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Mass measurement 
at Hadron colliders
Many models, particularly those that could be 
responsible for providing dark matter provide 
only “incomplete” event information due to 
one or more missing particles in the event

Reconstruction of such events is a priority, but 
a difficult task 

At the dawn of the LHC, much progress has 
been made, but more needs to be done



Model independence
Methods which are model independent, i.e. which 
exploit on-shell kinematic constraints are ideal

peaks, edges/endpoints, cusps

features of simplified models/topologies

we should search for such features in events with 
missing transverse momentum

the more independent constraints we have, the 
better

nail down spectrum, quantum numbers, rule 
out topology hypotheses
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(a)Visible (b)Semi-invisible

FIG. 1: Two very simple decay topologies.

3. VARIABLES FOR SINGLE CASCADE DECAY CHAINS

3.1. Decays to two visible particles (“two-body visible”)

The simplest examples of kinematic mass reconstruction, e.g in the case of Z → e+e−, are

familiar. The decay topology can be written A → BC (Figure 1a) where capital letters are used to

label particles, and corresponding lower case letters represent their four-momenta. The parent (Z

boson) mass can be obtained from the straightforward construction of the “invariant mass” from

the square of the sum of the visible four-momenta:

m2
bc = (b+ c)2. (8)

One therefore obtains an event-by-event estimator of the Z boson mass, and can form a distribution

which may be calibrated by comparison to calculations and/or Monte Carlo simulations (Figure 2a).

3.2. Decays to a visible and an invisible particle (“two-body semi-invisible”)

A more interesting case, because the final state contains missing information, can be found by

considering leptonic W boson decay (Figure 1b). For W → !ν, the topology is again A → BC,

but the neutrino is essentially invisible. Henceforth we will denote invisible particles with a slash;

writing this now as A → B /C. Although the three-momentum of the neutrino is not observed, its

transverse momentum /cT may typically be inferred from energy momentum conservation in the

transverse plane if there are no other invisible particles in the event. For each event there is some

range of values of mW which are consistent with the observables b, /cT , and the known mass of the

lepton mB and the (negligible) mass of the neutrino m/C . The boundary of the allowed domain is

conveniently found by the explicit construction of the transverse mass, MT [53–57]:

M2
T ≡ m2

B +m2
/C + 2

(
ebe/c − bT · /cT

)
. (9)

The transverse mass, for known daughter masses, has a kinematic edge

(here smeared by resolution effects, off-shell-ness and backgrounds)

Transverse mass
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(b)W boson transverse mass

FIG. 2: (a) Dilepton invariant mass distribution for the process pp̄ → Z/γ → "+"−. From [51]. (b) Trans-

verse mass distribution for pp̄ → W → eν. The W boson mass is determined from a fit to the range indicated

with the double-headed horizontal arrow. From [52].

The (lower case) “transverse energy” quantities e for each particle are defined by

e2 = m2 + p2
T . (10)

These e are equal to the ET quantities (also denoted “transverse energy”) defined in (4) in the

massless limit. That the function in Equation 9 gives the largest value of mW consistent with the

observations is noted in [58, 59]. While the results of hypothesising incorrect values for the mass

of one of the daughter particles are of great interest – and are explored further in Section 4.2 –

one can also obtain a simple but equally important result when the correct values of the daughter

particles masses are assumed. For the true values of mB and m/C and in the approximation where

the widths are narrow and experimental resolutions small, the inequality

MT ≤ mA (11)

is satisfied by construction, with equality when the relative rapidity of the daughter particles van-

ishes. Therefore a histogram of values of MT , for many events with the same topology, should

populate some regions (corresponding to allowed values of mW ) but not other regions, correspond-

ing to disallowed values of mW . The mass could then be determined from the boundary of the

populated region – the kinematic endpoint or edge. In practice, background events, finite-width

effects and experimental resolutions smear the edge, so precise determinations of the W± mass

D0 - 0908.0766
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FIG. 5: An example “dilepton” distribution (taken from [62]) for the topology shown in Figure 4. In this

example, the kinematic endpoint is at approximately 100 GeV.

particles X, Y and Z are fixed. The invariant mass of the visible system, mXY , then depends only

on the angle θ between X and Y . In the limit of small masses of X and Y (which is approximately

true for the dilepton case), the density of states is proportional to mXY up to a maximum at

(mmax
XY )2 =

(m2
A −m2

B)(m
2
B −m2

Z)

m2
B

(12)

when θ = π. Plotting a distribution of mXY one therefore obtains a triangular distribution, such as

the one shown in Figure 5. The maximum endpoint of this distribution can be measured, giving one

constraint on the three variables, mA, mB, and mZ . It is worth noting in this context that while

the endpoint of the sequential two-body decay (12) constrains differences in squared masses, the

equivalent single step three-body decay A → XY Z would have an endpoint at mmax
XY = mA −mZ ,

so would constrain the difference in unsquared masses.

Examples of applications include sensitivity for multiple kinematic endpoints from competing

decay chains [63], calculations of the m!! distribution shapes [15, 20, 64–66], tests of lepton uni-

versality [13, 67, 68], and an examination of pairs of such dilepton chains [69, 70].

If individual lepton flavour numbers are assumed to be conserved then in the dilepton case the

signal can be expected to be found in opposite-sign same-flavour (OSSF) pairs (e+e− and µ+µ−).

Backgrounds from e.g. tt̄ will not have lepton flavour correlations, and so an estimate of the OSSF

background distribution (resulting from such flavour-uncorrelated sources) can be obtained from

the opposite-sign, different flavour (OSDF) e±µ∓ distribution [63].

The di-tau invariant mass was investigated in [71]. This last case is not strictly an example of

“Dilepton” edge - sensitive to mass differences
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FIG. 3: A single particle “A” decaying to three visible particles “B”, “C” and “D”.
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FIG. 4: The “dilepton” decay topology. The particle labelled Z is assumed to be unobserved by the detector.

using this method need to model such effects (see [54, 55] and others subsequently including the

example in fig. 2b).

3.3. Fully visible three-body decays

Techniques for analysing three-body decays of the type shown in Figure 3, i.e. where all three

daughters are visible, can be most conveniently analysed using the tried-and-tested method of

the Dalitz plot [60, 61]. This plot projects the momenta onto a surface (usually {m2
BC ,m

2
BD})

which is uniformly populated for a three-body decay with a constant matrix element. Intermediate

resonances can be observed as bands in these plots for particular values of invariant mass. Angular

momentum multipoles can be determined from the rank of the spherical tensor needed to reproduce

the observed angular distributions.

Attempts to reproduce the desirable features of the Dalitz plot when invisible particles are

unobserved are revisited in Section 5.4.

3.4. The dilepton edge: two successive two-body decays

An example of a hypothesis used for the partial reconstruction of one part of an event is the

topology shown in Figure 4. This is sometimes called the “dilepton” topology, since it was first

studied in the context of the LHC [62] for the case of the supersymmetric decay χ̃0
2 → ql±"̃∓ →

ql±l∓χ̃0
1. The kinematics are most easily studied in the rest-frame of particle B (the slepton in

the example above) in which if the masses are fixed, the sizes of the momenta of the final state

17

0

200

400

600

0 100 200 300 400 500

M
ll
 (GeV)

E
v

e
n

ts
/1

0
 G

e
V

/1
0

 f
b

-1
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example, the kinematic endpoint is at approximately 100 GeV.

particles X, Y and Z are fixed. The invariant mass of the visible system, mXY , then depends only

on the angle θ between X and Y . In the limit of small masses of X and Y (which is approximately

true for the dilepton case), the density of states is proportional to mXY up to a maximum at

(mmax
XY )2 =

(m2
A −m2

B)(m
2
B −m2

Z)

m2
B

(12)

when θ = π. Plotting a distribution of mXY one therefore obtains a triangular distribution, such as

the one shown in Figure 5. The maximum endpoint of this distribution can be measured, giving one

constraint on the three variables, mA, mB, and mZ . It is worth noting in this context that while

the endpoint of the sequential two-body decay (12) constrains differences in squared masses, the

equivalent single step three-body decay A → XY Z would have an endpoint at mmax
XY = mA −mZ ,

so would constrain the difference in unsquared masses.

Examples of applications include sensitivity for multiple kinematic endpoints from competing

decay chains [63], calculations of the m!! distribution shapes [15, 20, 64–66], tests of lepton uni-

versality [13, 67, 68], and an examination of pairs of such dilepton chains [69, 70].

If individual lepton flavour numbers are assumed to be conserved then in the dilepton case the

signal can be expected to be found in opposite-sign same-flavour (OSSF) pairs (e+e− and µ+µ−).

Backgrounds from e.g. tt̄ will not have lepton flavour correlations, and so an estimate of the OSSF

background distribution (resulting from such flavour-uncorrelated sources) can be obtained from

the opposite-sign, different flavour (OSDF) e±µ∓ distribution [63].

The di-tau invariant mass was investigated in [71]. This last case is not strictly an example of

Paige - hep-ph/9609363

Invariant mass of visibles, X,Y (e.g. leptons)
          - distribution sensitive to mass spectrum
          - kinematic edge when angle between X,Y are back-to-back



Early Mass Measurement

constructed to give an approximation to mass of strongly coupled exotica - 
gluinos/squarks - Tovey (hep-ph/0006276)

Peak position sensitive to (unknown) LSP mass

Meff\Mest\HT =
n∑

i=j

!ET + Ejets
T,i
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FIG. 10: Comparison of the Meff distributions for Group
1 MSSM models LM2p (solid red line), CS4d (dashed blue
line) and CS6 (dotted magenta line). For each model 100,000
events were generated then rescaled to 1000 pb−1.
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FIG. 11: Comparison of the HT distributions for Group 1
MSSM models LM2p (solid red line), CS4d (dashed blue
line) and CS6 (dotted magenta line). For each model 100,000
events were generated then rescaled to 1000 pb−1.

• N(M1400) the number of events after selection with
M > 1400 GeV/c2;

• N(M1800) the number of events after selection with
M > 1800 GeV/c2;

For Emiss
T we define four bins and three new inclusive

counts:

• N(MET320), the number of events after selection
having Emiss

T > 320 GeV.
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FIG. 12: Comparison of the distributions of the total invari-
ant mass of jets and muons per event for Group 1 MSSM
models LM2p (solid red line), CS4d (dashed blue line) and
CS6 (dotted magenta line). For each model 100,000 events
were generated then rescaled to 1000 pb−1.
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FIG. 13: Comparison of the Emiss
T distributions for Group

1 MSSM models LM2p (solid red line), CS4d (dashed blue
line) and CS6 (dotted magenta line). For each model 100,000
events were generated then rescaled to 1000 pb−1.

• N(MET420), the number of events after selection
having Emiss

T > 420 GeV.

• N(MET520), the number of events after selection
having Emiss

T > 520 GeV.

Note that the Emiss
T selection already required Emiss

T >
220 GeV.

JH, Lykken, Pierini, Spiropulu 0805.2398 
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FIG. 14: Generic MT2 configuration. The sets labelled B and B′ may correspond to individual particles, or

groups of visibles. In the latter case the visible could result from internal cascade decays within the ‘blobs’.

G labels ‘upstream’ particles, as defined in the text.

daughter (Figure 14). We examine the kinematic constraints for that case, and then go on to

examine more complicated topologies including multi-step cascade decays and non-identical chains.

4.1. Identical semi-invisible pair decays: MT2

We already saw in Section 3.2 that the transverse mass could be applied in circumstances where

there is a single mother particle (frequently the particle whose mass we hope to bound) decaying

in one or more steps ultimately into a single invisible particle (whose mass we may not know) and

one or more visible particles.

The MT2 variable [125] (also known as the stransverse mass) 4

is the analogue of the transverse mass which can be applied in the situations where there are

not one but two parent particles, each undergoing decays to a single invisible particle (whose mass

we may not know) and one or more visible particles. The most general topology of this type may

be seen in Figure 14 while specific examples may be seen in Figure 13.

The usual definition of MT2 in this case written for the general case shown in Figure 14 casts

the variable as a function of six things. The first four are straight-forward, being the invariant

masses (mB and mB′) and the transverse momenta (bT and b′
T ) of the visible final state particles,

or collections thereof, on each side of the event.

The fifth input is the observed missing transverse momentum in the event, often denoted /pT
. If

4 The nick-name “stransverse mass” arose as a shortened form of “supersymmetric transverse mass” as MT2 was
originally applied most frequently to supersymmetric events in cases where the transverse mass was no longer
usable.
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G in Figure 14 is taken to represent the totality of all other visible momenta in the event regardless

of source, then /pT
is equivalent to −(gT + bT + b′

T ). Whether or not /pT
is “useful” is dependent

on how closely it resembles /cT + /c′T , which depends on how many other invisible particles there

are in the event and on the detector reconstruction resolution for gT , bT and b′
T .

The sixth and final input is a pair of hypothesised masses for the invisible particles (m̃/C and

m̃/C
′). To distinguish the real from hypothesised masses, the latter have been given a tilde. In prin-

ciple these two hypothesised masses could be taken to be different from each other (see Section 4.7)

however in practice most studies take them to be identical. When both hypothesised masses are

taken to be identical that common value is often denoted by χ. In these terms, the usual definition

of MT2 is as follows:5

MT2(mB,mB′ ,bT ,b
′
T , /pT

;χ) ≡ min
/cT+/c′T=/pT

{
max

(
MT ,M

′
T

)}
. (16)

where MT is the transverse mass constructed from mB, m̃/C(= χ), bT and /cT , while M ′
T is the

transverse mass constructed from mB′ , m̃/C
′(= χ), b′

T and /c′T , and where the minimisation is over

all hypothesised transverse momenta /cT and /c′T for the invisible particles which sum to the observed

missing transverse momentum. In Equation 16 the dependence on χ (or equivalently on m̃/C and

m̃/C
′ in the case that they differ) has been separated from the dependence on the other inputs by

a semi-colon to emphasise that the quantities to the left of the semi-colon are observables, while

χ to the right is instead a parameter. MT2 might thus be better described not as an observable in

the usual sense, but rather as an “observable function” – in this case a function of χ.

