is beneficial to consider the boosted objects.

Lower combinatorics, SM background boost differently.

Butterworth, Davidson, Bubin, Salam

For a summary of recent developments: C.Vermilion, 1001.1335

• Fully collimated tops look like QCD jets.

- Fully collimated tops look like QCD jets.
 - QCD: radiation.

Basic distinction:

• Top decay: $t \to bW(\to qq')$ 3 hard objects.

Zooming in near the first splitting

QCD. Soft radiation:
$$z = \frac{\operatorname{Min}(E_1, E_2)}{E_1 + E_2} \to 0$$

Top. Decay:
$$z = \frac{\operatorname{Min}(E_{W}, E_{b})}{E_{W} + E_{b}} \to \operatorname{finite}$$

- Fully collimated tops look like QCD jets.
 - QCD: radiation.

Basic distinction:

• Top decay: $t \to bW(\to qq')$ 3 hard objects.

Zooming in near the first splitting QCD. Soft radiation: $z = \frac{Min(E_1, E_2)}{E_1 + E_2} \rightarrow 0$ Jet mass: $d\sigma \propto \frac{1}{m_{iet}^2}$

Top. Decay:
$$z = \frac{\operatorname{Min}(E_{W}, E_{b})}{E_{W} + E_{b}} \to \operatorname{finite}$$

Jet mass: $m_{\rm jet} \simeq m_{\rm top}$

- Fully collimated tops look like QCD jets.
 - QCD: radiation.

Basic distinction:

• Top decay: $t \to bW(\to qq')$ 3 hard objects.

Zooming in near the first splitting QCD. Soft radiation: $z = \frac{\operatorname{Min}(E_1, E_2)}{E_1 + E_2} \rightarrow 0$ Jet mass: $d\sigma \propto \frac{1}{m_{jet}^2}$

Top. Decay:
$$z = \frac{\operatorname{Min}(E_{W}, E_{b})}{E_{W} + E_{b}} \to \operatorname{finite}$$

Jet mass: m_{je}

 $m_{\rm jet} \simeq m_{\rm top}$

microscope: jet substructure variables

Help from new jet algorithm

More faithful (smaller) jet mass for the background.

• Effect of radiation contamination on the jet mass

$$\langle \delta M^2 \rangle \simeq (\Lambda_{\text{soft}} + p_{\text{T}}^{\text{ISR}}) p_{\text{T}}^j \left(\frac{(\Delta R)^4}{4} + \dots \right)$$

• Trimming gives large improvement by reducing effective jet size significantly.

Substructure, z-finding rmation:

Jet clustering history is approximately the inverse of parton shower.

Tuesday, July 28, 2009

Top jets vs QCD jets

Top jets vs QCD jets

• Combined cuts on jet mass and z can enhance further the signal with respect to the background.

More jet shape variables.

- Top decay is more like 3-body. Span a "plane" perpendicular to the jet axis.
 - Transverse sphericity, or "planar flow"

Better reconstruction of the jet shape

- Can be used to further improve top tagging. An additional factor of several possible.
- Interesting to compare with improved QCD calculation, using modern technologies such as SCET.

Hiding Higgs.

• Alternative decay channels can dramatically change Higgs search strategy.

 $h \to aa \to 4\tau, \ 4b, \ \overline{b}b\overline{\tau}\tau$

For example: P. Graham, A. Pierce, J. Wacker, hep-ph/0605162 M. Carena, T. Han, G. Huang, C. Wagner, arXiv:0712.2466

 $h \to aa \to c\bar{c}c\bar{c}$, "charmful"? $h \to aa \to gggg$, "buried"!

For example: B. Bellazzini, C. Csaki, A. Falkowski, A. Weiler, arXiv:0910.3210, arXiv:0906.3026

• Why can new jet technology help?

Some preliminary results.

Higgs + Z signal

Z+jet background

Encouraging results.

		σ_{sig} (fb)	σ_{bg} (fb)	S/B	S/\sqrt{B}
	$p_T(j) > 200 \text{ GeV}$	16	30000	0.00052	0.9
	subjet mass	12	19000	0.00062	0.9
s [GeV] balance	Higgs window	7.1	400	0.018	3.6
	$\alpha > 0.7$	4.1	140	0.030	3.5
	$\beta < 0.005, p_T^{\min} = 1 \text{ GeV}$	0.67	0.74	0.90	7.8
	$\beta < 0.005, p_T^{\min} = 5 \mathrm{GeV} \Big $	2.9	2.6	0.11	5.7

 $> 5\sigma$ at 100 fb⁻¹

A. Falkowski, D. Krohn, J. Shelton, A. Thalapillil, and LTW, arXiv:1006.1650

Background

Substructures: current and future

- Boosted (almost) everything already.
- Rather simple techniques. Currently,
 - Combine, optimize, test.
 - LHC experimental groups have started using them.
- New substructure (jet shape).
 - Color flow...
- Better theoretical (QCD) understanding of the substructure.
 - Particularly for the QCD jets.
 - SCET....

