# TOPTET

#### W/ THOMAS GREGOIRE (CARLETON) AND AMI KATZ (BOSTON UNIVERSITY)

#### arXiv:1101.1294 [hep-ph]



Top talks EWSB physics EWSB needs new physics Tops talk to new physics

Models addressing fermion mass generation special relation to tops

**COLORFUL EVENTS** 

**Examples** 

Light stop SUSY Little Higgs Randall-Sundrum models Higgsless Colorons...

...and the LHC is a top factory

## but tops are complicated objects



## And many tops are even more challenging



#### combinatorics, multiple b-tagging

That doesn't mean we can't see new physics

 $2SSL, n_b, H_T$ 

can beat SM backgrounds mostly from fakes, e.g.

Tait et al HEP 0804:087,2008. Pierce et al Phys.Rev.D77:095003,2008. Servant et al Les Houches 2009 Serra et al Phys. Rev. D78 (2008) 074026

 $W^+W^- + \text{jets}$ 

But many other proposals for new physics have a similar final state...



## SUSY cascade decays as in lepto-SUSY

de Simone, Fan, VS, Skiba Phys.Rev.D80:035010,2009



So, the key question is...

How do we know that the new physics with

 $2SSL, n_b, H_T$ 

involves tops?

# The challenge is to find a measure of **TOP-NESS**

## Reconstruct tops



Reconstruction in hadronic channels Combinatorics! Cuts or smart strategies to select right combinations example: boosted tops



Reconstruction in hadronic channels Combinatorics! Cuts or smart strategies to select right combinations example: boosted tops We don't want that

**Reconstruction in hadronic channels Combinatorics!** Cuts or smart strategies to select right combinations example: boosted tops We don't want that Early LHC light resonances decay products well separated

#### Backgrounds

 $t\bar{t}$  + jets, W + jets, Z + jets,  $b\bar{b}$  + jets, ...

ALPGENv213 with MLM matching PYTHIAv6.4 PGS (Pretty Good Simulator)v4

## Signals

MadGraph/MadEventv4.4.3 PYTHIAv6.4 PGSv4

## **Counting tops**

Take one jet and call it b-jet (no b-tagging)
 Form all possible combinations jjb
 Apply cuts
 If more than one jjb sharing a jet passes cuts, select the combination with mass closer to the top (ordering)

## **Basic cuts**

At least one lepton (electron, muon) with pT>20 GeV, missing energy > 20 GeV pT jets> 30 GeV, separated 0.4

ATLAS TDR: QCD BG under control

## ATLAS TDR

Table 3: Number of events which pass the various electron selection criteria for the  $t\bar{t}$  signal and for the most relevant backgrounds normalised to 100 pb<sup>-1</sup>.

| Electron analysis      |    |         |          |           |   |                |           |           |
|------------------------|----|---------|----------|-----------|---|----------------|-----------|-----------|
| Sample                 |    | default | W const. | $m_t$ win | ı | W const.       | W const.  | W const.  |
|                        |    |         |          |           |   | + $ \eta  < 1$ | + 1 b-tag | + 2 b-tag |
| tī                     |    | 2555    | 1262     | 561       |   | 303            | 329       | 208       |
| hadronic t             | i  | 11      | 4        | 0.0       | ) | 0.8            | 0.6       | 0.0       |
| W+jets                 |    | 761     | 241      | 60        | ) | 38             | 7         | 1         |
| single top             |    | 183     | 67       | 23        | ; | 12             | 18        | 7         |
| $Z \rightarrow ll$ +je | ts | 115     | 35       | 8         | ; | 5              | 2         | 0.4       |
| W bb                   |    | 44      | 15       | 3         | ; | 5              | 5         | 0.7       |
| $W c\bar{c}$           |    | 19      | 6        | 1         |   | 1              | 0.4       | 0.0       |
| WW                     |    | 7       | 4        | 0.4       | - | 0.0            | 0.0       | 0.0       |
| WZ                     |    | 4       | 1        | 0.4       | - | 0.2            | 0.0       | 0.0       |
| ZZ                     |    | 0.5     | 0.2      | 0.1       |   | 0.0            | 0.0       | 0.0       |
| Signal                 |    | 2555    | 1262     | 561       |   | 303            | 329       | 208       |
| Backgrou               | nd | 1144    | 374      | 90        |   | 63             | 33        | 10        |
| S/B                    |    | 2.2     | 3.4      | 5.8       |   | 4.8            | 10.0      | 20.8      |

We propose an alternative cut

# In the top CM



$$p_{1} = \frac{m_{1b}^{2} + m_{W}^{2}}{2m_{t}}$$

$$p_{2} = \frac{m_{t}^{2} - m_{1b}^{2}}{2m_{t}}$$

$$p_{b} = \frac{m_{t}^{2} - m_{W}^{2}}{2m_{t}}$$

$$\cos \theta_{12} = 1 - \frac{2m_W^2 m_t^2}{(m_{1b}^2 + m_W^2)(m_t^2 - m_{1b}^2)}$$
  
$$\cos \theta_{1b} = 1 - \frac{2m_{1b}^2 m_t^2}{(m_{1b}^2 + m_W^2)(m_t^2 - m_W^2)}$$