There are many parallels between the stransverse and the transverse mass. Most importantly

(as was first mentioned in section 3.2) the transverse mass can be viewed in two different but

equivalent ways: either as an event-by-event lower bound on the mass of the parent particle (in

terms of a mass hypotheses for the invisible particle), or as a curve delineating the boundary

between the regions of the two-dimensional space of the unknown parent and daughter masses

which are – or are not – consistent with a particular event. The same two interpretations are valid

for the stransverse mass:

In the first interpretation, most frequently used in the case that particles A and A′ (though not

necessarily /C and /C ′) have the same mass, the stransverse mass can be viewed as providing an

5 Computer libraries that can evaluate MT2 may be found in [126] and in [127] The library of [127] can only compute
MT2 using the bisection algorithm of [58], but it is very simple to use and is not dependent on external packages.
It is also distributed as part of the WIMPMASS library [128]. The library of [126] contains algorithms for a larger
number of variables (including MTGen, M2C , etc, as well as a copy of the algorithm in [58, 127]) but depends on
the external Minuit2 library [129, 130].
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daughter (Figure 14). We examine the kinematic constraints for that case, and then go on to

examine more complicated topologies including multi-step cascade decays and non-identical chains.

4.1. Identical semi-invisible pair decays: MT2

We already saw in Section 3.2 that the transverse mass could be applied in circumstances where

there is a single mother particle (frequently the particle whose mass we hope to bound) decaying

in one or more steps ultimately into a single invisible particle (whose mass we may not know) and

one or more visible particles.

The MT2 variable [125] (also known as the stransverse mass) 4

is the analogue of the transverse mass which can be applied in the situations where there are

not one but two parent particles, each undergoing decays to a single invisible particle (whose mass

we may not know) and one or more visible particles. The most general topology of this type may

be seen in Figure 14 while specific examples may be seen in Figure 13.

The usual definition of MT2 in this case written for the general case shown in Figure 14 casts

the variable as a function of six things. The first four are straight-forward, being the invariant

masses (mB and mB′) and the transverse momenta (bT and b′
T ) of the visible final state particles,

or collections thereof, on each side of the event.

The fifth input is the observed missing transverse momentum in the event, often denoted /pT
. If
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originally applied most frequently to supersymmetric events in cases where the transverse mass was no longer
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FIG. 17: The points show how a measured upper bound of the MT2 distribution for pairs of three-body

decays (g̃ → qq̄χ̃0
1) depends on the a prior unknown mass of the invisible particle. The straighter red (more

curved blue) line shows the configuration which is maximal for χ greater than (less than) m/C . The area

above and to the left of both curves gives the domain of allowed values of (mχ̃0
1
,mg̃). Notice the change in

gradient in the envelope curve near (97,780); the coordinate of the position of this kink corresponds to the

masses of the neutralino and the gluino used in the simulation. Adapted from [137].

• Different values of mB, the invariant mass of the visible-particle subsystem, will lead to

different boundary curves in the space (m/C , mA). This mechanism is the dominant source

of the kink seen in fig. 17, where the qq̄ invariant mass changes significantly between events.

Other topologies in which the visible system is a composite constructed from the sum of two

or more visible particles will share this behaviour.

• When one allows the two-parent center-of-mass to be boosted, the extremal boundary curves

correspond to configurations with arbitrarily large parent momenta. The bounding curves

for χ < m/C (χ > m/C) come from events in which the invisible particle is emitted parallel

to (anti-parallel to) the boost direction. Systems with finite boosts have correspondingly

less-pronounced kinks.

The two-parent center-of-mass frame can be expected to have a small transverse boost unless

the parents were themselves created from previous decays, or there was large initial state

radiation. The negative sum of the transverse momenta of the parents – i.e. the momentum

Cho, Choi, Kim 0709.0288

Hemisphere selection and combinatorics

Eg. gluino 3 body decays
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FIG. 2: The event topology we consider.

constraints and unknowns for single chain and multiple chain events. In Sec. III, we give

a more detailed exposition regarding solving the topology of Fig. 2. In Sec. IV, we first

demonstrate how the masses of the Z, Y , X and N particles in Fig. 2 can be very precisely

determined using just a few events if there are no effects associated with combinatorics,

particle momentum measurement resolutions or backgrounds. We then develop the very

crucial strategies for dealing with the realistic situation where combinatorics, resolution

effects and backgrounds are present. We still find good accuracies for all the masses using

only the kinematic information contained in the available events. We study the accuracy of

the mass determinations as a function of the available number of events and as a function of

the signal to background ratio. In sec. V, we compare results for the SUSY and UED cases

and show that the masses determined are independent (to within one to two GeV) of which

model is employed. We summarize and present additional discussion in Sec. VI. Some of

the material in sec. III and sec. IV has appeared in Ref. [7], but is included in the present

article for completeness and to simplify some of the discussions.

II. CONSTRAINTS COUNTING

To begin, it is useful to perform a general counting of observables and constraints for

various different configurations. We consider first the counting when only one decay chain

in the event is considered at a time. We then show the increase in constraints possible if

both decay chains in each event are considered at once.

5

We assume further that the only invisible particles are particles 1 and 2, and thus have two

more constraints,

px1 + px2 = pxmiss, py1 + py2 = pymiss. (10)

There are 8 unknowns in Eqs. (6) through (10), namely, the 4-momenta p1 and p2 of the

missing particles. Therefore the system is underconstrained and we cannot solve the equa-

tions. This situation changes if we add a second event with the same decay chains. Denoting

the 4-momenta in the second events as qi (i = 1 . . . 8), we have 8 more unknowns, q1 and q2,

but 10 more equations,

q21 = q22 = p21, (11)

(q1 + q3)
2 = (q2 + q4)

2 = (p2 + p4)
2, (12)

(q1 + q3 + q5)
2 = (q2 + q4 + q6)

2 = (p2 + p4 + p6)
2, (13)

(q1 + q3 + q5 + q7)
2 = (q2 + q4 + q6 + q8)

2 = (p2 + p4 + p6 + p8)
2, (14)

qx1 + qx2 = qxmiss, qy1 + qy2 = qymiss. (15)

Altogether, we have 16 unknowns and 16 equations. The system can be solved numerically

and we obtain discrete solutions for p1, p2, q1, and q2 and thus the masses mN , mX , mY ,

mZ . Note that the equations always have 8 complex solutions, but we will keep only the real

and positive-energy ones which we simply call “solutions” in the rest of the paper. Thus,

up to a certain number of discrete ambiguities we can determine the Z, Y,X,N masses by

pairing any two signal events. Even a few pairs of events are typically sufficient to eliminate

the discrete ambiguities due to higher order equations. However, effects such as wrong

combinations and solutions, initial and final state radiation, experimental resolutions, and

background events will add complications, which we address in Sec. IV.

The equations (6) through (15) can be easily reduced to 3 quadratic equations plus 13
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FIG. 5: Mass solutions with all effects 1 – 7 included and after cuts I – III for the SPS1a SUSY

model and L = 300 fb−1. All effects incorporated, including backgrounds.

I) 4 isolated leptons with pT > 10 GeV, |η| < 2.5 and matching flavors and charges

consistent with our assumed χ̃0
2 → #̃ → χ̃0

1 decay;

II) No b-jets and ≥ 2 jets with pT > 100 GeV, |η| < 2.5. The 2 highest-pT jets are taken

to be particles 7 and 8;

III) Missing pT > 50 GeV.

For a data sample with 300 fb−1 integrated luminosity, there are about 620 events left after

the above cuts, out of which about 420 are signal events. After taking all possible pairs for

all possible combinations and solving for the masses, we obtain the mass distributions in

Fig. 5.

From Fig. 5, we see that the mass peaks are smeared but still present around the input

masses. The analytical formula for the distributions are unknown, so we estimate the masses

by reading the peak positions. To minimize the effect from statistical fluctuations, we fit

each distribution using a sum of a Gaussian plus a (single) quadratic polynomial and taking

the maximum positions of the fitted peaks as the estimated masses. We will use this function

as the “standard fit” throughout this article. The fitted range is restricted to be above the

half height. The fitted curves are superimposed on the mass distributions in Fig. 5, which

yields {78.4, 134.2, 181.5, 553.9} GeV for the masses. Averaging over 20 different data

samples, we find

mN = 76.7± 2.0 GeV, mX = 134.6± 2.2 GeV,

mY = 178.9± 3.8 GeV, mZ = 561.6± 5.4 GeV. (23)
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These endpoints are a manifestation of the MET-cone
boundaries when projected onto the transverse plane, as
illustrated in Figure 4. However, the advantage of using
the endpoints of mcone

χ1
is that they do not depend on the

specific momentum configuration of X’s.
The mcone

χ1
variable is motivated to approximate the

mass of χ1 through the introduction of test momentum
of χ1 of each decay chain (distinguished by the notation
i = a, b):

"p i, test
χ1

≡ "p i
X mcone

χ1
/mX , (6)

with mcone
χ1

defined for each event by minimization of the
following quantity

∆ "ET (mcone
χ1

) ≡

∣∣∣∣∣∣

∑

i=a,b

(
"p i, test

χ1,T

)
−""p

exp

T

∣∣∣∣∣∣
. (7)

This is an analytic procedure, as this formula is quadratic
in mcone

χ1
. The minimization of ∆"ET (mcone

χ1
) gives Eq. (5)

and (∆"ET )min/"ET = |"pT,x/"ET |. It is easy to see that
these variables mcone

χ1
and (∆"ET )min/ "ET rescale respec-

tively the y and x components of the "ET vector event-
by-event.

The limit (∆"ET )min/"ET → 0 is equivalent to
an alignment condition on the momenta: "p tot

χ1,T →
"p tot

X,T mcone
χ1

/mX . In this limit, one can express mcone
χ1

in
terms of the measurable parameters of the event. The
result can be written as an expansion in the angular sep-
aration between X and χ1 for both sides of the decay
chain, θa,b, in the near-collinear case. In a configuration
where both X’s are in the transverse plane, we obtain a
relatively clean result:

mcone
χ1

≈ mχ1

γχ1
0

γX
0

1 + β βχ1
0 cos θa

0

1− β βX
0 cos θa

0

×
(
1− cot θX

ab cos φaθa + csc θX
ab cos φbθb

)
, (8)

where β and γ refer to the NLSP in the a-chain. The
asymmetry of the above formula in terms of the two
chains is due to assigning γ and β to refer to the NLSP in
the a-chain. Here (θa, φa) are the spherical coordinates
of "p a

χ1
in the lab frame where the z-axis is along the "p a

X ;
θX

ab is the angle between "p a
X and "p b

X . At zeroth order in
the θa,b expansion, the endpoints of mcone

χ1
are given by:

mcone
lower ≈ mχ1

γχ1
0

γX
0

1− βχ1
0

1 + βX
0

mcone
upper ≈ mχ1

γχ1
0

γX
0

1 + βχ1
0

1− βX
0

(9)

The upper and lower values are achieved when θa
0 = 0 and

π respectively, i.e. χ1 moving forward or backward along
the χ2 boost direction in its rest frame. The range of
mcone

χ1
becomes smaller as the phase space for the χ2 de-

cay shrinks. In the relativistic limit, β ∼ 1, the endpoint
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parent χ2 is then given by

tan θχ2X =
βX

0

γ

(
sin θ0

βX
0 cos θ0 + β

)
. (1)

where θ0 is angle between X and χ2 in the rest frame of
χ2, and βX

0 is the velocity of X in the rest frame of χ2:

(βX
0 )2 =

(
m2

χ2
− (mχ1 + mX)2

) (
m2

χ2
− (mχ1 −mX)2

)

(
m2

χ2
+ (m2

X −m2
χ1

)
)2

(2)
The angle takes on values in the range (for βX

0 < β):

0 ≤ tan θχ2X ≤
βX

0

γβ

1√
1− (βX

0 /β)2
γ!1−−−→ βX

0 γX
0

γ
. (3)

The velocity βX
0 is a function of the masses of the three

particles involved, and it characterizes the allowed phase
space of the χ2 decay. The angle θχ2χ1 can be obtained
by exchanging mX with mχ1 in the above equations. An
approximately collinear configuration is achieved either
with large γ $ γX,χ1

0 , or with narrow phase space for the
χ2 decay.

The boost factors of X and χ1 in the lab frame are
given by

γχ1 = γ γχ1
0 (1 + β βχ1

0 cos θ0)
γX = γ γX

0 (1− β βX
0 cos θ0). (4)

The magnitudes of the 3-momenta of X and χ1 in the
lab frame can be written as pχ1 = γχ1βχ1mχ1 and pX =
γXβXmX .

The χ2 boost factor γ is determined by several vari-
ables. As a simple example, we consider a heavy ex-
otic, with mass mQ which decays to a massless SM par-
ticle (e.g. a jet) and the NLSP, with mass mχ2 . For
mQ ∼ 2 TeV and mχ2 ∼ 200 GeV, a boost factor of
γ = 5 is achieved in the rest frame of Q. However, at a
hadron collider the Q particle will be produced with some
transverse as well as longitudinal momentum, providing
a distribution of boost factors. In addition, in multistage
decay chains, the typical boost factors will depend on the
mass spectrum of particles participating in the cascade.