Conclusions

- Better handles on the hadronic final states are instrumental for discovery at the LHC.
- Based on consideration of QCD radiation, we proposed a set of carefully constructed new jet algorithms and substructure variables.
 - Much improved performance, jet mass, jet shape, etc.
 - They can significantly enhance new physics signals in many important new physics channels.
 - Boosted or "slow" hadronic tops, WW scattering, Higgs search, heavy squark...
- A promising direction. Stay tuned.

ISR tagging

• Pick: distinct PT

 $\frac{\max(p_{T_i}, p_{T_j})}{\min(p_{T_i}, p_{T_j})} > 2, \ i \neq j$

• Or, distinct rapidity

 $|y_i - y_j| > 1.5, i \neq j$

• Or

$$\frac{\max(\Delta_i, \Delta_j)}{\min(\Delta_i, \Delta_j)} > 1.5, \ \Delta_i = m_i / p_{T_i}$$

- And, not central $|y_i| > 1$
- Separated from others $|y_i y_j| > 0.5$
- FSRs must be similar

Why is it possible to gain?

- MI, UE, and pile-up are incoherent soft background. They can be effectively removed with a cut on soft radiation.
- Both FSR (want to keep) and ISR (want to discard) have soft radiation, but

• ISR:
$$d\sigma \propto \frac{dp_{\rm T}^{\rm ISR}}{p_{\rm T}^{\rm ISR}}$$

• FSR is controlled by both collinear and soft singularities:

$$d\sigma \propto \frac{d(\Delta R)}{\Delta R} \times \frac{dp_{\rm T}^{\rm FSR}}{p_{\rm T}^{\rm FSR}}$$

• Therefore, a soft cut relative to the jet energy flow could enhance FSR relative to ISR.

Planar Flow

$$I_w^{kl} = \sum_i w_i \frac{p_{i,k}}{w_i} \frac{p_{i,l}}{w_i}$$

$$\lambda_1, \ \lambda_2: \ 2 \text{ eigenvalues of } I_w^{kl}$$

$$Pf = \frac{4\lambda_1\lambda_2}{(\lambda_1 + \lambda_2)^2}$$

Top tagging: jet mass

• QCD jets also have mass.

$$\langle M^2 \rangle \simeq \int \frac{d\theta^2}{\theta^2} \int dz \ p_T^2 z (1-z) \theta^2 \ \frac{\alpha_s(p_T)}{2\pi} P(z) \Theta(\Delta R - \theta)$$

 $\simeq C \frac{\alpha_s}{\pi} p_T^2 (\Delta R)^2$

Boosted top is also hard to identify.

• Heavy resonance decay.

•For $m_{t\bar{t}} > 3$ TeV, > 90% events with at least one top fully collimated. •Large fraction of events "2-object"-like. QCD $b\bar{b}$, jj background. •A few % with lepton isolation

B. Lillie, L. Randall, and LTW, hep-ph/0701166 L. Almeida, S. Lee, G. Perez, I. Sung, J.Virzi, arXiv:0810.0934

Top tagging efficiency

J. Thaler and LTW, arXiv:0806.0023.

Performance of different z variables.

Combined cuts

- z-variable gives an additional about factor of 2 enhancement in performance.
- Together with jet mass, an enhancement of 100 of S/B is possible.

Related studies:

D. Kaplan, K. Reherman, M. Schwartz, B. Tweedie, arXiv: 0806.0848. L. Almeida, S. Lee, G. Perez, G. Sterman, I. Sung, J. Virzi, arXiv:0807.0243 Gustaaf H. Brooijmans, arXiv:0802.3715; CMS, CMS PAS JME-09-001

Boosted tops.

- Tops are interesting!
 - Top plays an important role in electroweak symmetry breaking.
 - Top generically couples to heavy new resonances which is an important part of TeV new physics.
 - Examples.
 - Composite top couples strongly to other composite resonances.

Many examples. K.Agashe, A. Delgado, M. May, R. Sundrum, hep-ph/0308036 M. Carena, B. Panes, A. Medina, N. Shah, C. Wagner, arXiv:0706.1281, 0712.0095

• New heavy scalars couple like Higgs.

For example: A. Manohar and M. Wise, hep-ph/0606172

• A good example of subjet techniques.

