Using the MET

 cone for mass measurement at the LHCJay Hubisz
with Jing Shao

Syracuse University

Jan. 27, 2011

arXiv:1009.1148 and in preparation

Mass measurement at Hadron colliders

- Many models, particularly those that could be responsible for providing dark matter provide only "incomplete" event information due to one or more missing particles in the event
- Reconstruction of such events is a priority, but a difficult task
- At the dawn of the LHC, much progress has been made, but more needs to be done

Model independence

- Methods which are model independent, i.e. which exploit on-shell kinematic constraints are ideal
- peaks, edges/endpoints, cusps
- features of simplified models/topologies
- we should search for such features in events with missing transverse momentum
- the more independent constraints we have, the better
- nail down spectrum, quantum numbers, rule out topology hypotheses

Edges

The transverse mass, for known daughter masses, has a kinematic edge
(here smeared by resolution effects, off-shell-ness and backgrounds)

Edges

Invariant mass of visibles, X, Y (e.g. leptons)

- distribution sensitive to mass spectrum
- kinematic edge when angle between X, Y are back-to-back

$$
\left(m_{X Y}^{\max _{x}}\right)^{2}=\frac{\left(m_{A}^{2}-m_{B}^{2}\right)\left(m_{B}^{2}-m_{Z}^{2}\right)}{m_{B}^{2}}
$$

"Dilepton" edge - sensitive to mass differences

Early Mass Measurement

constructed to give an approximation to mass of strongly coupled exotica gluinos/squarks - Tovey (hep-ph/0006276)
Peak position sensitive to (unknown) LSP mass

Cusps

$M_{T 2}\left(m_{B}, m_{B^{\prime}}, \mathbf{b}_{T}, \mathbf{b}_{T}^{\prime}, \mathbf{p}_{T} ; \chi\right) \equiv \min _{\boldsymbol{\phi}_{T}+\boldsymbol{\phi}_{T}^{\prime}=\phi_{T}}\left\{\max \left(M_{T}, M_{T}^{\prime}\right)\right\}$

Eg. gluino 3 body decays
Hemisphere selection and combinatorics

Peaks

Cheng, Gunion, Han, McElrath 0905.1344
Entries 2420318

Uses pairings of events with identical topology to

 completely constrain kinematics
And more...

- Co-transverse mass
- Tovey 0802.2879
- $\mathrm{M}_{\mathrm{T} 2}$ endpoints - subsystem $\mathrm{M}_{\mathrm{T} 2}$
- Burns, Kong, Matchev, Park 0810.5576
- Hybrids of methods (Barr, Ross, Serna, Pinder)
- These methods all exploit singularities in computation of variables at truth masses
- Kim 0910.1149
- Review of Techniques: Barr, Lester 1004.2732

> What's(re)my topology(ies)
> and disentanglement method?

MET-Cones

Event-by event endpoints

Only use the information of X and MET

$$
\vec{p}_{\chi_{1}}^{a}\left(\vec{p}_{X}^{a}\left|\theta_{0}^{a}, \phi^{a}\right| m_{\chi_{1}}, m_{\chi_{2}}\right)
$$

JH, Jing Shao 1009.1148

$$
\vec{p}_{\chi_{1}}^{b}\left(\vec{p}_{X}^{b}\left|\theta_{0}^{b}, \phi^{b}\right| m_{\chi_{1}}, m_{\chi_{2}}\right)
$$

X is massive and fully reconstructed object (e.g. Z-boson)
Example: $p p \rightarrow \overline{\tilde{q}} \tilde{q} \rightarrow 2 j+2 Z+$ MET
dual cascades could be asymmetric, up to last decay

Two 2-Body Decays

Consider kinematics of "NLSP" decay to X + LSP

Calculate kinematics in rest-frame of NLSP and boost

$$
\left(\beta_{0}^{X}\right)^{2}=\frac{\left(m_{\chi_{2}}^{2}-\left(m_{\chi_{1}}+m_{X}\right)^{2}\right)\left(m_{\chi_{2}}^{2}-\left(m_{\chi_{1}}-m_{X}\right)^{2}\right)}{\left(m_{\chi_{2}}^{2}+\left(m_{X}^{2}-m_{\chi_{1}}^{2}\right)\right)^{2}}
$$

NLSP has boost/velocity γ, β

$$
\tan \theta_{\chi_{2} X}=\frac{\beta_{0}^{X}}{\gamma}\left(\frac{\sin \theta_{0}}{\beta_{0}^{X} \cos \theta_{0}+\beta}\right)
$$

Going backwards

Can start with px for given NLSP, LSP masses, then find allowed range for LSP momentum

Spheroid parametrized by rest-frame angles

The Shape of MET

Each MET particle momentum resides on a surface

- shape determined by NLSP-LSP spectrum and corresponding X-momenta

Total MET particle momentum vector resides in blob

- total missing momentum resides in projection of blob onto transverse plane
- blob obtained by varying over 4 rest-frame angles
- boundaries determined purely by kinematics

The "MET-Cone"

Projection of the blob onto the transverse plane

Convenient Coordinates

Transverse Plane

Example

$$
\chi_{2} \rightarrow \chi_{1} Z
$$

Two Z's in transverse plane, relative angle of pi / 2, both with boost factor of 5
Cone boundaries shown for identical mass splittings, different overall mass scale MET vector inconsistent with some mass hypotheses