Using Eq.’s (3,4), for a full dual-chain event we can
parametrize the total three-momentum of both χ1 par-
ticles as a function of mχ1 , mχ2 , the momenta of each
X particle %pX

1,2, and 4 angles that characterize the orien-
tation of each X in each χ2 rest frame. Varying those
invisible angles with given mχ1 , mχ2 and %pX

1,2 defines
the kinematically allowed region for the total missing
3-momentum. This can be done numerically by a ran-
dom sampling of the phase space (with a flat prior). We
illustrate this in Figure 2, where we display the region al-
lowed for the MET vector in each event for given NLSP
and LSP masses. We assume an event topology that each
of the two decay chains terminates with the NLSP decay-
ing to a Z-boson plus the LSP. We restrict to a particular

configuration of Z momenta. The y-axis reflects the com-
ponent of the MET vector parallel to the total transverse
momentum of Z-bosons while the x-axis displays the re-
maining MET vector component. As expected, the MET
vector is correlated with the %p tot

Z,T (the vector sum of the
transverse momenta of the two Z bosons) with kinematic
boundaries. More importantly, the MET-cone boundary
is sensitive to the overall mass scale of the underlying the-
ory, not simply the mass splitting, as shown in Figure 2.
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FIG. 2: In this figure we display the MET-cone boundaries for
different NLSP and LSP masses (keeping the mass splitting
constant). The MET vector must lie within the boundary for
particular choices of exotica masses. The Z bosons are in a
configuration where each has boost factor γZ = 5, both lie in
the transverse plane, and are separated by a 90 degree angle.

The mcone
χ1

variable — The MET-cone boundary
found in the previous section depends on the unknown
masses of the exotic particles χ1 and χ2, and for an incor-
rect spectrum hypothesis, some events will have a a MET
vector which lies outside the cone. This can potentially
be used as a method of mass determination [13]. How-
ever, the computation of the boundary is complicated by
the dependence on the specific momentum configuration
of X’s in the two decay chains, and the cone must be com-
puted event-by-event. To avoid this event-by-event anal-
ysis, we consider a variable mcone

χ1
which inherits enough

information from the 2-dimensional MET-cone to deter-
mine the mass spectrum:

mcone
χ1

= &pT,y
mX

|%ptot
X,T |

. (5)

This is simply the MET-vector in a given event, rescaled
by the total 3-momentum of the 2 X particles.

In Figure 3, we show rescaled MET-cones in the mcone
χ1

vs &pT,x/ &ET plane for both a scenario where the mass
splitting is very small, and another where an O(10%)
splitting is assumed. From these figures, one observes
that mcone

χ1
has two approximate endpoints in the small

&pT,x/ &ET region, where the cones with randomly chosen
X momentum configuration all intersect the mcone

χ1
axis.
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parent χ2 is then given by

tan θχ2X =
βX

0

γ

(
sin θ0

βX
0 cos θ0 + β

)
. (1)

where θ0 is angle between X and χ2 in the rest frame of
χ2, and βX

0 is the velocity of X in the rest frame of χ2:

(βX
0 )2 =

(
m2

χ2
− (mχ1 + mX)2

) (
m2

χ2
− (mχ1 −mX)2

)

(
m2

χ2
+ (m2

X −m2
χ1

)
)2

(2)
The angle takes on values in the range (for βX

0 < β):

0 ≤ tan θχ2X ≤
βX

0

γβ

1√
1− (βX

0 /β)2
γ!1−−−→ βX

0 γX
0

γ
. (3)

The velocity βX
0 is a function of the masses of the three

particles involved, and it characterizes the allowed phase
space of the χ2 decay. The angle θχ2χ1 can be obtained
by exchanging mX with mχ1 in the above equations. An
approximately collinear configuration is achieved either
with large γ $ γX,χ1

0 , or with narrow phase space for the
χ2 decay.

The boost factors of X and χ1 in the lab frame are
given by

γχ1 = γ γχ1
0 (1 + β βχ1

0 cos θ0)
γX = γ γX

0 (1− β βX
0 cos θ0). (4)

The magnitudes of the 3-momenta of X and χ1 in the
lab frame can be written as pχ1 = γχ1βχ1mχ1 and pX =
γXβXmX .

The χ2 boost factor γ is determined by several vari-
ables. As a simple example, we consider a heavy ex-
otic, with mass mQ which decays to a massless SM par-
ticle (e.g. a jet) and the NLSP, with mass mχ2 . For
mQ ∼ 2 TeV and mχ2 ∼ 200 GeV, a boost factor of
γ = 5 is achieved in the rest frame of Q. However, at a
hadron collider the Q particle will be produced with some
transverse as well as longitudinal momentum, providing
a distribution of boost factors. In addition, in multistage
decay chains, the typical boost factors will depend on the
mass spectrum of particles participating in the cascade.

Using Eq.’s (3,4), for a full dual-chain event we can
parametrize the total three-momentum of both χ1 par-
ticles as a function of mχ1 , mχ2 , the momenta of each
X particle %pX

1,2, and 4 angles that characterize the orien-
tation of each X in each χ2 rest frame. Varying those
invisible angles with given mχ1 , mχ2 and %pX

1,2 defines
the kinematically allowed region for the total missing
3-momentum. This can be done numerically by a ran-
dom sampling of the phase space (with a flat prior). We
illustrate this in Figure 2, where we display the region al-
lowed for the MET vector in each event for given NLSP
and LSP masses. We assume an event topology that each
of the two decay chains terminates with the NLSP decay-
ing to a Z-boson plus the LSP. We restrict to a particular

configuration of Z momenta. The y-axis reflects the com-
ponent of the MET vector parallel to the total transverse
momentum of Z-bosons while the x-axis displays the re-
maining MET vector component. As expected, the MET
vector is correlated with the %p tot

Z,T (the vector sum of the
transverse momenta of the two Z bosons) with kinematic
boundaries. More importantly, the MET-cone boundary
is sensitive to the overall mass scale of the underlying the-
ory, not simply the mass splitting, as shown in Figure 2.

!mΧ2 , mΧ1 "!280,180"!260,160"!240,140"!220,120"!200,100"

!400 !200 0 200 400 600 800
0

200

400

600

800

1000

1200

1400

!pTmiss"x !GeV"

!p Tmis
s
" y!G

e
V
"

!!pT,x (GeV)

! !p T
,y

(G
eV

)

FIG. 2: In this figure we display the MET-cone boundaries for
different NLSP and LSP masses (keeping the mass splitting
constant). The MET vector must lie within the boundary for
particular choices of exotica masses. The Z bosons are in a
configuration where each has boost factor γZ = 5, both lie in
the transverse plane, and are separated by a 90 degree angle.

The mcone
χ1

variable — The MET-cone boundary
found in the previous section depends on the unknown
masses of the exotic particles χ1 and χ2, and for an incor-
rect spectrum hypothesis, some events will have a a MET
vector which lies outside the cone. This can potentially
be used as a method of mass determination [13]. How-
ever, the computation of the boundary is complicated by
the dependence on the specific momentum configuration
of X’s in the two decay chains, and the cone must be com-
puted event-by-event. To avoid this event-by-event anal-
ysis, we consider a variable mcone

χ1
which inherits enough

information from the 2-dimensional MET-cone to deter-
mine the mass spectrum:

mcone
χ1

= &pT,y
mX

|%ptot
X,T |

. (5)

This is simply the MET-vector in a given event, rescaled
by the total 3-momentum of the 2 X particles.

In Figure 3, we show rescaled MET-cones in the mcone
χ1

vs &pT,x/ &ET plane for both a scenario where the mass
splitting is very small, and another where an O(10%)
splitting is assumed. From these figures, one observes
that mcone

χ1
has two approximate endpoints in the small

&pT,x/ &ET region, where the cones with randomly chosen
X momentum configuration all intersect the mcone

χ1
axis.

mcone
χ1

(GeV)

FIG. 3: In these two plots, we compare the rescaled MET-
cones of two scenarios with decay χ2 → χ1Z, with identical
χ2 mass (200 GeV). In the top (bottom) plot, we take ∆m =
mχ2 − (mχ1 + mZ) = 1 GeV(10 GeV). Different contours
correspond to randomly chosen momentum configurations of
two Z bosons from Monte Carlo events. Note that mtest

χ1 has
two endpoints in the small | #pT,x/#ET | region.

positions approximately determine the unknown masses
mχ1 and mχ2 .

Now let us discuss the non-collinear corrections to the
endpoint positions from Eq. (8). First we note that θa

depends on θa
0 and in the near-collinear case it does not

shift the endpoint positions. The dominant contribu-
tion comes from θb which is independent of θa

0 and gives
rise to a shift of the endpoint position ∆mcone

lower/upper ≈
±mcone

lower/upper csc θX
ab θb. Since θb follows a distribution

determined by the kinematics of the decay, it leads to a
smearing of the distribution near these endpoints. In the
near-collinear case, the variation of θb around the central
value is small, and smearing is minimal.

In the general case where the X’s are not in the trans-
verse plane, one needs to project the MET cone into the
transverse plane and then impose the alignment condi-
tion. One can still express the result in a collinear expan-
sion. The zeroth-order result remains the same as that in
Eq. (8). However, the higher order expansion coefficients
are modified by trigonometric functions expected to be
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parent χ2 is then given by

tan θχ2X =
βX

0

γ

(
sin θ0

βX
0 cos θ0 + β

)
. (1)

where θ0 is angle between X and χ2 in the rest frame of
χ2, and βX

0 is the velocity of X in the rest frame of χ2:

(βX
0 )2 =

(
m2

χ2
− (mχ1 + mX)2

) (
m2

χ2
− (mχ1 −mX)2

)

(
m2

χ2
+ (m2

X −m2
χ1

)
)2

(2)
The angle takes on values in the range (for βX

0 < β):

0 ≤ tan θχ2X ≤
βX

0

γβ

1√
1− (βX

0 /β)2
γ!1−−−→ βX

0 γX
0

γ
. (3)

The velocity βX
0 is a function of the masses of the three

particles involved, and it characterizes the allowed phase
space of the χ2 decay. The angle θχ2χ1 can be obtained
by exchanging mX with mχ1 in the above equations. An
approximately collinear configuration is achieved either
with large γ $ γX,χ1

0 , or with narrow phase space for the
χ2 decay.

The boost factors of X and χ1 in the lab frame are
given by

γχ1 = γ γχ1
0 (1 + β βχ1

0 cos θ0)
γX = γ γX

0 (1− β βX
0 cos θ0). (4)

The magnitudes of the 3-momenta of X and χ1 in the
lab frame can be written as pχ1 = γχ1βχ1mχ1 and pX =
γXβXmX .

The χ2 boost factor γ is determined by several vari-
ables. As a simple example, we consider a heavy ex-
otic, with mass mQ which decays to a massless SM par-
ticle (e.g. a jet) and the NLSP, with mass mχ2 . For
mQ ∼ 2 TeV and mχ2 ∼ 200 GeV, a boost factor of
γ = 5 is achieved in the rest frame of Q. However, at a
hadron collider the Q particle will be produced with some
transverse as well as longitudinal momentum, providing
a distribution of boost factors. In addition, in multistage
decay chains, the typical boost factors will depend on the
mass spectrum of particles participating in the cascade.

Using Eq.’s (3,4), for a full dual-chain event we can
parametrize the total three-momentum of both χ1 par-
ticles as a function of mχ1 , mχ2 , the momenta of each
X particle %pX

1,2, and 4 angles that characterize the orien-
tation of each X in each χ2 rest frame. Varying those
invisible angles with given mχ1 , mχ2 and %pX

1,2 defines
the kinematically allowed region for the total missing
3-momentum. This can be done numerically by a ran-
dom sampling of the phase space (with a flat prior). We
illustrate this in Figure 2, where we display the region al-
lowed for the MET vector in each event for given NLSP
and LSP masses. We assume an event topology that each
of the two decay chains terminates with the NLSP decay-
ing to a Z-boson plus the LSP. We restrict to a particular

configuration of Z momenta. The y-axis reflects the com-
ponent of the MET vector parallel to the total transverse
momentum of Z-bosons while the x-axis displays the re-
maining MET vector component. As expected, the MET
vector is correlated with the %p tot

Z,T (the vector sum of the
transverse momenta of the two Z bosons) with kinematic
boundaries. More importantly, the MET-cone boundary
is sensitive to the overall mass scale of the underlying the-
ory, not simply the mass splitting, as shown in Figure 2.
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FIG. 2: In this figure we display the MET-cone boundaries for
different NLSP and LSP masses (keeping the mass splitting
constant). The MET vector must lie within the boundary for
particular choices of exotica masses. The Z bosons are in a
configuration where each has boost factor γZ = 5, both lie in
the transverse plane, and are separated by a 90 degree angle.

The mcone
χ1

variable — The MET-cone boundary
found in the previous section depends on the unknown
masses of the exotic particles χ1 and χ2, and for an incor-
rect spectrum hypothesis, some events will have a a MET
vector which lies outside the cone. This can potentially
be used as a method of mass determination [13]. How-
ever, the computation of the boundary is complicated by
the dependence on the specific momentum configuration
of X’s in the two decay chains, and the cone must be com-
puted event-by-event. To avoid this event-by-event anal-
ysis, we consider a variable mcone

χ1
which inherits enough

information from the 2-dimensional MET-cone to deter-
mine the mass spectrum:

mcone
χ1

= &pT,y
mX

|%p tot
X,T |

. (5)

This is simply the MET-vector in a given event, rescaled
by the total 3-momentum of the 2 X particles.

In Figure 3, we show rescaled MET-cones in the mcone
χ1

vs &pT,x/ &ET plane for both a scenario where the mass
splitting is very small, and another where an O(10%)
splitting is assumed. From these figures, one observes
that mcone

χ1
has two approximate endpoints in the small

&pT,x/ &ET region, where the cones with randomly chosen
X momentum configuration all intersect the mcone

χ1
axis.

Mass Measurement in Boosted Decay Chains with Missing Energy

Jay Hubisz and Jing Shao
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We explore a novel method of mass reconstruction in events with missing transverse momentum
at hadron colliders. In events with sizeable boost factors in the final steps of dual multi-stage decay
chains, the missing energy particles may each be approximately collinear with a visible standard
model particle, spanning a narrow “MET-cone.” We exploit this collinear approximation, when
applicable, to reconstruct the masses of exotica.