We played with all of them c1b and p2 are the most efficient

## Top CM cuts not new

Table 4: Additional cuts applied, after the event selection, for both methods ( $X_i$ ,  $\mu_i$  and  $\sigma_i$  are defined in the text of this section).

| Description                                                                                            |
|--------------------------------------------------------------------------------------------------------|
| $ M_W^{ m rec} - M_W^{PDG}  < 2\Gamma_{M_W}^{PDG}$                                                     |
| $(M_W^{\text{rec}} \text{ is the reconstructed hadronic W and } \Gamma_{M_W}^{PDG} = 2.1 \text{ GeV})$ |
| $ M_W^{\text{rec}} - M_W^{\text{peak}}  < 2\sigma_{M_W} (\sigma_{M_W} = 10.4 \text{ GeV})$             |
| $M(W_{\rm had}, b_{\rm lep}) > 200 { m ~GeV}$                                                          |
| $M(\text{lepton}, b_{\text{lep}}) < 160 \text{ GeV}$                                                   |
| $ X_1 - \mu_1  < 1.5 \sigma_1$                                                                         |
| $ X_2 - \mu_2  < 2\sigma_2$                                                                            |
|                                                                                                        |

ATLAS TDR

 $X_1 = E_W^* - E_b^*$ 

 $X_2 = 2E_b^*$ 

Cuts on the top CM ref frame



## Top CM cuts not new

Table 4: Additional cuts applied, after the event selection, for both methods ( $X_i$ ,  $\mu_i$  and  $\sigma_i$  are defined in the text of this section).

| Cut label                       | Description                                                                                            |
|---------------------------------|--------------------------------------------------------------------------------------------------------|
| Cut C0 ( $\chi^2$ minimization) | $ M_W^{ m rec} - M_W^{PDG}  < 2\Gamma_{M_W}^{PDG}$                                                     |
|                                 | $(M_W^{\text{rec}} \text{ is the reconstructed hadronic W and } \Gamma_{M_W}^{PDG} = 2.1 \text{ GeV})$ |
| Cut C1 (geometric method)       | $ M_W^{\text{rec}} - M_W^{\text{peak}}  < 2\sigma_{M_W} \ (\sigma_{M_W} = 10.4 \text{ GeV})$           |
| Cut C2 (both methods)           | $M(W_{\rm had}, b_{\rm lep}) > 200 { m GeV}$                                                           |
| Cut C3 (both methods)           | $M(\text{lepton}, b_{\text{lep}}) < 160 \text{ GeV}$                                                   |
| Cut C4 (both methods)           | $ X_1 - \mu_1  < 1.5 \sigma_1$                                                                         |
| Cut C5 (both methods)           | $ X_2 - \mu_2  < 2\sigma_2$                                                                            |
| ASTDR                           | $X_1 = E_{11}^* - 1$                                                                                   |
|                                 | $M_{\rm I} = L_{\rm W}$                                                                                |
|                                 | $X_2 = 2E$                                                                                             |

ATLAS TDR

Cuts on the top CM ref frame

Instead we cut on the angle between the b and a light jet



## Resolution in c1b matching parton and post-PGS

Fit: resolution order 0.1

Our strategy: combination of CM-top, invariant mass, njets and Ht cuts



## Test: Compare BGs with and without tops



## Cuts sculpt BGs But very low efficiency for non-top BGs



## Good strategy to pick tops

## Now new physics MC simulation, need to specify model SUSY decay chain light stops



## The real challenge: many tops versus SM ttbar

Simulation: 400 GeV gluino pairs into 4 tops @14 TeV



 $N_{top}$ 

## The real challenge: many tops versus SM ttbar





The real challenge: many tops versus SM ttbar

In the two-tops bin





Conclusion 4tops vs ttbar combination of strategies for each bin

Example, in the Nt=2 bin

$$N_2 = 2$$
 4 tops
  $t\bar{t} + jets$ 
 $\frac{S}{B}$ 
 $\Delta c_{1b} < 0.2$ 
 800
 1500
 0.5

  $\Delta c_{1b} < 0.2, n_j > 8$ 
 150
 3
 50

Note: no b-tagging and no 2SSL cut? Nt=1 + 2SSL cut: eff below 0.005% (our cuts: few percent)



## Finally, a litmus test Take the two-top bin and re-do the analysis but with wrong top mass



## Finally, a litmus test



Finally, a litmus test Behavior is <u>complementary</u>



#### <u>CONCLUSIONS</u>

TOPS: window EWSB, strong production many tops interesting, early physics

here a strategy to measure topness and the top mass no SSL, b-tagging or MET