What SHOULD we do

- For every event, find the allowed region in the NLSP-LSP mass plane.
- Choose the point in this plane which minimally encloses every MET vector with a MET-cone
- like shrink-wrap
- This is doable, but rather time consuming and computationally intensive
- we (for now) study a quick and dirty way to access the MET cone information

The m ${ }^{\text {cone }}$ variable

Consider the zero-splitting limit -tiny phase space for NLSP decay -far collinear limit (MET cones shrink to points)

$$
\vec{p}_{\chi_{1}}^{a, b}=\vec{p}_{X}^{a, b} \frac{m_{\chi_{1}}}{m_{X}} \Longrightarrow \quad \vec{p}_{\chi_{1}}^{\mathrm{tot}}=\vec{p}_{X}^{\mathrm{tot}} \frac{m_{\chi_{1}}}{m_{X}}
$$

Define a "test MET" as function of new variable $\vec{p}_{\chi_{1}}^{i, \text { test }} \equiv \vec{p}_{X}^{i} m_{\chi_{1}}^{\text {cone }} / m_{X} \quad \Delta E_{T}\left(m_{\chi_{1}}^{\text {cone }}\right) \equiv\left|\sum_{i=a, b}\left(\vec{p}_{\chi_{1}, T}^{i, \text { test }}\right)-\vec{p}_{T}^{\text {exp }}\right|$

Minimize this and get

$$
m_{\chi_{1}}^{\text {cone }}=\not p P_{T, y} \frac{m_{X}}{\left|\vec{p}_{X, T}^{\text {tot }}\right|}
$$

$m^{\text {cone }}$ endpoints

 lab frame velocity of NLSP
For relativistic NLSP this has endpoints at extremal values of rest-frame angle:

$$
\begin{aligned}
& m_{\text {lower }}^{\text {cone }} \approx m_{\chi_{1}} \frac{\gamma_{0}^{\chi_{1}}}{\gamma_{0}^{X}} \frac{1-\beta_{0}^{\chi_{1}}}{1+\beta_{0}^{X}} \\
& m_{\text {upper }}^{\text {cone }} \approx m_{\chi_{1}} \frac{\gamma_{0}^{\chi_{1}}}{\gamma_{0}^{X}} \frac{1+\beta_{0}^{\chi_{1}}}{1-\beta_{0}^{X}}
\end{aligned}
$$

Bounds LSP mass

End points are functions of NLSP , LSP and X masses

$m^{\text {cone }}$ endpoints

small and smaller mass splittings shown
cones intersect at same points on $\mathrm{m}^{\text {cone }}$ axis
have also rescaled y component by total MET

Simulation

$$
p p \rightarrow \overline{\tilde{q}} \tilde{q} \rightarrow 2 j+2 Z+\mathrm{MET}
$$

Parton level - Madgraph

20k before cuts

- at least two Z bosons with $p_{T}>50 \mathrm{GeV}$ and $|\eta|<3$
- missing energy $E_{T}>200 \mathrm{GeV}$
- η of total Z three-momentum $\left|\eta^{Z, \text { tot }}\right|<1$
- opening angle of two Z bosons $60^{\circ}<\theta_{a b}^{Z}<120^{\circ}$
- $\left|\not p_{T, x} / E_{T}\right|<0.15$

Model	$m_{\chi_{1}}$	$m_{\chi_{2}}$	$m_{\tilde{q}_{L}}$	$\left(m_{\text {lower }}^{\text {cone }}\right.$)	${ }^{\text {theo }}$	$\left(m_{\text {upper }}^{\text {cone }}\right)$	
1	100	200	1000	54.6		183.2	
2	100	250	1250	21.6		463.0	
$m_{\chi_{1}}^{\text {cone }}(\mathbf{G e V})$							
Model	$m_{\chi_{1}}$	χ_{χ}	$m_{\text {lower }}^{\text {test }}$	$m_{\text {upper }}^{\text {test }}$	m_{χ}^{m}	${ }_{1}^{\text {meas }} m_{\chi}^{\text {m }}$	
1	100	0	55 ± 2	205 ± 3	106	± 2208	
2	100	50	27 ± 2	454 ± 20	110	± 5253	

Statistics can be tough

lower endpoint still provides constraint

Sketch of the goal

Here is what we "know" in an event:

$$
\vec{p}_{X}^{a}, \quad \vec{p}_{X}^{b}, \quad\left(\vec{p}_{\chi_{1}}^{a}+\vec{p}_{\chi_{1}}^{a}\right)_{T}
$$

For each event, we can calculate "mass-funnel"

$$
\begin{aligned}
& \vec{p}_{\chi_{1}}^{a}\left(\vec{p}_{X}^{a}\left|\theta_{0}^{a}, \phi^{a}\right| m_{\chi_{1}}, m_{\chi_{2}}\right) \\
& \vec{p}_{\chi_{1}}^{b}\left(\vec{p}_{X}^{b}\left|\theta_{0}^{b}, \phi^{b}\right| m_{\chi_{1}}, m_{\chi_{2}}\right)
\end{aligned}
$$

Another view of $\mathrm{m}^{\text {cone }}$

Bring back the lost events

re-populate the region off the y-axis of the MET cone improved statistics

Conclusions

- We offer a conceptually new method of mass measurement in dual-cascade decay chain events with missing energy
- Useful in topologies that end with decays of "NLSP" to "LSP" + massive visible
- Well suited to "simplified model" analysis
- Outlook:
- take full advantage of event-by-event constraints
- getting away from parton level