Introduction — The start of the Large Hadron Col-
lider (LHC) at CERN gives hope to the discovery of long-
anticipated TeV scale new physics. In many of these
scenarios, discrete symmetries are motivated by the re-
quirement that higher dimensional operators which con-
tribute to processes such as weak gauge boson form fac-
tors and baryon number violation must be highly sup-
pressed. Such discrete symmetries may simultaneously
be responsible for stabilizing the dark matter compo-
nent of our universe. The typical collider signatures of
such discrete symmetries are characterized by events with
large amounts of missing transverse momentum. The
undetected particles in such events, the lightest parti-
cle charged under the discrete symmetry, complicate the
reconstruction of the masses of new exotica. This is par-
ticularly the case at hadron colliders, where the initial
parton momenta are unknown. There has been recent
substantial progress in mass measurement in such sce-
narios over the past few years (see [1] for a recent review,
and complete citation list). Most of these methods re-
lies on the kinematics of the events and fall into several
broad categories: invariant mass endpoint methods [2–4],
mass relation/polynomial methods [5–8], MT2-like meth-
ods [9–11], and various combinations of them. The ex-
istence of multiple methods is crucial, providing comple-
mentary techniques for extracting information about the
underlying physics model.

In this letter, we explore a conceptually new method
of mass determination that is particularly useful when a
decay chain terminates with the disintegration of a rela-
tively boosted exotic particle to the lightest exotic plus
a visible standard model (SM) particle. 1 Such events
are characteristic of models in which pair produced color
charged exotica are quite heavy, and in which there is
simultaneously a small amount of phase space available
for the NLSP decay. As a motivator for such scenarios, in
the MSSM, the LEP II bound on the higgs mass prefers

1 From here on, we use the semantics of supersymmetry, and re-
fer to the lightest particle charged under the discrete symmetry
as the LSP, and the next lightest as the NLSP. However, our
method is generic, and applies to all TeV scale physics in which
the exotica carry a conserved Z2 charge under which the SM
fields are neutral.

a large top squark mass, or in general TeV scale squark
masses in models with minimal flavor violation. On the
other hand, the neutralinos and charginos can naturally
be light, near the weak-scale and with relatively small
mass splitting.

We consider production of a generic new heavy par-
ticle Q in a collider, which decays in the following way:
Q → · · ·χ2 → · · ·χ1X. Here χ1,2 are the LSP and NLSP
respectively, while X is a SM particle. The set of dots
represents a multiplicity of SM states arising from the in-
termediate stages of the decay chain. This rather general
decay topology is shown in Fig. 1. If the mass difference
between Q and χ2 is large, mQ−mχ2 # mχ2 , the daugh-
ter particle χ2 will often be highly boosted.

We point out that for a given X momentum configura-
tion, there is a kinematic boundary for the missing mo-
mentum. In the case of a boosted decay chain, the total
missing momentum is constrained to lie in a narrow cone
around the total X momentum, which we call the MET-
cone. This observation is the central focus of this letter,
and motivates the construction of a simple variable which
contains information about the mass spectrum. We begin
with a brief discussion of collinearity and its dependence
on the mass parameters. 2

New (colored) particle is expected to be in TeV scale, but (non-
colored) particle can be light ~ O(100) GeV

        SUSY Little Hierarchy: LEPII higgs mass bound push up the scalar 
mass to TeV scale

The last step decay starting from the heavier (colored) particle can be 
boosted

Large boost : X and χ1 collinear  or

Boosted Decay
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FIG. 1: A schematic picture of a boosted decay chain.

Collinearity and the MET-Cone — The kinemat-
ics of two-body χ2 decays are straightforward. We take
the χ2 particle to have relativistic boost factor γ and
velocity β in the lab frame. The angle θχ2X between
the visible particle X and the direction of motion of the
parent χ2 is then given by

tan θχ2X =
βX
0

γ

(
sin θ0

βX
0 cos θ0 + β

)
. (1)

2 There is a recent study [12] which also uses boosted decays for
mass measurement, but in a quite different way.
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Going backwards

!pX

!pχ1

Can start with pX for given NLSP, LSP masses, 
then find allowed range for LSP momentum

Spheroid parametrized by rest-frame angles
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θ0 = 0 θ0 = π



The Shape of MET

MET cone

!p tot
χ1

!p a
χ1

!p a
Xθa

!p b
χ1

!p b
X

θb

!p tot
X

Each MET particle momentum resides on a surface
        - shape determined by NLSP-LSP spectrum and corresponding X-momenta

Total MET particle momentum vector resides in blob
    - total missing momentum resides in projection of blob onto transverse plane
    - blob obtained by varying over 4 rest-frame angles
    - boundaries determined purely by kinematics



The “MET-Cone” 4

MET cone

Transverse Plane

!p tot
χ1

!p tot
X

!p tot
χ1,T!p tot

X,T

mcone
upper mcone

lower

FIG. 4: Illustration of the MET cone and its relation to the
mcone

χ1 endpoints.

of order one.
In summary, if the endpoint positions of the mcone

χ1
dis-

tribution are measured from the data, we can find so-
lutions for the masses of the LSP and NLSP using the
relation in Eq. (9).

Numerical Results — We now explore the effective-
ness of the mcone

χ1
method using Monte Carlo simulation.

We consider squark pair production q̃Lq̃L followed by the
decays q̃L → qχ̃2 → qχ̃1Z in SUSY models. We consider
the four spectra shown in Table I. For each of these

Model mχ1 mχ2 mq̃L (mcone
lower)

theo (mcone
upper)

theo

1 100 200 1000 54.6 183.2

2 100 250 1250 21.6 463.0

3 200 300 1000 117.9 339.2

4 200 350 1250 52.6 761.0

TABLE I: The relevant masses in four SUSY models and the
expected endpoints (mcone

lower)
theo and (mcone

upper)
theo. Masses are

given in GeV.

models, we simulate 20k events of squark pair produc-
tion and decay in pp collisions at

√
s = 14 TeV in Mad-

Graph [14] using the 2→ 6 matrix element. We assume
the four-momentum of each Z boson is perfectly recon-
structed (i.e. from leptonic final states). We leave a more
detailed analysis including more realistic reconstructions
for a later publication. In addition, as a test of princi-
ple, we do not include the possible SM backgrounds. For
the channel with 4 leptons, 2 jets and the large MET
required here, the SM background is negligible.

In our analysis, events are selected according to the
parton-level cuts as follows:

• at least two Z bosons with pT > 50 GeV and |η| < 3

• missing energy #ET > 200 GeV

• η of total Z three-momentum
∣∣ηZ,tot

∣∣ < 1

• opening angle of two Z bosons 60◦ < θZ
ab < 120◦

• |#pT,x/ #ET | < 0.15

The θZ
ab cut is to ensure the coefficients in the θa,b ex-

pansion in Eq. (8) are not too large, which would oth-
erwise obscure the endpoints. The cut on |#pT,x/#ET | is
to select those events where the MET vector is closely
aligned with the total transverse momentum of two Z-
bosons. For Models 2 and 4, we have slightly loosened
the selection cuts in order to get better statistics near
the tail of the distribution: a) | #pT,x/#ET | < 0.2 for Model
2 and 4. b) |ηZ,tot| < 3 for Model 4.
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FIG. 5: Top: The distributions of mcone
χ1 for Model 1 and 2.

For Model 2, we have normalized the distribution by a factor
of two. The fitting region for model 1 is 40−60 GeV and 120−
200 GeV; for model 2, it is 10− 30 GeV and 250− 400 GeV.
Bottom: The distributions of mcone

χ1 for Model 3 and 4. To
show the endpoint better, we have used the logarithmic scale.

In Fig. 5, we show the mcone
χ1

distribution for Models
1 and 2. Models 3 and 4 are very similar. For Model 1,
we can see that the distribution is approximately a trian-
gle with two endpoints at around 50 and 200 GeV. The
shape of the distribution near each endpoint is slightly
smeared due to deviations from collinearity. A simple
way to extract these endpoints can be achieved by a lin-
ear fit and taking the x-intercept. This would typically
under-estimate mcone

lower while over-estimating mcone
upper. In

our analysis, we take the position at the half maximum
near the lower edge for mcone

lower to get a better estima-
tion. For the upper endpoint, we use the x-intercept of

Projection of the blob 
onto the transverse plane
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2

where θ0 is angle between X and χ2 in the rest frame of
χ2, and βX

0 is the velocity of X in the rest frame of χ2.
The angle takes on values in the range (for βX

0 < β):

0 ≤ tan θχ2X ≤ βX
0

γβ

1√
1− (βX

0 /β)2
γ!1−−−→ βX

0 γX
0

γ
. (2)

The velocity βX
0 is a function of the masses of the three

particles involved, and it characterizes the allowed phase
space of the χ2 decay. The angle θχ2χ1 can be obtained
by exchanging mX with mχ1 in the above equations. A
collinear configuration is achieved with a large γ, and
with narrow phase space for the χ2 decay.

The χ2 boost factor is determined by several variables.
As a simple example, we consider a heavy exotic, with
mass mQ which decays to a massless SM particle (e.g. a
jet) and the NLSP, with mass mχ2 . For mQ ∼ 2 TeV
and mχ2 ∼ 200 GeV, a boost factor of γ = 5 is achieved
in the rest frame of Q. However, at a hadron collider the
Q particle will be produced with some transverse as well
as longitudinal momentum, providing a distribution of
boost factors. In addition, in multistage decay chains, the
typical boost factors will depend on the mass spectrum
of particles participating in the cascade.

The boost factors of X and χ1 in the lab frame are
given by

γχ1, X = γ γχ1, X
0 (1± β βχ1, X

0 cos θ0) (3)

The magnitudes of the 3-momenta of X and χ1 in the
lab frame can be written as pχ1 = γχ1βχ1mχ1 and pX =
γXβXmX .

Eq.’s (2,3), define a kinematic boundary on the con-
tribution of one χ1 to the total %ET . These kinematic
endpoints persist when there are two χ1 particles in a
single event. We illustrate this in Figure 2, where we
display the region allowed for the total %ET vector in each
event for given NLSP and LSP masses. We assume an
event topology where all %ET arises from two χ1 particles
(i.e. there are no neutrinos in the event), and that each
of the two decay chains terminates with the NLSP decay-
ing to a Z-boson plus the LSP. We restrict to a particular
configuration of Z momenta. The y-axis reflects the com-
ponent of the %ET vector parallel to the total transverse
Z-momentum while the x-axis displays the remaining %ET

vector component. As expected, the total %ET vector is
correlated with the Z-momenta, with kinematic bound-
aries determined by the mass spectrum of the underlying
theory.

The mtest
χ1

variable — We utilize the collinear limit
to inspire a test variable whose distribution yields the
masses of the exotica. In the case of small mass splitting,
∆m = mχ2 − mχ1 − mX , the decay products are not
significantly relativistic in the rest-frame of the parent,
χ2. Thus in the lab frame, where the χ2 has relativistic
velocity, the boost factors of all three particles are nearly
the same, and the χ1 particles are closely aligned with
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FIG. 2: In this figure we display the MET-cone boundary for
different NLSP and LSP masses (keeping the mass splitting
constant). The total !ET vector must lie within the boundary
for particular choices of exotica masses. The Z bosons are in
a configuration where each has boost factor 5, both lie in the
transverse plane, and are separated by a 90 degree angle.

the X-momenta. With this scenario as our motivation,
we define “test” missing 3-momenta as

%%p
a,b

test ≡ %p a,b
X

mtest
χ1

mX
, (4)

with mtest
χ1

defined for each event by minimization of the
following quantity:

∆ %E2
T (m

test
χ1

) =
∣∣∣%%p

T,total

test −%%p
T

exp

∣∣∣
2

. (5)

This is an analytic procedure, as this formula is quadratic
in mtest

χ1
. The minimization results are given by mtest

χ1
=

mX
%%pT,y/p

tot
X,T and ∆%Emin

T /%ET =
∣∣∣%%pT,x/%ET

∣∣∣. The vari-

ables mtest
χ1

and ∆%Emin
T /%ET rescale respectively the y and

x components of the %ET vector event-by-event.

As a means of quality control, we veto signal events
in which ∆%Emin

T /%ET > ε, for some sufficiently small ε.
The efficiency of such a cut is itself a rough measure of
the mass splitting. In Figure 3, we show rescaled MET-
cones in themtest

χ1
vs∆ %Emin

T /%ET plane for both a scenario
where the mass splitting is very small, and another where
an O(10%) splitting is assumed. From these figures, one
observes that mtest

χ1
has two approximate endpoints in

the small ∆ %Emin
T / %ET region, where the cones all inter-

sect the mtest
χ1

axis. These endpoints are a manifestation
of the MET-cone boundaries when projected onto the
transverse plane, as illustrated in Figure 4.

The limit ε → 0 is equivalent to an alignment condition
on the momenta: %p T,total

χ1
→ %p T,total

X mtest
χ1

/mX . In this
limit, one can express mtest

χ1
in terms of the measurable

parameters of the event. The result can be written as
an expansion in the angular separation between X and
χ1 for both sides of the decay chain, θa,b, in the near-
collinear case. In a configuration where both X’s are in

Two Z’s in transverse plane, relative angle of pi/2, both with boost factor of 5

χ2 → χ1Z

Cone boundaries shown for identical mass splittings, different overall mass scale
MET vector inconsistent with some mass hypotheses



What SHOULD we do
For every event, find the allowed region in the 
NLSP-LSP mass plane.

Choose the point in this plane which minimally 
encloses every MET vector with a MET-cone

like shrink-wrap

This is doable, but rather time consuming and 
computationally intensive

we (for now) study a quick and dirty way to 
access the MET cone information



The mcone variable

2

parent χ2 is then given by

tan θχ2X =
βX

0

γ

(
sin θ0

βX
0 cos θ0 + β

)
. (1)

where θ0 is angle between X and χ2 in the rest frame of
χ2, and βX

0 is the velocity of X in the rest frame of χ2:

(βX
0 )2 =

(
m2

χ2
− (mχ1 + mX)2

) (
m2

χ2
− (mχ1 −mX)2

)

(
m2

χ2
+ (m2

X −m2
χ1

)
)2

(2)
The angle takes on values in the range (for βX

0 < β):

0 ≤ tan θχ2X ≤
βX

0

γβ

1√
1− (βX

0 /β)2
γ!1−−−→ βX

0 γX
0

γ
. (3)

The velocity βX
0 is a function of the masses of the three

particles involved, and it characterizes the allowed phase
space of the χ2 decay. The angle θχ2χ1 can be obtained
by exchanging mX with mχ1 in the above equations. An
approximately collinear configuration is achieved either
with large γ $ γX,χ1

0 , or with narrow phase space for the
χ2 decay.

The boost factors of X and χ1 in the lab frame are
given by

γχ1 = γ γχ1
0 (1 + β βχ1

0 cos θ0)
γX = γ γX

0 (1− β βX
0 cos θ0). (4)

The magnitudes of the 3-momenta of X and χ1 in the
lab frame can be written as pχ1 = γχ1βχ1mχ1 and pX =
γXβXmX .

The χ2 boost factor γ is determined by several vari-
ables. As a simple example, we consider a heavy ex-
otic, with mass mQ which decays to a massless SM par-
ticle (e.g. a jet) and the NLSP, with mass mχ2 . For
mQ ∼ 2 TeV and mχ2 ∼ 200 GeV, a boost factor of
γ = 5 is achieved in the rest frame of Q. However, at a
hadron collider the Q particle will be produced with some
transverse as well as longitudinal momentum, providing
a distribution of boost factors. In addition, in multistage
decay chains, the typical boost factors will depend on the
mass spectrum of particles participating in the cascade.

Using Eq.’s (3,4), for a full dual-chain event we can
parametrize the total three-momentum of both χ1 par-
ticles as a function of mχ1 , mχ2 , the momenta of each
X particle %pX

1,2, and 4 angles that characterize the orien-
tation of each X in each χ2 rest frame. Varying those
invisible angles with given mχ1 , mχ2 and %pX

1,2 defines
the kinematically allowed region for the total missing
3-momentum. This can be done numerically by a ran-
dom sampling of the phase space (with a flat prior). We
illustrate this in Figure 2, where we display the region al-
lowed for the MET vector in each event for given NLSP
and LSP masses. We assume an event topology that each
of the two decay chains terminates with the NLSP decay-
ing to a Z-boson plus the LSP. We restrict to a particular

configuration of Z momenta. The y-axis reflects the com-
ponent of the MET vector parallel to the total transverse
momentum of Z-bosons while the x-axis displays the re-
maining MET vector component. As expected, the MET
vector is correlated with the %p tot

Z,T (the vector sum of the
transverse momenta of the two Z bosons) with kinematic
boundaries. More importantly, the MET-cone boundary
is sensitive to the overall mass scale of the underlying the-
ory, not simply the mass splitting, as shown in Figure 2.
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FIG. 2: In this figure we display the MET-cone boundaries for
different NLSP and LSP masses (keeping the mass splitting
constant). The MET vector must lie within the boundary for
particular choices of exotica masses. The Z bosons are in a
configuration where each has boost factor γZ = 5, both lie in
the transverse plane, and are separated by a 90 degree angle.

The mcone
χ1

variable — The MET-cone boundary
found in the previous section depends on the unknown
masses of the exotic particles χ1 and χ2, and for an incor-
rect spectrum hypothesis, some events will have a a MET
vector which lies outside the cone. This can potentially
be used as a method of mass determination [13]. How-
ever, the computation of the boundary is complicated by
the dependence on the specific momentum configuration
of X’s in the two decay chains, and the cone must be com-
puted event-by-event. To avoid this event-by-event anal-
ysis, we consider a variable mcone

χ1
which inherits enough

information from the 2-dimensional MET-cone to deter-
mine the mass spectrum:

mcone
χ1

= &pT,y
mX

|%p tot
X,T |

. (5)

This is simply the MET-vector in a given event, rescaled
by the total 3-momentum of the 2 X particles.

In Figure 3, we show rescaled MET-cones in the mcone
χ1

vs &pT,x/ &ET plane for both a scenario where the mass
splitting is very small, and another where an O(10%)
splitting is assumed. From these figures, one observes
that mcone

χ1
has two approximate endpoints in the small

&pT,x/ &ET region, where the cones with randomly chosen
X momentum configuration all intersect the mcone

χ1
axis.

!p a,b
χ1

= !p a,b
X

mχ1

mX

Consider the zero-splitting limit 
            -tiny phase space for NLSP decay
            -far collinear limit (MET cones shrink to points)

!p tot
χ1

= !p tot
X

mχ1

mX
=⇒

3

These endpoints are a manifestation of the MET-cone
boundaries when projected onto the transverse plane, as
illustrated in Figure 4. However, the advantage of using
the endpoints of mcone

χ1
is that they do not depend on the

specific momentum configuration of X’s.
The mcone

χ1
variable is motivated to approximate the

mass of χ1 through the introduction of test momentum
of χ1 of each decay chain (distinguished by the notation
i = a, b):

"p i, test
χ1

≡ "p i
X mcone

χ1
/mX , (6)

with mcone
χ1

defined for each event by minimization of the
following quantity

∆ "ET (mcone
χ1

) ≡

∣∣∣∣∣∣

∑

i=a,b

(
"p i, test

χ1,T

)
−""p

exp

T

∣∣∣∣∣∣
. (7)

This is an analytic procedure, as this formula is quadratic
in mcone

χ1
. The minimization of ∆"ET (mcone

χ1
) gives Eq. (5)

and (∆"ET )min/"ET = |"pT,x/"ET |. It is easy to see that
these variables mcone

χ1
and (∆"ET )min/ "ET rescale respec-

tively the y and x components of the "ET vector event-
by-event.

The limit (∆"ET )min/"ET → 0 is equivalent to
an alignment condition on the momenta: "p tot

χ1,T →
"p tot

X,T mcone
χ1

/mX . In this limit, one can express mcone
χ1

in
terms of the measurable parameters of the event. The
result can be written as an expansion in the angular sep-
aration between X and χ1 for both sides of the decay
chain, θa,b, in the near-collinear case. In a configuration
where both X’s are in the transverse plane, we obtain a
relatively clean result:

mcone
χ1

≈ mχ1

γχ1
0

γX
0

1 + β βχ1
0 cos θa

0

1− β βX
0 cos θa

0

×
(
1− cot θX

ab cos φaθa + csc θX
ab cos φbθb

)
, (8)

where β and γ refer to the NLSP in the a-chain. The
asymmetry of the above formula in terms of the two
chains is due to assigning γ and β to refer to the NLSP in
the a-chain. Here (θa, φa) are the spherical coordinates
of "p a

χ1
in the lab frame where the z-axis is along the "p a

X ;
θX

ab is the angle between "p a
X and "p b

X . At zeroth order in
the θa,b expansion, the endpoints of mcone

χ1
are given by:

mcone
lower ≈ mχ1

γχ1
0

γX
0

1− βχ1
0

1 + βX
0

mcone
upper ≈ mχ1

γχ1
0

γX
0

1 + βχ1
0

1− βX
0

(9)

The upper and lower values are achieved when θa
0 = 0 and

π respectively, i.e. χ1 moving forward or backward along
the χ2 boost direction in its rest frame. The range of
mcone

χ1
becomes smaller as the phase space for the χ2 de-

cay shrinks. In the relativistic limit, β ∼ 1, the endpoint
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FIG. 3: In these two plots, we compare the rescaled MET-
cones of two scenarios with decay χ2 → χ1Z, with identical
χ2 mass (200 GeV). In the top (bottom) plot, we take ∆m =
mχ2 − (mχ1 + mZ) = 1 GeV(10 GeV). Different contours
correspond to randomly chosen momentum configurations of
two Z bosons from Monte Carlo events. Note that mtest

χ1 has
two endpoints in the small | #pT,x/#ET | region.

positions approximately determine the unknown masses
mχ1 and mχ2 .

Now let us discuss the non-collinear corrections to the
endpoint positions from Eq. (8). First we note that θa

depends on θa
0 and in the near-collinear case it does not

shift the endpoint positions. The dominant contribu-
tion comes from θb which is independent of θa

0 and gives
rise to a shift of the endpoint position ∆mcone

lower/upper ≈
±mcone

lower/upper csc θX
ab θb. Since θb follows a distribution

determined by the kinematics of the decay, it leads to a
smearing of the distribution near these endpoints. In the
near-collinear case, the variation of θb around the central
value is small, and smearing is minimal.

In the general case where the X’s are not in the trans-
verse plane, one needs to project the MET cone into the
transverse plane and then impose the alignment condi-
tion. One can still express the result in a collinear expan-
sion. The zeroth-order result remains the same as that in
Eq. (8). However, the higher order expansion coefficients
are modified by trigonometric functions expected to be

3

These endpoints are a manifestation of the MET-cone
boundaries when projected onto the transverse plane, as
illustrated in Figure 4. However, the advantage of using
the endpoints of mcone

χ1
is that they do not depend on the

specific momentum configuration of X’s.
The mcone

χ1
variable is motivated to approximate the

mass of χ1 through the introduction of test momentum
of χ1 of each decay chain (distinguished by the notation
i = a, b):

"p i, test
χ1

≡ "p i
X mcone

χ1
/mX , (6)

with mcone
χ1

defined for each event by minimization of the
following quantity

∆ "ET (mcone
χ1

) ≡

∣∣∣∣∣∣

∑

i=a,b

(
"p i, test

χ1,T

)
−""p

exp

T

∣∣∣∣∣∣
. (7)

This is an analytic procedure, as this formula is quadratic
in mcone

χ1
. The minimization of ∆"ET (mcone

χ1
) gives Eq. (5)

and (∆"ET )min/"ET = |"pT,x/"ET |. It is easy to see that
these variables mcone

χ1
and (∆"ET )min/ "ET rescale respec-

tively the y and x components of the "ET vector event-
by-event.

The limit (∆"ET )min/"ET → 0 is equivalent to
an alignment condition on the momenta: "p tot

χ1,T →
"p tot

X,T mcone
χ1

/mX . In this limit, one can express mcone
χ1

in
terms of the measurable parameters of the event. The
result can be written as an expansion in the angular sep-
aration between X and χ1 for both sides of the decay
chain, θa,b, in the near-collinear case. In a configuration
where both X’s are in the transverse plane, we obtain a
relatively clean result:

mcone
χ1

≈ mχ1

γχ1
0

γX
0

1 + β βχ1
0 cos θa

0

1− β βX
0 cos θa

0

×
(
1− cot θX

ab cos φaθa + csc θX
ab cos φbθb

)
, (8)

where β and γ refer to the NLSP in the a-chain. The
asymmetry of the above formula in terms of the two
chains is due to assigning γ and β to refer to the NLSP in
the a-chain. Here (θa, φa) are the spherical coordinates
of "p a

χ1
in the lab frame where the z-axis is along the "p a

X ;
θX

ab is the angle between "p a
X and "p b

X . At zeroth order in
the θa,b expansion, the endpoints of mcone

χ1
are given by:
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The upper and lower values are achieved when θa
0 = 0 and

π respectively, i.e. χ1 moving forward or backward along
the χ2 boost direction in its rest frame. The range of
mcone

χ1
becomes smaller as the phase space for the χ2 de-

cay shrinks. In the relativistic limit, β ∼ 1, the endpoint
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FIG. 3: In these two plots, we compare the rescaled MET-
cones of two scenarios with decay χ2 → χ1Z, with identical
χ2 mass (200 GeV). In the top (bottom) plot, we take ∆m =
mχ2 − (mχ1 + mZ) = 1 GeV(10 GeV). Different contours
correspond to randomly chosen momentum configurations of
two Z bosons from Monte Carlo events. Note that mtest

χ1 has
two endpoints in the small | #pT,x/#ET | region.

positions approximately determine the unknown masses
mχ1 and mχ2 .

Now let us discuss the non-collinear corrections to the
endpoint positions from Eq. (8). First we note that θa

depends on θa
0 and in the near-collinear case it does not

shift the endpoint positions. The dominant contribu-
tion comes from θb which is independent of θa

0 and gives
rise to a shift of the endpoint position ∆mcone

lower/upper ≈
±mcone

lower/upper csc θX
ab θb. Since θb follows a distribution

determined by the kinematics of the decay, it leads to a
smearing of the distribution near these endpoints. In the
near-collinear case, the variation of θb around the central
value is small, and smearing is minimal.

In the general case where the X’s are not in the trans-
verse plane, one needs to project the MET cone into the
transverse plane and then impose the alignment condi-
tion. One can still express the result in a collinear expan-
sion. The zeroth-order result remains the same as that in
Eq. (8). However, the higher order expansion coefficients
are modified by trigonometric functions expected to be

Minimize this and get

Define a “test MET” as function of new variable
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Deviations from collinearity
mcone ≈ mχ1

γχ1
0

γX
0

1 + βa βχ1
0 cos θa0

1− βa βX
0 cos θa0

(
1− cot θXab cosφ

aθa + csc θXab cosφ
bθb

)

lab frame velocity of NLSP

For relativistic NLSP this has endpoints at extremal 
values of rest-frame angle:

3

These endpoints are a manifestation of the MET-cone
boundaries when projected onto the transverse plane, as
illustrated in Figure 4. However, the advantage of using
the endpoints of mcone

χ1
is that they do not depend on the

specific momentum configuration of X’s.
The mcone

χ1
variable is motivated to approximate the

mass of χ1 through the introduction of test momentum
of χ1 of each decay chain (distinguished by the notation
i = a, b):

"p i, test
χ1

≡ "p i
X mcone

χ1
/mX , (6)

with mcone
χ1

defined for each event by minimization of the
following quantity

∆ "ET (mcone
χ1

) ≡

∣∣∣∣∣∣

∑

i=a,b

(
"p i, test

χ1,T

)
−""p

exp

T

∣∣∣∣∣∣
. (7)

This is an analytic procedure, as this formula is quadratic
in mcone

χ1
. The minimization of ∆"ET (mcone

χ1
) gives Eq. (5)

and (∆"ET )min/"ET = |"pT,x/"ET |. It is easy to see that
these variables mcone

χ1
and (∆"ET )min/ "ET rescale respec-

tively the y and x components of the "ET vector event-
by-event.

The limit (∆"ET )min/"ET → 0 is equivalent to
an alignment condition on the momenta: "p tot

χ1,T →
"p tot

X,T mcone
χ1

/mX . In this limit, one can express mcone
χ1

in
terms of the measurable parameters of the event. The
result can be written as an expansion in the angular sep-
aration between X and χ1 for both sides of the decay
chain, θa,b, in the near-collinear case. In a configuration
where both X’s are in the transverse plane, we obtain a
relatively clean result:

mcone
χ1

≈ mχ1

γχ1
0

γX
0

1 + β βχ1
0 cos θa

0

1− β βX
0 cos θa

0

×
(
1− cot θX

ab cos φaθa + csc θX
ab cos φbθb

)
, (8)

where β and γ refer to the NLSP in the a-chain. The
asymmetry of the above formula in terms of the two
chains is due to assigning γ and β to refer to the NLSP in
the a-chain. Here (θa, φa) are the spherical coordinates
of "p a

χ1
in the lab frame where the z-axis is along the "p a

X ;
θX

ab is the angle between "p a
X and "p b

X . At zeroth order in
the θa,b expansion, the endpoints of mcone

χ1
are given by:

mcone
lower ≈ mχ1

γχ1
0

γX
0

1− βχ1
0

1 + βX
0

mcone
upper ≈ mχ1

γχ1
0

γX
0

1 + βχ1
0

1− βX
0

(9)

The upper and lower values are achieved when θa
0 = 0 and

π respectively, i.e. χ1 moving forward or backward along
the χ2 boost direction in its rest frame. The range of
mcone

χ1
becomes smaller as the phase space for the χ2 de-

cay shrinks. In the relativistic limit, β ∼ 1, the endpoint
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parent χ2 is then given by

tan θχ2X =
βX

0

γ

(
sin θ0

βX
0 cos θ0 + β

)
. (1)

where θ0 is angle between X and χ2 in the rest frame of
χ2, and βX

0 is the velocity of X in the rest frame of χ2:

(βX
0 )2 =

(
m2

χ2
− (mχ1 + mX)2

) (
m2

χ2
− (mχ1 −mX)2

)

(
m2

χ2
+ (m2

X −m2
χ1

)
)2

(2)
The angle takes on values in the range (for βX

0 < β):

0 ≤ tan θχ2X ≤
βX

0

γβ

1√
1− (βX

0 /β)2
γ!1−−−→ βX

0 γX
0

γ
. (3)

The velocity βX
0 is a function of the masses of the three

particles involved, and it characterizes the allowed phase
space of the χ2 decay. The angle θχ2χ1 can be obtained
by exchanging mX with mχ1 in the above equations. An
approximately collinear configuration is achieved either
with large γ $ γX,χ1

0 , or with narrow phase space for the
χ2 decay.

The boost factors of X and χ1 in the lab frame are
given by

γχ1 = γ γχ1
0 (1 + β βχ1

0 cos θ0)
γX = γ γX

0 (1− β βX
0 cos θ0). (4)

The magnitudes of the 3-momenta of X and χ1 in the
lab frame can be written as pχ1 = γχ1βχ1mχ1 and pX =
γXβXmX .

The χ2 boost factor γ is determined by several vari-
ables. As a simple example, we consider a heavy ex-
otic, with mass mQ which decays to a massless SM par-
ticle (e.g. a jet) and the NLSP, with mass mχ2 . For
mQ ∼ 2 TeV and mχ2 ∼ 200 GeV, a boost factor of
γ = 5 is achieved in the rest frame of Q. However, at a
hadron collider the Q particle will be produced with some
transverse as well as longitudinal momentum, providing
a distribution of boost factors. In addition, in multistage
decay chains, the typical boost factors will depend on the
mass spectrum of particles participating in the cascade.

Using Eq.’s (3,4), for a full dual-chain event we can
parametrize the total three-momentum of both χ1 par-
ticles as a function of mχ1 , mχ2 , the momenta of each
X particle %pX

1,2, and 4 angles that characterize the orien-
tation of each X in each χ2 rest frame. Varying those
invisible angles with given mχ1 , mχ2 and %pX

1,2 defines
the kinematically allowed region for the total missing
3-momentum. This can be done numerically by a ran-
dom sampling of the phase space (with a flat prior). We
illustrate this in Figure 2, where we display the region al-
lowed for the MET vector in each event for given NLSP
and LSP masses. We assume an event topology that each
of the two decay chains terminates with the NLSP decay-
ing to a Z-boson plus the LSP. We restrict to a particular

configuration of Z momenta. The y-axis reflects the com-
ponent of the MET vector parallel to the total transverse
momentum of Z-bosons while the x-axis displays the re-
maining MET vector component. As expected, the MET
vector is correlated with the %p tot

Z,T (the vector sum of the
transverse momenta of the two Z bosons) with kinematic
boundaries. More importantly, the MET-cone boundary
is sensitive to the overall mass scale of the underlying the-
ory, not simply the mass splitting, as shown in Figure 2.
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FIG. 2: In this figure we display the MET-cone boundaries for
different NLSP and LSP masses (keeping the mass splitting
constant). The MET vector must lie within the boundary for
particular choices of exotica masses. The Z bosons are in a
configuration where each has boost factor γZ = 5, both lie in
the transverse plane, and are separated by a 90 degree angle.

The mcone
χ1

variable — The MET-cone boundary
found in the previous section depends on the unknown
masses of the exotic particles χ1 and χ2, and for an incor-
rect spectrum hypothesis, some events will have a a MET
vector which lies outside the cone. This can potentially
be used as a method of mass determination [13]. How-
ever, the computation of the boundary is complicated by
the dependence on the specific momentum configuration
of X’s in the two decay chains, and the cone must be com-
puted event-by-event. To avoid this event-by-event anal-
ysis, we consider a variable mcone

χ1
which inherits enough

information from the 2-dimensional MET-cone to deter-
mine the mass spectrum:

mcone
χ1

= &pT,y
mX

|%ptot
X,T |

. (5)

This is simply the MET-vector in a given event, rescaled
by the total 3-momentum of the 2 X particles.

In Figure 3, we show rescaled MET-cones in the mcone
χ1

vs &pT,x/ &ET plane for both a scenario where the mass
splitting is very small, and another where an O(10%)
splitting is assumed. From these figures, one observes
that mcone

χ1
has two approximate endpoints in the small

&pT,x/ &ET region, where the cones with randomly chosen
X momentum configuration all intersect the mcone

χ1
axis.
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parent χ2 is then given by

tan θχ2X =
βX

0

γ

(
sin θ0

βX
0 cos θ0 + β

)
. (1)

where θ0 is angle between X and χ2 in the rest frame of
χ2, and βX

0 is the velocity of X in the rest frame of χ2:

(βX
0 )2 =

(
m2

χ2
− (mχ1 + mX)2

) (
m2

χ2
− (mχ1 −mX)2

)

(
m2

χ2
+ (m2

X −m2
χ1

)
)2

(2)
The angle takes on values in the range (for βX

0 < β):

0 ≤ tan θχ2X ≤
βX

0

γβ

1√
1− (βX

0 /β)2
γ!1−−−→ βX

0 γX
0

γ
. (3)

The velocity βX
0 is a function of the masses of the three

particles involved, and it characterizes the allowed phase
space of the χ2 decay. The angle θχ2χ1 can be obtained
by exchanging mX with mχ1 in the above equations. An
approximately collinear configuration is achieved either
with large γ $ γX,χ1

0 , or with narrow phase space for the
χ2 decay.

The boost factors of X and χ1 in the lab frame are
given by

γχ1 = γ γχ1
0 (1 + β βχ1

0 cos θ0)
γX = γ γX

0 (1− β βX
0 cos θ0). (4)

The magnitudes of the 3-momenta of X and χ1 in the
lab frame can be written as pχ1 = γχ1βχ1mχ1 and pX =
γXβXmX .

The χ2 boost factor γ is determined by several vari-
ables. As a simple example, we consider a heavy ex-
otic, with mass mQ which decays to a massless SM par-
ticle (e.g. a jet) and the NLSP, with mass mχ2 . For
mQ ∼ 2 TeV and mχ2 ∼ 200 GeV, a boost factor of
γ = 5 is achieved in the rest frame of Q. However, at a
hadron collider the Q particle will be produced with some
transverse as well as longitudinal momentum, providing
a distribution of boost factors. In addition, in multistage
decay chains, the typical boost factors will depend on the
mass spectrum of particles participating in the cascade.

Using Eq.’s (3,4), for a full dual-chain event we can
parametrize the total three-momentum of both χ1 par-
ticles as a function of mχ1 , mχ2 , the momenta of each
X particle %pX

1,2, and 4 angles that characterize the orien-
tation of each X in each χ2 rest frame. Varying those
invisible angles with given mχ1 , mχ2 and %pX

1,2 defines
the kinematically allowed region for the total missing
3-momentum. This can be done numerically by a ran-
dom sampling of the phase space (with a flat prior). We
illustrate this in Figure 2, where we display the region al-
lowed for the MET vector in each event for given NLSP
and LSP masses. We assume an event topology that each
of the two decay chains terminates with the NLSP decay-
ing to a Z-boson plus the LSP. We restrict to a particular

configuration of Z momenta. The y-axis reflects the com-
ponent of the MET vector parallel to the total transverse
momentum of Z-bosons while the x-axis displays the re-
maining MET vector component. As expected, the MET
vector is correlated with the %p tot

Z,T (the vector sum of the
transverse momenta of the two Z bosons) with kinematic
boundaries. More importantly, the MET-cone boundary
is sensitive to the overall mass scale of the underlying the-
ory, not simply the mass splitting, as shown in Figure 2.
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FIG. 2: In this figure we display the MET-cone boundaries for
different NLSP and LSP masses (keeping the mass splitting
constant). The MET vector must lie within the boundary for
particular choices of exotica masses. The Z bosons are in a
configuration where each has boost factor γZ = 5, both lie in
the transverse plane, and are separated by a 90 degree angle.

The mcone
χ1

variable — The MET-cone boundary
found in the previous section depends on the unknown
masses of the exotic particles χ1 and χ2, and for an incor-
rect spectrum hypothesis, some events will have a a MET
vector which lies outside the cone. This can potentially
be used as a method of mass determination [13]. How-
ever, the computation of the boundary is complicated by
the dependence on the specific momentum configuration
of X’s in the two decay chains, and the cone must be com-
puted event-by-event. To avoid this event-by-event anal-
ysis, we consider a variable mcone

χ1
which inherits enough

information from the 2-dimensional MET-cone to deter-
mine the mass spectrum:

mcone
χ1

= &pT,y
mX

|%ptot
X,T |

. (5)

This is simply the MET-vector in a given event, rescaled
by the total 3-momentum of the 2 X particles.

In Figure 3, we show rescaled MET-cones in the mcone
χ1

vs &pT,x/ &ET plane for both a scenario where the mass
splitting is very small, and another where an O(10%)
splitting is assumed. From these figures, one observes
that mcone

χ1
has two approximate endpoints in the small

&pT,x/ &ET region, where the cones with randomly chosen
X momentum configuration all intersect the mcone

χ1
axis.
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FIG. 3: In these two plots, we compare the rescaled MET-
cones of two scenarios with decay χ2 → χ1Z, with identical
χ2 mass (200 GeV). In the top (bottom) plot, we take ∆m =
mχ2 − (mχ1 + mZ) = 1 GeV(10 GeV). Different contours
correspond to randomly chosen momentum configurations of
two Z bosons from Monte Carlo events. Note that mtest

χ1 has
two endpoints in the small | #pT,x/#ET | region.

positions approximately determine the unknown masses
mχ1 and mχ2 .

Now let us discuss the non-collinear corrections to the
endpoint positions from Eq. (8). First we note that θa

depends on θa
0 and in the near-collinear case it does not

shift the endpoint positions. The dominant contribu-
tion comes from θb which is independent of θa

0 and gives
rise to a shift of the endpoint position ∆mcone

lower/upper ≈
±mcone

lower/upper csc θX
ab θb. Since θb follows a distribution

determined by the kinematics of the decay, it leads to a
smearing of the distribution near these endpoints. In the
near-collinear case, the variation of θb around the central
value is small, and smearing is minimal.

In the general case where the X’s are not in the trans-
verse plane, one needs to project the MET cone into the
transverse plane and then impose the alignment condi-
tion. One can still express the result in a collinear expan-
sion. The zeroth-order result remains the same as that in
Eq. (8). However, the higher order expansion coefficients
are modified by trigonometric functions expected to be

End points are functions of NLSP , LSP and X masses

Bounds LSP mass



mcone endpoints
3

These endpoints are a manifestation of the MET-cone
boundaries when projected onto the transverse plane, as
illustrated in Figure 4. However, the advantage of using
the endpoints of mcone

χ1
is that they do not depend on the

specific momentum configuration of X’s.
The mcone

χ1
variable is motivated to approximate the

mass of χ1 through the introduction of test momentum
of χ1 of each decay chain (distinguished by the notation
i = a, b):

"p i, test
χ1

≡ "p i
X mcone

χ1
/mX , (6)

with mcone
χ1

defined for each event by minimization of the
following quantity

∆ "ET (mcone
χ1

) ≡

∣∣∣∣∣∣

∑

i=a,b

(
"p i, test

χ1,T

)
−""p

exp

T

∣∣∣∣∣∣
. (7)

This is an analytic procedure, as this formula is quadratic
in mcone

χ1
. The minimization of ∆"ET (mcone

χ1
) gives Eq. (5)

and (∆"ET )min/"ET = |"pT,x/"ET |. It is easy to see that
these variables mcone

χ1
and (∆"ET )min/ "ET rescale respec-

tively the y and x components of the "ET vector event-
by-event.

The limit (∆"ET )min/"ET → 0 is equivalent to
an alignment condition on the momenta: "p tot

χ1,T →
"p tot

X,T mcone
χ1

/mX . In this limit, one can express mcone
χ1

in
terms of the measurable parameters of the event. The
result can be written as an expansion in the angular sep-
aration between X and χ1 for both sides of the decay
chain, θa,b, in the near-collinear case. In a configuration
where both X’s are in the transverse plane, we obtain a
relatively clean result:

mcone
χ1

≈ mχ1

γχ1
0

γX
0

1 + β βχ1
0 cos θa

0

1− β βX
0 cos θa

0

×
(
1− cot θX

ab cos φaθa + csc θX
ab cos φbθb

)
, (8)

where β and γ refer to the NLSP in the a-chain. The
asymmetry of the above formula in terms of the two
chains is due to assigning γ and β to refer to the NLSP in
the a-chain. Here (θa, φa) are the spherical coordinates
of "p a

χ1
in the lab frame where the z-axis is along the "p a

X ;
θX

ab is the angle between "p a
X and "p b

X . At zeroth order in
the θa,b expansion, the endpoints of mcone

χ1
are given by:

mcone
lower ≈ mχ1

γχ1
0

γX
0

1− βχ1
0

1 + βX
0

mcone
upper ≈ mχ1

γχ1
0

γX
0

1 + βχ1
0

1− βX
0

(9)

The upper and lower values are achieved when θa
0 = 0 and

π respectively, i.e. χ1 moving forward or backward along
the χ2 boost direction in its rest frame. The range of
mcone

χ1
becomes smaller as the phase space for the χ2 de-

cay shrinks. In the relativistic limit, β ∼ 1, the endpoint
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FIG. 3: In these two plots, we compare the rescaled MET-
cones of two scenarios with decay χ2 → χ1Z, with identical
χ2 mass (200 GeV). In the top (bottom) plot, we take ∆m =
mχ2 − (mχ1 + mZ) = 1 GeV(10 GeV). Different contours
correspond to randomly chosen momentum configurations of
two Z bosons from Monte Carlo events. Note that mtest

χ1 has
two endpoints in the small | #pT,x/#ET | region.

positions approximately determine the unknown masses
mχ1 and mχ2 .

Now let us discuss the non-collinear corrections to the
endpoint positions from Eq. (8). First we note that θa

depends on θa
0 and in the near-collinear case it does not

shift the endpoint positions. The dominant contribu-
tion comes from θb which is independent of θa

0 and gives
rise to a shift of the endpoint position ∆mcone

lower/upper ≈
±mcone

lower/upper csc θX
ab θb. Since θb follows a distribution

determined by the kinematics of the decay, it leads to a
smearing of the distribution near these endpoints. In the
near-collinear case, the variation of θb around the central
value is small, and smearing is minimal.

In the general case where the X’s are not in the trans-
verse plane, one needs to project the MET cone into the
transverse plane and then impose the alignment condi-
tion. One can still express the result in a collinear expan-
sion. The zeroth-order result remains the same as that in
Eq. (8). However, the higher order expansion coefficients
are modified by trigonometric functions expected to be

have also rescaled y-
component by total MET
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FIG. 4: Illustration of the MET cone and its relation to the
mcone

χ1 endpoints.

of order one.
In summary, if the endpoint positions of the mcone

χ1
dis-

tribution are measured from the data, we can find so-
lutions for the masses of the LSP and NLSP using the
relation in Eq. (9).

Numerical Results — We now explore the effective-
ness of the mcone

χ1
method using Monte Carlo simulation.

We consider squark pair production q̃Lq̃L followed by the
decays q̃L → qχ̃2 → qχ̃1Z in SUSY models. We consider
the four spectra shown in Table I. For each of these

Model mχ1 mχ2 mq̃L (mcone
lower)

theo (mcone
upper)

theo

1 100 200 1000 54.6 183.2

2 100 250 1250 21.6 463.0

3 200 300 1000 117.9 339.2

4 200 350 1250 52.6 761.0

TABLE I: The relevant masses in four SUSY models and the
expected endpoints (mcone

lower)
theo and (mcone

upper)
theo. Masses are

given in GeV.

models, we simulate 20k events of squark pair produc-
tion and decay in pp collisions at

√
s = 14 TeV in Mad-

Graph [14] using the 2→ 6 matrix element. We assume
the four-momentum of each Z boson is perfectly recon-
structed (i.e. from leptonic final states). We leave a more
detailed analysis including more realistic reconstructions
for a later publication. In addition, as a test of princi-
ple, we do not include the possible SM backgrounds. For
the channel with 4 leptons, 2 jets and the large MET
required here, the SM background is negligible.

In our analysis, events are selected according to the
parton-level cuts as follows:

• at least two Z bosons with pT > 50 GeV and |η| < 3

• missing energy #ET > 200 GeV

• η of total Z three-momentum
∣∣ηZ,tot

∣∣ < 1

• opening angle of two Z bosons 60◦ < θZ
ab < 120◦

• |#pT,x/ #ET | < 0.15

The θZ
ab cut is to ensure the coefficients in the θa,b ex-

pansion in Eq. (8) are not too large, which would oth-
erwise obscure the endpoints. The cut on |#pT,x/#ET | is
to select those events where the MET vector is closely
aligned with the total transverse momentum of two Z-
bosons. For Models 2 and 4, we have slightly loosened
the selection cuts in order to get better statistics near
the tail of the distribution: a) |#pT,x/#ET | < 0.2 for Model
2 and 4. b) |ηZ,tot| < 3 for Model 4.
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FIG. 5: Top: The distributions of mcone
χ1 for Model 1 and 2.

For Model 2, we have normalized the distribution by a factor
of two. The fitting region for model 1 is 40−60 GeV and 120−
200 GeV; for model 2, it is 10− 30 GeV and 250− 400 GeV.
Bottom: The distributions of mcone

χ1 for Model 3 and 4. To
show the endpoint better, we have used the logarithmic scale.

In Fig. 5, we show the mcone
χ1

distribution for Models
1 and 2. Models 3 and 4 are very similar. For Model 1,
we can see that the distribution is approximately a trian-
gle with two endpoints at around 50 and 200 GeV. The
shape of the distribution near each endpoint is slightly
smeared due to deviations from collinearity. A simple
way to extract these endpoints can be achieved by a lin-
ear fit and taking the x-intercept. This would typically
under-estimate mcone

lower while over-estimating mcone
upper. In

our analysis, we take the position at the half maximum
near the lower edge for mcone

lower to get a better estima-
tion. For the upper endpoint, we use the x-intercept of
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of order one.
In summary, if the endpoint positions of the mcone

χ1
dis-

tribution are measured from the data, we can find so-
lutions for the masses of the LSP and NLSP using the
relation in Eq. (9).

Numerical Results — We now explore the effective-
ness of the mcone

χ1
method using Monte Carlo simulation.

We consider squark pair production q̃Lq̃L followed by the
decays q̃L → qχ̃2 → qχ̃1Z in SUSY models. We consider
the four spectra shown in Table I. For each of these

Model mχ1 mχ2 mq̃L (mcone
lower)

theo (mcone
upper)

theo

1 100 200 1000 54.6 183.2

2 100 250 1250 21.6 463.0

3 200 300 1000 117.9 339.2

4 200 350 1250 52.6 761.0

TABLE I: The relevant masses in four SUSY models and the
expected endpoints (mcone

lower)
theo and (mcone

upper)
theo. Masses are

given in GeV.

models, we simulate 20k events of squark pair produc-
tion and decay in pp collisions at

√
s = 14 TeV in Mad-

Graph [14] using the 2→ 6 matrix element. We assume
the four-momentum of each Z boson is perfectly recon-
structed (i.e. from leptonic final states). We leave a more
detailed analysis including more realistic reconstructions
for a later publication. In addition, as a test of princi-
ple, we do not include the possible SM backgrounds. For
the channel with 4 leptons, 2 jets and the large MET
required here, the SM background is negligible.

In our analysis, events are selected according to the
parton-level cuts as follows:

• at least two Z bosons with pT > 50 GeV and |η| < 3

• missing energy #ET > 200 GeV

• η of total Z three-momentum
∣∣ηZ,tot

∣∣ < 1

• opening angle of two Z bosons 60◦ < θZ
ab < 120◦

• |#pT,x/ #ET | < 0.15

The θZ
ab cut is to ensure the coefficients in the θa,b ex-

pansion in Eq. (8) are not too large, which would oth-
erwise obscure the endpoints. The cut on |#pT,x/#ET | is
to select those events where the MET vector is closely
aligned with the total transverse momentum of two Z-
bosons. For Models 2 and 4, we have slightly loosened
the selection cuts in order to get better statistics near
the tail of the distribution: a) | #pT,x/#ET | < 0.2 for Model
2 and 4. b) |ηZ,tot| < 3 for Model 4.
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In Fig. 5, we show the mcone
χ1

distribution for Models
1 and 2. Models 3 and 4 are very similar. For Model 1,
we can see that the distribution is approximately a trian-
gle with two endpoints at around 50 and 200 GeV. The
shape of the distribution near each endpoint is slightly
smeared due to deviations from collinearity. A simple
way to extract these endpoints can be achieved by a lin-
ear fit and taking the x-intercept. This would typically
under-estimate mcone

lower while over-estimating mcone
upper. In

our analysis, we take the position at the half maximum
near the lower edge for mcone

lower to get a better estima-
tion. For the upper endpoint, we use the x-intercept of
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the four-momentum of each Z boson is perfectly recon-
structed (i.e. from leptonic final states). We leave a more
detailed analysis including more realistic reconstructions
for a later publication. In addition, as a test of princi-
ple, we do not include the possible SM backgrounds. For
the channel with 4 leptons, 2 jets and the large MET
required here, the SM background is negligible.

In our analysis, events are selected according to the
parton-level cuts as follows:

• at least two Z bosons with pT > 50 GeV and |η| < 3

• missing energy #ET > 200 GeV
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1 and 2. Models 3 and 4 are very similar. For Model 1,
we can see that the distribution is approximately a trian-
gle with two endpoints at around 50 and 200 GeV. The
shape of the distribution near each endpoint is slightly
smeared due to deviations from collinearity. A simple
way to extract these endpoints can be achieved by a lin-
ear fit and taking the x-intercept. This would typically
under-estimate mcone

lower while over-estimating mcone
upper. In

our analysis, we take the position at the half maximum
near the lower edge for mcone

lower to get a better estima-
tion. For the upper endpoint, we use the x-intercept of
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Model mχ1 mχ2 mtest
lower mtest

upper mmeas
χ1 mmeas

χ2

1 100 200 55± 2 205± 3 106± 2 208± 3

2 100 250 27± 2 454± 20 110± 5 253± 5

3 200 300 112± 5 342± 10 195± 5 296± 5

4 200 350 49± 2 682± 16 183± 5 329± 5

TABLE II: Results of the measured mtest
χ1 endpoints and mχ1,2

for four SUSY models. Masses are given in GeV.

a linear fit. More complicated fits and estimation are
certainly possible.

The results are shown in Table II together with the
statistical errors. The results are consistent with the ex-
pected endpoints calculated using the leading-order ex-
pression (9), as shown in Table I. For Model 2, as seen
in Fig. 5, the upper endpoint is much less sharp than
the lower one. Estimation of its position is subject to
a relatively large systematic uncertainty depending on
the binning and the choice of the fitting region. For-
tunately, the calculated masses are not very sensitive
to the upper endpoint position. For a reasonable es-
timate of the mtest

upper in the range 400 − 500 GeV, the
calculated masses (mmeas

χ1
, mmeas

χ2
) vary only mildly from

(103 GeV, 241 GeV) to (116 GeV, 264 GeV). Therefore,
even in this relatively less collinear case where the upper
endpoint is not well measured, we still obtain an use-
ful estimate of the masses. In fact, without the upper
endpoint, the lower endpoint alone provides a constraint
on the masses, which can be combined with other in-
variant mass endpoints to determine the absolute mass
scale. For all four models, the estimated endpoints and
calculated masses are summarized in Table II. The sta-
tistical error for the measured mass is within 10%. In-
cluding the systematic error, the final uncertainty could
be slightly larger, but should be in the 10− 20% range if
the endpoints are not significantly contaminated by the
background.

Summary and Outlook— In this letter, we explored
a novel method of measuring the absolute mass scale of
exotic particles in events with missing energy arising in
cascade decays with moderate relativistic boost. This
method uses the fact that in the boosted decay there is
a limited variation in both the direction and magnitude
of the total three-momentum of missing particles rela-
tive to the total three-momentum of the visible partners,
particularly when the phase space for the NLSP decay
is small. The boundary of the allowed region, or the
MET-cone, is determined by the mass parameters and
the configuration of the visible particles. We constructed
a variable mcone

χ1
which has endpoints which depend on

the masses involved in the final step of the cascade decay.
Once observed from the data, the endpoints can be used
to determine the NLSP and LSP masses.

The mcone
χ1

variable works best in the collinear limit.
Given the data, the evidence of collinearity in the final

step decay can be seen in various ways. First, one would
see a peak at 0 in the |"pT,x/"ET | distribution. Second,
one would see well-defined endpoints in the mcone

χ1
distri-

bution. Once the masses of χ1 and χ2 are measured, one
can find the masses of heavier exotics upstream of the
NLSP decay using more standard techniques.

We have demonstrated our method in a setup with two
symmetric decay chains with a two-step cascade decay,
however it applies for longer decay chains as well. An
advantage of this method is that one does not require
information on all of the visible SM particles.

The mcone
χ1

variable has the advantage that it is sim-
ple to calculate on an event-by-event basis. However,
it does not fully utilize the information available in the
MET-cones. Developing an even more effective method
which takes full advantage of these kinematic boundaries
is currently under investigation.
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of order one.
In summary, if the endpoint positions of the mcone

χ1
dis-

tribution are measured from the data, we can find so-
lutions for the masses of the LSP and NLSP using the
relation in Eq. (9).

Numerical Results — We now explore the effective-
ness of the mcone

χ1
method using Monte Carlo simulation.

We consider squark pair production q̃Lq̃L followed by the
decays q̃L → qχ̃2 → qχ̃1Z in SUSY models. We consider
the four spectra shown in Table I. For each of these

Model mχ1 mχ2 mq̃L (mcone
lower)

theo (mcone
upper)

theo

1 100 200 1000 54.6 183.2

2 100 250 1250 21.6 463.0

3 200 300 1000 117.9 339.2

4 200 350 1250 52.6 761.0

TABLE I: The relevant masses in four SUSY models and the
expected endpoints (mcone

lower)
theo and (mcone

upper)
theo. Masses are

given in GeV.

models, we simulate 20k events of squark pair produc-
tion and decay in pp collisions at

√
s = 14 TeV in Mad-

Graph [14] using the 2→ 6 matrix element. We assume
the four-momentum of each Z boson is perfectly recon-
structed (i.e. from leptonic final states). We leave a more
detailed analysis including more realistic reconstructions
for a later publication. In addition, as a test of princi-
ple, we do not include the possible SM backgrounds. For
the channel with 4 leptons, 2 jets and the large MET
required here, the SM background is negligible.

In our analysis, events are selected according to the
parton-level cuts as follows:

• at least two Z bosons with pT > 50 GeV and |η| < 3

• missing energy #ET > 200 GeV

• η of total Z three-momentum
∣∣ηZ,tot

∣∣ < 1

• opening angle of two Z bosons 60◦ < θZ
ab < 120◦

• |#pT,x/ #ET | < 0.15

The θZ
ab cut is to ensure the coefficients in the θa,b ex-

pansion in Eq. (8) are not too large, which would oth-
erwise obscure the endpoints. The cut on |#pT,x/#ET | is
to select those events where the MET vector is closely
aligned with the total transverse momentum of two Z-
bosons. For Models 2 and 4, we have slightly loosened
the selection cuts in order to get better statistics near
the tail of the distribution: a) |#pT,x/#ET | < 0.2 for Model
2 and 4. b) |ηZ,tot| < 3 for Model 4.
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FIG. 5: Top: The distributions of mcone
χ1 for Model 1 and 2.

For Model 2, we have normalized the distribution by a factor
of two. The fitting region for model 1 is 40−60 GeV and 120−
200 GeV; for model 2, it is 10− 30 GeV and 250− 400 GeV.
Bottom: The distributions of mcone

χ1 for Model 3 and 4. To
show the endpoint better, we have used the logarithmic scale.

In Fig. 5, we show the mcone
χ1

distribution for Models
1 and 2. Models 3 and 4 are very similar. For Model 1,
we can see that the distribution is approximately a trian-
gle with two endpoints at around 50 and 200 GeV. The
shape of the distribution near each endpoint is slightly
smeared due to deviations from collinearity. A simple
way to extract these endpoints can be achieved by a lin-
ear fit and taking the x-intercept. This would typically
under-estimate mcone

lower while over-estimating mcone
upper. In

our analysis, we take the position at the half maximum
near the lower edge for mcone

lower to get a better estima-
tion. For the upper endpoint, we use the x-intercept of
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of order one.
In summary, if the endpoint positions of the mcone

χ1
dis-

tribution are measured from the data, we can find so-
lutions for the masses of the LSP and NLSP using the
relation in Eq. (9).

Numerical Results — We now explore the effective-
ness of the mcone

χ1
method using Monte Carlo simulation.

We consider squark pair production q̃Lq̃L followed by the
decays q̃L → qχ̃2 → qχ̃1Z in SUSY models. We consider
the four spectra shown in Table I. For each of these
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TABLE I: The relevant masses in four SUSY models and the
expected endpoints (mcone
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given in GeV.

models, we simulate 20k events of squark pair produc-
tion and decay in pp collisions at

√
s = 14 TeV in Mad-

Graph [14] using the 2→ 6 matrix element. We assume
the four-momentum of each Z boson is perfectly recon-
structed (i.e. from leptonic final states). We leave a more
detailed analysis including more realistic reconstructions
for a later publication. In addition, as a test of princi-
ple, we do not include the possible SM backgrounds. For
the channel with 4 leptons, 2 jets and the large MET
required here, the SM background is negligible.

In our analysis, events are selected according to the
parton-level cuts as follows:

• at least two Z bosons with pT > 50 GeV and |η| < 3

• missing energy #ET > 200 GeV

• η of total Z three-momentum
∣∣ηZ,tot

∣∣ < 1

• opening angle of two Z bosons 60◦ < θZ
ab < 120◦

• |#pT,x/ #ET | < 0.15

The θZ
ab cut is to ensure the coefficients in the θa,b ex-

pansion in Eq. (8) are not too large, which would oth-
erwise obscure the endpoints. The cut on |#pT,x/#ET | is
to select those events where the MET vector is closely
aligned with the total transverse momentum of two Z-
bosons. For Models 2 and 4, we have slightly loosened
the selection cuts in order to get better statistics near
the tail of the distribution: a) | #pT,x/#ET | < 0.2 for Model
2 and 4. b) |ηZ,tot| < 3 for Model 4.
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In Fig. 5, we show the mcone
χ1

distribution for Models
1 and 2. Models 3 and 4 are very similar. For Model 1,
we can see that the distribution is approximately a trian-
gle with two endpoints at around 50 and 200 GeV. The
shape of the distribution near each endpoint is slightly
smeared due to deviations from collinearity. A simple
way to extract these endpoints can be achieved by a lin-
ear fit and taking the x-intercept. This would typically
under-estimate mcone

lower while over-estimating mcone
upper. In

our analysis, we take the position at the half maximum
near the lower edge for mcone

lower to get a better estima-
tion. For the upper endpoint, we use the x-intercept of
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of order one.
In summary, if the endpoint positions of the mcone

χ1
dis-

tribution are measured from the data, we can find so-
lutions for the masses of the LSP and NLSP using the
relation in Eq. (9).

Numerical Results — We now explore the effective-
ness of the mcone

χ1
method using Monte Carlo simulation.

We consider squark pair production q̃Lq̃L followed by the
decays q̃L → qχ̃2 → qχ̃1Z in SUSY models. We consider
the four spectra shown in Table I. For each of these
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models, we simulate 20k events of squark pair produc-
tion and decay in pp collisions at

√
s = 14 TeV in Mad-

Graph [14] using the 2→ 6 matrix element. We assume
the four-momentum of each Z boson is perfectly recon-
structed (i.e. from leptonic final states). We leave a more
detailed analysis including more realistic reconstructions
for a later publication. In addition, as a test of princi-
ple, we do not include the possible SM backgrounds. For
the channel with 4 leptons, 2 jets and the large MET
required here, the SM background is negligible.

In our analysis, events are selected according to the
parton-level cuts as follows:

• at least two Z bosons with pT > 50 GeV and |η| < 3

• missing energy #ET > 200 GeV

• η of total Z three-momentum
∣∣ηZ,tot

∣∣ < 1

• opening angle of two Z bosons 60◦ < θZ
ab < 120◦

• |#pT,x/ #ET | < 0.15

The θZ
ab cut is to ensure the coefficients in the θa,b ex-

pansion in Eq. (8) are not too large, which would oth-
erwise obscure the endpoints. The cut on |#pT,x/#ET | is
to select those events where the MET vector is closely
aligned with the total transverse momentum of two Z-
bosons. For Models 2 and 4, we have slightly loosened
the selection cuts in order to get better statistics near
the tail of the distribution: a) |#pT,x/#ET | < 0.2 for Model
2 and 4. b) |ηZ,tot| < 3 for Model 4.
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of order one.
In summary, if the endpoint positions of the mcone

χ1
dis-

tribution are measured from the data, we can find so-
lutions for the masses of the LSP and NLSP using the
relation in Eq. (9).

Numerical Results — We now explore the effective-
ness of the mcone

χ1
method using Monte Carlo simulation.

We consider squark pair production q̃Lq̃L followed by the
decays q̃L → qχ̃2 → qχ̃1Z in SUSY models. We consider
the four spectra shown in Table I. For each of these
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tion and decay in pp collisions at

√
s = 14 TeV in Mad-

Graph [14] using the 2→ 6 matrix element. We assume
the four-momentum of each Z boson is perfectly recon-
structed (i.e. from leptonic final states). We leave a more
detailed analysis including more realistic reconstructions
for a later publication. In addition, as a test of princi-
ple, we do not include the possible SM backgrounds. For
the channel with 4 leptons, 2 jets and the large MET
required here, the SM background is negligible.

In our analysis, events are selected according to the
parton-level cuts as follows:

• at least two Z bosons with pT > 50 GeV and |η| < 3

• missing energy #ET > 200 GeV

• η of total Z three-momentum
∣∣ηZ,tot

∣∣ < 1

• opening angle of two Z bosons 60◦ < θZ
ab < 120◦

• |#pT,x/ #ET | < 0.15

The θZ
ab cut is to ensure the coefficients in the θa,b ex-

pansion in Eq. (8) are not too large, which would oth-
erwise obscure the endpoints. The cut on |#pT,x/#ET | is
to select those events where the MET vector is closely
aligned with the total transverse momentum of two Z-
bosons. For Models 2 and 4, we have slightly loosened
the selection cuts in order to get better statistics near
the tail of the distribution: a) | #pT,x/#ET | < 0.2 for Model
2 and 4. b) |ηZ,tot| < 3 for Model 4.
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FIG. 5: Top: The distributions of mcone
χ1 for Model 1 and 2.

For Model 2, we have normalized the distribution by a factor
of two. The fitting region for model 1 is 40−60 GeV and 120−
200 GeV; for model 2, it is 10− 30 GeV and 250− 400 GeV.
Bottom: The distributions of mcone

χ1 for Model 3 and 4. To
show the endpoint better, we have used the logarithmic scale.

In Fig. 5, we show the mcone
χ1

distribution for Models
1 and 2. Models 3 and 4 are very similar. For Model 1,
we can see that the distribution is approximately a trian-
gle with two endpoints at around 50 and 200 GeV. The
shape of the distribution near each endpoint is slightly
smeared due to deviations from collinearity. A simple
way to extract these endpoints can be achieved by a lin-
ear fit and taking the x-intercept. This would typically
under-estimate mcone

lower while over-estimating mcone
upper. In

our analysis, we take the position at the half maximum
near the lower edge for mcone

lower to get a better estima-
tion. For the upper endpoint, we use the x-intercept of

5

Model mχ1 mχ2 mtest
lower mtest

upper mmeas
χ1 mmeas

χ2

1 100 200 55± 2 205± 3 106± 2 208± 3

2 100 250 27± 2 454± 20 110± 5 253± 5

3 200 300 112± 5 342± 10 195± 5 296± 5

4 200 350 49± 2 682± 16 183± 5 329± 5

TABLE II: Results of the measured mtest
χ1 endpoints and mχ1,2

for four SUSY models. Masses are given in GeV.

a linear fit. More complicated fits and estimation are
certainly possible.

The results are shown in Table II together with the
statistical errors. The results are consistent with the ex-
pected endpoints calculated using the leading-order ex-
pression (9), as shown in Table I. For Model 2, as seen
in Fig. 5, the upper endpoint is much less sharp than
the lower one. Estimation of its position is subject to
a relatively large systematic uncertainty depending on
the binning and the choice of the fitting region. For-
tunately, the calculated masses are not very sensitive
to the upper endpoint position. For a reasonable es-
timate of the mtest

upper in the range 400 − 500 GeV, the
calculated masses (mmeas

χ1
, mmeas

χ2
) vary only mildly from

(103 GeV, 241 GeV) to (116 GeV, 264 GeV). Therefore,
even in this relatively less collinear case where the upper
endpoint is not well measured, we still obtain an use-
ful estimate of the masses. In fact, without the upper
endpoint, the lower endpoint alone provides a constraint
on the masses, which can be combined with other in-
variant mass endpoints to determine the absolute mass
scale. For all four models, the estimated endpoints and
calculated masses are summarized in Table II. The sta-
tistical error for the measured mass is within 10%. In-
cluding the systematic error, the final uncertainty could
be slightly larger, but should be in the 10− 20% range if
the endpoints are not significantly contaminated by the
background.

Summary and Outlook— In this letter, we explored
a novel method of measuring the absolute mass scale of
exotic particles in events with missing energy arising in
cascade decays with moderate relativistic boost. This
method uses the fact that in the boosted decay there is
a limited variation in both the direction and magnitude
of the total three-momentum of missing particles rela-
tive to the total three-momentum of the visible partners,
particularly when the phase space for the NLSP decay
is small. The boundary of the allowed region, or the
MET-cone, is determined by the mass parameters and
the configuration of the visible particles. We constructed
a variable mcone

χ1
which has endpoints which depend on

the masses involved in the final step of the cascade decay.
Once observed from the data, the endpoints can be used
to determine the NLSP and LSP masses.

The mcone
χ1

variable works best in the collinear limit.
Given the data, the evidence of collinearity in the final

step decay can be seen in various ways. First, one would
see a peak at 0 in the |"pT,x/"ET | distribution. Second,
one would see well-defined endpoints in the mcone

χ1
distri-

bution. Once the masses of χ1 and χ2 are measured, one
can find the masses of heavier exotics upstream of the
NLSP decay using more standard techniques.

We have demonstrated our method in a setup with two
symmetric decay chains with a two-step cascade decay,
however it applies for longer decay chains as well. An
advantage of this method is that one does not require
information on all of the visible SM particles.

The mcone
χ1

variable has the advantage that it is sim-
ple to calculate on an event-by-event basis. However,
it does not fully utilize the information available in the
MET-cones. Developing an even more effective method
which takes full advantage of these kinematic boundaries
is currently under investigation.
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improved statistics
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Conclusions
We offer a conceptually new method of mass 
measurement in dual-cascade decay chain 
events with missing energy

Useful in topologies that end with decays of 
“NLSP” to “LSP” + massive visible

Well suited to “simplified model” analysis

Outlook:

take full advantage of event-by-event 
constraints

getting away from parton level


